In algorithm window maps can be selected and reated through MapSelector widget.
2 * demo/sub_graph_adaptor_demo.cc - Part of LEMON, a generic C++ optimization
5 * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
6 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 * Permission to use, modify and distribute this software is granted
9 * provided that this copyright notice appears in all copies. For
10 * precise terms see the accompanying LICENSE file.
12 * This software is provided "AS IS" with no warranty of any kind,
13 * express or implied, and with no claim as to its suitability for any
20 ///\brief Computing maximum number of edge-disjoint shortest paths
22 /// This program computes a maximum number of edge-disjoint shortest paths
23 /// between nodes \c s and \c t.
25 /// \include sub_graph_adaptor_demo.cc
27 // Use a DIMACS max flow file as input.
28 // sub_graph_adaptor_demo < dimacs_max_flow_file
29 // Modified to eat lemon graph format!
35 #include <lemon/smart_graph.h>
36 #include <lemon/dijkstra.h>
37 #include <lemon/maps.h>
38 #include <lemon/graph_adaptor.h>
39 #include <lemon/dimacs.h>
40 #include <lemon/preflow.h>
41 #include <tight_edge_filter_map.h>
43 #include <lemon/graph_reader.h>
46 using namespace lemon;
51 int main(int argc, char *argv[])
55 std::cerr << "USAGE: sub_graph_adaptor_demo input_file.lgf" << std::endl;
56 std::cerr << "The file 'input_file.lgf' has to contain a max flow "
57 << "instance in \n LEMON format "
58 << "(e.g. sub_gad_input.lgf is such a file)."
64 //input stream to read the graph from
65 std::ifstream is(argv[1]);
67 typedef SmartGraph Graph;
69 typedef Graph::Edge Edge;
70 typedef Graph::Node Node;
71 typedef Graph::EdgeIt EdgeIt;
72 typedef Graph::NodeIt NodeIt;
73 typedef Graph::EdgeMap<int> LengthMap;
79 //readDimacs(is, g, length, s, t);
82 GraphReader<SmartGraph> reader(is,g);
83 reader.readNode("source",s).readNode("target",t)
84 .readEdgeMap("length",length).run();
86 cout << "edges with lengths (of form id, source--length->target): " << endl;
87 for(EdgeIt e(g); e!=INVALID; ++e)
88 cout << " " << g.id(e) << ", " << g.id(g.source(e)) << "--"
89 << length[e] << "->" << g.id(g.target(e)) << endl;
91 cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
93 typedef Dijkstra<Graph, LengthMap> Dijkstra;
94 Dijkstra dijkstra(g, length);
97 // This map returns true exactly for those edges which are
98 // tight w.r.t the length funcion and the potential
99 // given by the dijkstra algorithm.
100 typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap>
102 TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
104 // ConstMap<Node, bool> const_true_map(true);
105 // This graph contains exaclty the tight edges.
106 // typedef SubGraphAdaptor<Graph, ConstMap<Node, bool>, TightEdgeFilter> SubGW;
107 typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
108 SubGW gw(g, tight_edge_filter);
110 ConstMap<Edge, int> const_1_map(1);
111 Graph::EdgeMap<int> flow(g, 0);
112 // Max flow between s and t in the graph of tight edges.
113 Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> >
114 preflow(gw, s, t, const_1_map, flow);
117 cout << "maximum number of edge-disjoint shortest paths: "
118 << preflow.flowValue() << endl;
119 cout << "edges of the maximum number of edge-disjoint shortest s-t paths: "
121 for(EdgeIt e(g); e!=INVALID; ++e)
123 cout << " " << g.id(e) << ", "
124 << g.id(g.source(e)) << "--"
125 << length[e] << "->" << g.id(g.target(e)) << endl;