lemon/graph_adaptor.h
author hegyi
Fri, 06 Jan 2006 16:07:08 +0000
changeset 1884 9c061834b33b
parent 1842 8abf74160dc4
child 1909 2d806130e700
permissions -rw-r--r--
In algorithm window maps can be selected and reated through MapSelector widget.
     1 /* -*- C++ -*-
     2  * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_ADAPTOR_H
    18 #define LEMON_GRAPH_ADAPTOR_H
    19 
    20 ///\ingroup graph_adaptors
    21 ///\file
    22 ///\brief Several graph adaptors.
    23 ///
    24 ///This file contains several useful graph adaptor functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/erasable_graph_extender.h>
    31 #include <lemon/bits/clearable_graph_extender.h>
    32 #include <lemon/bits/extendable_graph_extender.h>
    33 #include <lemon/bits/iterable_graph_extender.h>
    34 #include <lemon/bits/alteration_notifier.h>
    35 #include <lemon/bits/default_map.h>
    36 #include <lemon/bits/graph_extender.h>
    37 #include <iostream>
    38 
    39 namespace lemon {
    40 
    41   // Graph adaptors
    42 
    43   /*!
    44     \addtogroup graph_adaptors
    45     @{
    46    */
    47 
    48   /*! 
    49     Base type for the Graph Adaptors
    50     
    51     \warning Graph adaptors are in even more experimental state than the other
    52     parts of the lib. Use them at you own risk.
    53     
    54     This is the base type for most of LEMON graph adaptors. 
    55     This class implements a trivial graph adaptor i.e. it only wraps the 
    56     functions and types of the graph. The purpose of this class is to 
    57     make easier implementing graph adaptors. E.g. if an adaptor is 
    58     considered which differs from the wrapped graph only in some of its 
    59     functions or types, then it can be derived from GraphAdaptor, and only the 
    60     differences should be implemented.
    61   
    62     \author Marton Makai 
    63   */
    64   template<typename _Graph>
    65   class GraphAdaptorBase {
    66   public:
    67     typedef _Graph Graph;
    68     typedef Graph ParentGraph;
    69 
    70   protected:
    71     Graph* graph;
    72     GraphAdaptorBase() : graph(0) { }
    73     void setGraph(Graph& _graph) { graph=&_graph; }
    74 
    75   public:
    76     GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
    77  
    78     typedef typename Graph::Node Node;
    79     typedef typename Graph::Edge Edge;
    80    
    81     void first(Node& i) const { graph->first(i); }
    82     void first(Edge& i) const { graph->first(i); }
    83     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    84     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    85 
    86     void next(Node& i) const { graph->next(i); }
    87     void next(Edge& i) const { graph->next(i); }
    88     void nextIn(Edge& i) const { graph->nextIn(i); }
    89     void nextOut(Edge& i) const { graph->nextOut(i); }
    90 
    91     Node source(const Edge& e) const { return graph->source(e); }
    92     Node target(const Edge& e) const { return graph->target(e); }
    93 
    94     typedef NodeNumTagIndicator<Graph> NodeNumTag;
    95     int nodeNum() const { return graph->nodeNum(); }
    96     
    97     typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
    98     int edgeNum() const { return graph->edgeNum(); }
    99 
   100     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   101     Edge findEdge(const Node& source, const Node& target, 
   102 		  const Edge& prev = INVALID) {
   103       return graph->findEdge(source, target, prev);
   104     }
   105   
   106     Node addNode() const { 
   107       return Node(graph->addNode()); 
   108     }
   109 
   110     Edge addEdge(const Node& source, const Node& target) const { 
   111       return Edge(graph->addEdge(source, target)); 
   112     }
   113 
   114     void erase(const Node& i) const { graph->erase(i); }
   115     void erase(const Edge& i) const { graph->erase(i); }
   116   
   117     void clear() const { graph->clear(); }
   118     
   119     int id(const Node& v) const { return graph->id(v); }
   120     int id(const Edge& e) const { return graph->id(e); }
   121     
   122     Edge oppositeNode(const Edge& e) const { 
   123       return Edge(graph->opposite(e)); 
   124     }
   125 
   126     template <typename _Value>
   127     class NodeMap : public _Graph::template NodeMap<_Value> {
   128     public:
   129       typedef typename _Graph::template NodeMap<_Value> Parent;
   130       explicit NodeMap(const GraphAdaptorBase<_Graph>& gw) 
   131 	: Parent(*gw.graph) { }
   132       NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   133 	: Parent(*gw.graph, value) { }
   134     };
   135 
   136     template <typename _Value>
   137     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   138     public:
   139       typedef typename _Graph::template EdgeMap<_Value> Parent;
   140       explicit EdgeMap(const GraphAdaptorBase<_Graph>& gw) 
   141 	: Parent(*gw.graph) { }
   142       EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   143 	: Parent(*gw.graph, value) { }
   144     };
   145 
   146   };
   147 
   148   template <typename _Graph>
   149   class GraphAdaptor :
   150     public IterableGraphExtender<GraphAdaptorBase<_Graph> > { 
   151   public:
   152     typedef _Graph Graph;
   153     typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   154   protected:
   155     GraphAdaptor() : Parent() { }
   156 
   157   public:
   158     explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
   159   };
   160 
   161   template <typename _Graph>
   162   class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   163   public:
   164     typedef _Graph Graph;
   165     typedef GraphAdaptorBase<_Graph> Parent;
   166   protected:
   167     RevGraphAdaptorBase() : Parent() { }
   168   public:
   169     typedef typename Parent::Node Node;
   170     typedef typename Parent::Edge Edge;
   171 
   172     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   173     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   174 
   175     void nextIn(Edge& i) const { Parent::nextOut(i); }
   176     void nextOut(Edge& i) const { Parent::nextIn(i); }
   177 
   178     Node source(const Edge& e) const { return Parent::target(e); }
   179     Node target(const Edge& e) const { return Parent::source(e); }
   180   };
   181     
   182 
   183   /// A graph adaptor which reverses the orientation of the edges.
   184 
   185   ///\warning Graph adaptors are in even more experimental state than the other
   186   ///parts of the lib. Use them at you own risk.
   187   ///
   188   /// Let \f$G=(V, A)\f$ be a directed graph and 
   189   /// suppose that a graph instange \c g of type 
   190   /// \c ListGraph implements \f$G\f$.
   191   /// \code
   192   /// ListGraph g;
   193   /// \endcode
   194   /// For each directed edge 
   195   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   196   /// reversing its orientation. 
   197   /// Then RevGraphAdaptor implements the graph structure with node-set 
   198   /// \f$V\f$ and edge-set 
   199   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   200   /// reversing the orientation of its edges. The following code shows how 
   201   /// such an instance can be constructed.
   202   /// \code
   203   /// RevGraphAdaptor<ListGraph> gw(g);
   204   /// \endcode
   205   ///\author Marton Makai
   206   template<typename _Graph>
   207   class RevGraphAdaptor : 
   208     public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
   209   public:
   210     typedef _Graph Graph;
   211     typedef IterableGraphExtender<
   212       RevGraphAdaptorBase<_Graph> > Parent;
   213   protected:
   214     RevGraphAdaptor() { }
   215   public:
   216     explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
   217   };
   218 
   219   
   220   template <typename _Graph, typename NodeFilterMap, 
   221 	    typename EdgeFilterMap, bool checked = true>
   222   class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   223   public:
   224     typedef _Graph Graph;
   225     typedef GraphAdaptorBase<_Graph> Parent;
   226   protected:
   227     NodeFilterMap* node_filter_map;
   228     EdgeFilterMap* edge_filter_map;
   229     SubGraphAdaptorBase() : Parent(), 
   230 			    node_filter_map(0), edge_filter_map(0) { }
   231 
   232     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   233       node_filter_map=&_node_filter_map;
   234     }
   235     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   236       edge_filter_map=&_edge_filter_map;
   237     }
   238 
   239   public:
   240 
   241     typedef typename Parent::Node Node;
   242     typedef typename Parent::Edge Edge;
   243 
   244     void first(Node& i) const { 
   245       Parent::first(i); 
   246       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   247     }
   248 
   249     void first(Edge& i) const { 
   250       Parent::first(i); 
   251       while (i!=INVALID && (!(*edge_filter_map)[i] 
   252 	     || !(*node_filter_map)[Parent::source(i)]
   253 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   254     }
   255 
   256     void firstIn(Edge& i, const Node& n) const { 
   257       Parent::firstIn(i, n); 
   258       while (i!=INVALID && (!(*edge_filter_map)[i] 
   259 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   260     }
   261 
   262     void firstOut(Edge& i, const Node& n) const { 
   263       Parent::firstOut(i, n); 
   264       while (i!=INVALID && (!(*edge_filter_map)[i] 
   265 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   266     }
   267 
   268     void next(Node& i) const { 
   269       Parent::next(i); 
   270       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   271     }
   272 
   273     void next(Edge& i) const { 
   274       Parent::next(i); 
   275       while (i!=INVALID && (!(*edge_filter_map)[i] 
   276 	     || !(*node_filter_map)[Parent::source(i)]
   277 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   278     }
   279 
   280     void nextIn(Edge& i) const { 
   281       Parent::nextIn(i); 
   282       while (i!=INVALID && (!(*edge_filter_map)[i] 
   283 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   284     }
   285 
   286     void nextOut(Edge& i) const { 
   287       Parent::nextOut(i); 
   288       while (i!=INVALID && (!(*edge_filter_map)[i] 
   289 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   290     }
   291 
   292     /// This function hides \c n in the graph, i.e. the iteration 
   293     /// jumps over it. This is done by simply setting the value of \c n  
   294     /// to be false in the corresponding node-map.
   295     void hide(const Node& n) const { node_filter_map->set(n, false); }
   296 
   297     /// This function hides \c e in the graph, i.e. the iteration 
   298     /// jumps over it. This is done by simply setting the value of \c e  
   299     /// to be false in the corresponding edge-map.
   300     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   301 
   302     /// The value of \c n is set to be true in the node-map which stores 
   303     /// hide information. If \c n was hidden previuosly, then it is shown 
   304     /// again
   305      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   306 
   307     /// The value of \c e is set to be true in the edge-map which stores 
   308     /// hide information. If \c e was hidden previuosly, then it is shown 
   309     /// again
   310     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   311 
   312     /// Returns true if \c n is hidden.
   313     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   314 
   315     /// Returns true if \c n is hidden.
   316     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   317 
   318     typedef False NodeNumTag;
   319     typedef False EdgeNumTag;
   320   };
   321 
   322   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   323   class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
   324     : public GraphAdaptorBase<_Graph> {
   325   public:
   326     typedef _Graph Graph;
   327     typedef GraphAdaptorBase<_Graph> Parent;
   328   protected:
   329     NodeFilterMap* node_filter_map;
   330     EdgeFilterMap* edge_filter_map;
   331     SubGraphAdaptorBase() : Parent(), 
   332 			    node_filter_map(0), edge_filter_map(0) { }
   333 
   334     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   335       node_filter_map=&_node_filter_map;
   336     }
   337     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   338       edge_filter_map=&_edge_filter_map;
   339     }
   340 
   341   public:
   342 
   343     typedef typename Parent::Node Node;
   344     typedef typename Parent::Edge Edge;
   345 
   346     void first(Node& i) const { 
   347       Parent::first(i); 
   348       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   349     }
   350 
   351     void first(Edge& i) const { 
   352       Parent::first(i); 
   353       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   354     }
   355 
   356     void firstIn(Edge& i, const Node& n) const { 
   357       Parent::firstIn(i, n); 
   358       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   359     }
   360 
   361     void firstOut(Edge& i, const Node& n) const { 
   362       Parent::firstOut(i, n); 
   363       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   364     }
   365 
   366     void next(Node& i) const { 
   367       Parent::next(i); 
   368       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   369     }
   370     void next(Edge& i) const { 
   371       Parent::next(i); 
   372       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   373     }
   374     void nextIn(Edge& i) const { 
   375       Parent::nextIn(i); 
   376       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   377     }
   378 
   379     void nextOut(Edge& i) const { 
   380       Parent::nextOut(i); 
   381       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   382     }
   383 
   384     /// This function hides \c n in the graph, i.e. the iteration 
   385     /// jumps over it. This is done by simply setting the value of \c n  
   386     /// to be false in the corresponding node-map.
   387     void hide(const Node& n) const { node_filter_map->set(n, false); }
   388 
   389     /// This function hides \c e in the graph, i.e. the iteration 
   390     /// jumps over it. This is done by simply setting the value of \c e  
   391     /// to be false in the corresponding edge-map.
   392     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   393 
   394     /// The value of \c n is set to be true in the node-map which stores 
   395     /// hide information. If \c n was hidden previuosly, then it is shown 
   396     /// again
   397      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   398 
   399     /// The value of \c e is set to be true in the edge-map which stores 
   400     /// hide information. If \c e was hidden previuosly, then it is shown 
   401     /// again
   402     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   403 
   404     /// Returns true if \c n is hidden.
   405     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   406 
   407     /// Returns true if \c n is hidden.
   408     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   409 
   410     typedef False NodeNumTag;
   411     typedef False EdgeNumTag;
   412   };
   413 
   414   /*! \brief A graph adaptor for hiding nodes and edges from a graph.
   415     
   416   \warning Graph adaptors are in even more experimental state than the other
   417   parts of the lib. Use them at you own risk.
   418   
   419   SubGraphAdaptor shows the graph with filtered node-set and 
   420   edge-set. If the \c checked parameter is true then it filters the edgeset
   421   to do not get invalid edges without source or target.
   422   Let \f$G=(V, A)\f$ be a directed graph 
   423   and suppose that the graph instance \c g of type ListGraph implements 
   424   \f$G\f$. 
   425   Let moreover \f$b_V\f$ and 
   426   \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
   427   SubGraphAdaptor<...>::NodeIt iterates 
   428   on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
   429   SubGraphAdaptor<...>::EdgeIt iterates 
   430   on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
   431   SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates 
   432   only on edges leaving and entering a specific node which have true value.
   433 
   434   If the \c checked template parameter is false then we have to note that 
   435   the node-iterator cares only the filter on the node-set, and the 
   436   edge-iterator cares only the filter on the edge-set. This way the edge-map
   437   should filter all edges which's source or target is filtered by the 
   438   node-filter.
   439   \code
   440   typedef ListGraph Graph;
   441   Graph g;
   442   typedef Graph::Node Node;
   443   typedef Graph::Edge Edge;
   444   Node u=g.addNode(); //node of id 0
   445   Node v=g.addNode(); //node of id 1
   446   Node e=g.addEdge(u, v); //edge of id 0
   447   Node f=g.addEdge(v, u); //edge of id 1
   448   Graph::NodeMap<bool> nm(g, true);
   449   nm.set(u, false);
   450   Graph::EdgeMap<bool> em(g, true);
   451   em.set(e, false);
   452   typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   453   SubGW gw(g, nm, em);
   454   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   455   std::cout << ":-)" << std::endl;
   456   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   457   \endcode
   458   The output of the above code is the following.
   459   \code
   460   1
   461   :-)
   462   1
   463   \endcode
   464   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   465   \c Graph::Node that is why \c g.id(n) can be applied.
   466 
   467   For other examples see also the documentation of NodeSubGraphAdaptor and 
   468   EdgeSubGraphAdaptor.
   469 
   470   \author Marton Makai
   471   */
   472   template<typename _Graph, typename NodeFilterMap, 
   473 	   typename EdgeFilterMap, bool checked = true>
   474   class SubGraphAdaptor : 
   475     public IterableGraphExtender<
   476     SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
   477   public:
   478     typedef _Graph Graph;
   479     typedef IterableGraphExtender<
   480       SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   481   protected:
   482     SubGraphAdaptor() { }
   483   public:
   484     SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   485 		    EdgeFilterMap& _edge_filter_map) { 
   486       setGraph(_graph);
   487       setNodeFilterMap(_node_filter_map);
   488       setEdgeFilterMap(_edge_filter_map);
   489     }
   490   };
   491 
   492 
   493 
   494   /*! \brief An adaptor for hiding nodes from a graph.
   495 
   496   \warning Graph adaptors are in even more experimental state than the other
   497   parts of the lib. Use them at you own risk.
   498   
   499   An adaptor for hiding nodes from a graph.
   500   This adaptor specializes SubGraphAdaptor in the way that only the node-set 
   501   can be filtered. In usual case the checked parameter is true, we get the
   502   induced subgraph. But if the checked parameter is false then we can only
   503   filter only isolated nodes.
   504   \author Marton Makai
   505   */
   506   template<typename Graph, typename NodeFilterMap, bool checked = true>
   507   class NodeSubGraphAdaptor : 
   508     public SubGraphAdaptor<Graph, NodeFilterMap, 
   509 			   ConstMap<typename Graph::Edge,bool>, checked> {
   510   public:
   511     typedef SubGraphAdaptor<Graph, NodeFilterMap, 
   512 			    ConstMap<typename Graph::Edge,bool> > Parent;
   513   protected:
   514     ConstMap<typename Graph::Edge, bool> const_true_map;
   515   public:
   516     NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   517       Parent(), const_true_map(true) { 
   518       Parent::setGraph(_graph);
   519       Parent::setNodeFilterMap(_node_filter_map);
   520       Parent::setEdgeFilterMap(const_true_map);
   521     }
   522   };
   523 
   524 
   525   /*! \brief An adaptor for hiding edges from a graph.
   526 
   527   \warning Graph adaptors are in even more experimental state than the other
   528   parts of the lib. Use them at you own risk.
   529   
   530   An adaptor for hiding edges from a graph.
   531   This adaptor specializes SubGraphAdaptor in the way that only the edge-set 
   532   can be filtered. The usefulness of this adaptor is demonstrated in the 
   533   problem of searching a maximum number of edge-disjoint shortest paths 
   534   between 
   535   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   536   non-negative edge-lengths. Note that 
   537   the comprehension of the presented solution 
   538   need's some elementary knowledge from combinatorial optimization. 
   539 
   540   If a single shortest path is to be 
   541   searched between \c s and \c t, then this can be done easily by 
   542   applying the Dijkstra algorithm. What happens, if a maximum number of 
   543   edge-disjoint shortest paths is to be computed. It can be proved that an 
   544   edge can be in a shortest path if and only if it is tight with respect to 
   545   the potential function computed by Dijkstra. Moreover, any path containing 
   546   only such edges is a shortest one. Thus we have to compute a maximum number 
   547   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   548   all the tight edges. The computation will be demonstrated on the following 
   549   graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   550   The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   551   If you are interested in more demo programs, you can use 
   552   \ref dim_to_dot.cc to generate .dot files from dimacs files. 
   553   The .dot file of the following figure was generated by  
   554   the demo program \ref dim_to_dot.cc.
   555 
   556   \dot
   557   digraph lemon_dot_example {
   558   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   559   n0 [ label="0 (s)" ];
   560   n1 [ label="1" ];
   561   n2 [ label="2" ];
   562   n3 [ label="3" ];
   563   n4 [ label="4" ];
   564   n5 [ label="5" ];
   565   n6 [ label="6 (t)" ];
   566   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   567   n5 ->  n6 [ label="9, length:4" ];
   568   n4 ->  n6 [ label="8, length:2" ];
   569   n3 ->  n5 [ label="7, length:1" ];
   570   n2 ->  n5 [ label="6, length:3" ];
   571   n2 ->  n6 [ label="5, length:5" ];
   572   n2 ->  n4 [ label="4, length:2" ];
   573   n1 ->  n4 [ label="3, length:3" ];
   574   n0 ->  n3 [ label="2, length:1" ];
   575   n0 ->  n2 [ label="1, length:2" ];
   576   n0 ->  n1 [ label="0, length:3" ];
   577   }
   578   \enddot
   579 
   580   \code
   581   Graph g;
   582   Node s, t;
   583   LengthMap length(g);
   584 
   585   readDimacs(std::cin, g, length, s, t);
   586 
   587   cout << "edges with lengths (of form id, source--length->target): " << endl;
   588   for(EdgeIt e(g); e!=INVALID; ++e) 
   589     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   590          << length[e] << "->" << g.id(g.target(e)) << endl;
   591 
   592   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   593   \endcode
   594   Next, the potential function is computed with Dijkstra.
   595   \code
   596   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   597   Dijkstra dijkstra(g, length);
   598   dijkstra.run(s);
   599   \endcode
   600   Next, we consrtruct a map which filters the edge-set to the tight edges.
   601   \code
   602   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   603     TightEdgeFilter;
   604   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   605   
   606   typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
   607   SubGW gw(g, tight_edge_filter);
   608   \endcode
   609   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   610   with a max flow algorithm Preflow.
   611   \code
   612   ConstMap<Edge, int> const_1_map(1);
   613   Graph::EdgeMap<int> flow(g, 0);
   614 
   615   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   616     preflow(gw, s, t, const_1_map, flow);
   617   preflow.run();
   618   \endcode
   619   Last, the output is:
   620   \code  
   621   cout << "maximum number of edge-disjoint shortest path: " 
   622        << preflow.flowValue() << endl;
   623   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   624        << endl;
   625   for(EdgeIt e(g); e!=INVALID; ++e) 
   626     if (flow[e])
   627       cout << " " << g.id(g.source(e)) << "--" 
   628 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   629   \endcode
   630   The program has the following (expected :-)) output:
   631   \code
   632   edges with lengths (of form id, source--length->target):
   633    9, 5--4->6
   634    8, 4--2->6
   635    7, 3--1->5
   636    6, 2--3->5
   637    5, 2--5->6
   638    4, 2--2->4
   639    3, 1--3->4
   640    2, 0--1->3
   641    1, 0--2->2
   642    0, 0--3->1
   643   s: 0 t: 6
   644   maximum number of edge-disjoint shortest path: 2
   645   edges of the maximum number of edge-disjoint shortest s-t paths:
   646    9, 5--4->6
   647    8, 4--2->6
   648    7, 3--1->5
   649    4, 2--2->4
   650    2, 0--1->3
   651    1, 0--2->2
   652   \endcode
   653 
   654   \author Marton Makai
   655   */
   656   template<typename Graph, typename EdgeFilterMap>
   657   class EdgeSubGraphAdaptor : 
   658     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   659 			   EdgeFilterMap, false> {
   660   public:
   661     typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   662 			    EdgeFilterMap, false> Parent;
   663   protected:
   664     ConstMap<typename Graph::Node, bool> const_true_map;
   665   public:
   666     EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   667       Parent(), const_true_map(true) { 
   668       Parent::setGraph(_graph);
   669       Parent::setNodeFilterMap(const_true_map);
   670       Parent::setEdgeFilterMap(_edge_filter_map);
   671     }
   672   };
   673 
   674   template <typename _Graph>
   675   class UndirGraphAdaptorBase : 
   676     public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
   677   public:
   678     typedef _Graph Graph;
   679     typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   680   protected:
   681     UndirGraphAdaptorBase() : Parent() { }
   682   public:
   683     typedef typename Parent::UndirEdge UndirEdge;
   684     typedef typename Parent::Edge Edge;
   685     
   686     template <typename T>
   687     class EdgeMap {
   688     protected:
   689       const UndirGraphAdaptorBase<_Graph>* g;
   690       template <typename TT> friend class EdgeMap;
   691       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   692     public:
   693       typedef T Value;
   694       typedef Edge Key;
   695       
   696       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), 
   697 	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
   698 
   699       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), 
   700 	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
   701       
   702       void set(Edge e, T a) { 
   703 	if (g->direction(e)) 
   704 	  forward_map.set(e, a); 
   705 	else 
   706 	  backward_map.set(e, a); 
   707       }
   708 
   709       T operator[](Edge e) const { 
   710 	if (g->direction(e)) 
   711 	  return forward_map[e]; 
   712 	else 
   713 	  return backward_map[e]; 
   714       }
   715     };
   716         
   717     template <typename T>
   718     class UndirEdgeMap {
   719       template <typename TT> friend class UndirEdgeMap;
   720       typename _Graph::template EdgeMap<T> map; 
   721     public:
   722       typedef T Value;
   723       typedef UndirEdge Key;
   724       
   725       UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : 
   726 	map(*(g.graph)) { }
   727 
   728       UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : 
   729 	map(*(g.graph), a) { }
   730       
   731       void set(UndirEdge e, T a) { 
   732 	map.set(e, a); 
   733       }
   734 
   735       T operator[](UndirEdge e) const { 
   736 	return map[e]; 
   737       }
   738     };
   739       
   740   };
   741 
   742   /// \brief An undirected graph is made from a directed graph by an adaptor
   743   ///
   744   /// Undocumented, untested!!!
   745   /// If somebody knows nice demo application, let's polulate it.
   746   /// 
   747   /// \author Marton Makai
   748   template<typename _Graph>
   749   class UndirGraphAdaptor : 
   750     public IterableUndirGraphExtender<
   751     UndirGraphAdaptorBase<_Graph> > {
   752   public:
   753     typedef _Graph Graph;
   754     typedef IterableUndirGraphExtender<
   755       UndirGraphAdaptorBase<_Graph> > Parent;
   756   protected:
   757     UndirGraphAdaptor() { }
   758   public:
   759     UndirGraphAdaptor(_Graph& _graph) { 
   760       setGraph(_graph);
   761     }
   762   };
   763 
   764   
   765   template <typename _Graph, 
   766 	    typename ForwardFilterMap, typename BackwardFilterMap>
   767   class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   768   public:
   769     typedef _Graph Graph;
   770     typedef GraphAdaptorBase<_Graph> Parent;
   771   protected:
   772     ForwardFilterMap* forward_filter;
   773     BackwardFilterMap* backward_filter;
   774     SubBidirGraphAdaptorBase() : Parent(), 
   775 				 forward_filter(0), backward_filter(0) { }
   776 
   777     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   778       forward_filter=&_forward_filter;
   779     }
   780     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   781       backward_filter=&_backward_filter;
   782     }
   783 
   784   public:
   785 //     SubGraphAdaptorBase(Graph& _graph, 
   786 // 			NodeFilterMap& _node_filter_map, 
   787 // 			EdgeFilterMap& _edge_filter_map) : 
   788 //       Parent(&_graph), 
   789 //       node_filter_map(&node_filter_map), 
   790 //       edge_filter_map(&edge_filter_map) { }
   791 
   792     typedef typename Parent::Node Node;
   793     typedef typename _Graph::Edge GraphEdge;
   794     template <typename T> class EdgeMap;
   795     /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from 
   796     /// _Graph::Edge. It contains an extra bool flag which is true 
   797     /// if and only if the 
   798     /// edge is the backward version of the original edge.
   799     class Edge : public _Graph::Edge {
   800       friend class SubBidirGraphAdaptorBase<
   801 	Graph, ForwardFilterMap, BackwardFilterMap>;
   802       template<typename T> friend class EdgeMap;
   803     protected:
   804       bool backward; //true, iff backward
   805     public:
   806       Edge() { }
   807       /// \todo =false is needed, or causes problems?
   808       /// If \c _backward is false, then we get an edge corresponding to the 
   809       /// original one, otherwise its oppositely directed pair is obtained.
   810       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   811 	_Graph::Edge(e), backward(_backward) { }
   812       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   813       bool operator==(const Edge& v) const { 
   814 	return (this->backward==v.backward && 
   815 		static_cast<typename _Graph::Edge>(*this)==
   816 		static_cast<typename _Graph::Edge>(v));
   817       } 
   818       bool operator!=(const Edge& v) const { 
   819 	return (this->backward!=v.backward || 
   820 		static_cast<typename _Graph::Edge>(*this)!=
   821 		static_cast<typename _Graph::Edge>(v));
   822       }
   823     };
   824 
   825     void first(Node& i) const { 
   826       Parent::first(i); 
   827     }
   828 
   829     void first(Edge& i) const { 
   830       Parent::first(i); 
   831       i.backward=false;
   832       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   833 	     !(*forward_filter)[i]) Parent::next(i);
   834       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   835 	Parent::first(i); 
   836 	i.backward=true;
   837 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   838 	       !(*backward_filter)[i]) Parent::next(i);
   839       }
   840     }
   841 
   842     void firstIn(Edge& i, const Node& n) const { 
   843       Parent::firstIn(i, n); 
   844       i.backward=false;
   845       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   846 	     !(*forward_filter)[i]) Parent::nextIn(i);
   847       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   848 	Parent::firstOut(i, n); 
   849 	i.backward=true;
   850 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   851 	       !(*backward_filter)[i]) Parent::nextOut(i);
   852       }
   853     }
   854 
   855     void firstOut(Edge& i, const Node& n) const { 
   856       Parent::firstOut(i, n); 
   857       i.backward=false;
   858       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   859 	     !(*forward_filter)[i]) Parent::nextOut(i);
   860       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   861 	Parent::firstIn(i, n); 
   862 	i.backward=true;
   863 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   864 	       !(*backward_filter)[i]) Parent::nextIn(i);
   865       }
   866     }
   867 
   868     void next(Node& i) const { 
   869       Parent::next(i); 
   870     }
   871 
   872     void next(Edge& i) const { 
   873       if (!(i.backward)) {
   874 	Parent::next(i);
   875 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   876 	       !(*forward_filter)[i]) Parent::next(i);
   877 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   878 	  Parent::first(i); 
   879 	  i.backward=true;
   880 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   881 		 !(*backward_filter)[i]) Parent::next(i);
   882 	}
   883       } else {
   884 	Parent::next(i);
   885 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   886 	       !(*backward_filter)[i]) Parent::next(i);
   887       }
   888     }
   889 
   890     void nextIn(Edge& i) const { 
   891       if (!(i.backward)) {
   892 	Node n=Parent::target(i);
   893 	Parent::nextIn(i);
   894 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   895 	       !(*forward_filter)[i]) Parent::nextIn(i);
   896 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   897 	  Parent::firstOut(i, n); 
   898 	  i.backward=true;
   899 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   900 		 !(*backward_filter)[i]) Parent::nextOut(i);
   901 	}
   902       } else {
   903 	Parent::nextOut(i);
   904 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   905 	       !(*backward_filter)[i]) Parent::nextOut(i);
   906       }
   907     }
   908 
   909     void nextOut(Edge& i) const { 
   910       if (!(i.backward)) {
   911 	Node n=Parent::source(i);
   912 	Parent::nextOut(i);
   913 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   914 	       !(*forward_filter)[i]) Parent::nextOut(i);
   915 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   916 	  Parent::firstIn(i, n); 
   917 	  i.backward=true;
   918 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   919 		 !(*backward_filter)[i]) Parent::nextIn(i);
   920 	}
   921       } else {
   922 	Parent::nextIn(i);
   923 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   924 	       !(*backward_filter)[i]) Parent::nextIn(i);
   925       }
   926     }
   927 
   928     Node source(Edge e) const { 
   929       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   930     Node target(Edge e) const { 
   931       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   932 
   933     /// Gives back the opposite edge.
   934     Edge opposite(const Edge& e) const { 
   935       Edge f=e;
   936       f.backward=!f.backward;
   937       return f;
   938     }
   939 
   940     /// \warning This is a linear time operation and works only if 
   941     /// \c Graph::EdgeIt is defined.
   942     /// \todo hmm
   943     int edgeNum() const { 
   944       int i=0;
   945       Edge e;
   946       for (first(e); e!=INVALID; next(e)) ++i;
   947       return i; 
   948     }
   949 
   950     bool forward(const Edge& e) const { return !e.backward; }
   951     bool backward(const Edge& e) const { return e.backward; }
   952 
   953     template <typename T>
   954     /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
   955     /// _Graph::EdgeMap one for the forward edges and 
   956     /// one for the backward edges.
   957     class EdgeMap {
   958       template <typename TT> friend class EdgeMap;
   959       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   960     public:
   961       typedef T Value;
   962       typedef Edge Key;
   963 
   964       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   965 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   966 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   967 
   968       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   969 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   970 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   971       
   972       void set(Edge e, T a) { 
   973 	if (!e.backward) 
   974 	  forward_map.set(e, a); 
   975 	else 
   976 	  backward_map.set(e, a); 
   977       }
   978 
   979 //       typename _Graph::template EdgeMap<T>::ConstReference 
   980 //       operator[](Edge e) const { 
   981 // 	if (!e.backward) 
   982 // 	  return forward_map[e]; 
   983 // 	else 
   984 // 	  return backward_map[e]; 
   985 //       }
   986 
   987 //      typename _Graph::template EdgeMap<T>::Reference 
   988       T operator[](Edge e) const { 
   989 	if (!e.backward) 
   990 	  return forward_map[e]; 
   991 	else 
   992 	  return backward_map[e]; 
   993       }
   994 
   995       void update() { 
   996 	forward_map.update(); 
   997 	backward_map.update();
   998       }
   999     };
  1000 
  1001   };
  1002 
  1003 
  1004   ///\brief An adaptor for composing a subgraph of a 
  1005   /// bidirected graph made from a directed one. 
  1006   ///
  1007   /// An adaptor for composing a subgraph of a 
  1008   /// bidirected graph made from a directed one. 
  1009   ///
  1010   ///\warning Graph adaptors are in even more experimental state than the other
  1011   ///parts of the lib. Use them at you own risk.
  1012   ///
  1013   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
  1014   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
  1015   /// reversing its orientation. We are given moreover two bool valued 
  1016   /// maps on the edge-set, 
  1017   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
  1018   /// SubBidirGraphAdaptor implements the graph structure with node-set 
  1019   /// \f$V\f$ and edge-set 
  1020   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
  1021   /// The purpose of writing + instead of union is because parallel 
  1022   /// edges can arise. (Similarly, antiparallel edges also can arise).
  1023   /// In other words, a subgraph of the bidirected graph obtained, which 
  1024   /// is given by orienting the edges of the original graph in both directions.
  1025   /// As the oppositely directed edges are logically different, 
  1026   /// the maps are able to attach different values for them. 
  1027   ///
  1028   /// An example for such a construction is \c RevGraphAdaptor where the 
  1029   /// forward_filter is everywhere false and the backward_filter is 
  1030   /// everywhere true. We note that for sake of efficiency, 
  1031   /// \c RevGraphAdaptor is implemented in a different way. 
  1032   /// But BidirGraphAdaptor is obtained from 
  1033   /// SubBidirGraphAdaptor by considering everywhere true 
  1034   /// valued maps both for forward_filter and backward_filter. 
  1035   ///
  1036   /// The most important application of SubBidirGraphAdaptor 
  1037   /// is ResGraphAdaptor, which stands for the residual graph in directed 
  1038   /// flow and circulation problems. 
  1039   /// As adaptors usually, the SubBidirGraphAdaptor implements the 
  1040   /// above mentioned graph structure without its physical storage, 
  1041   /// that is the whole stuff is stored in constant memory. 
  1042   template<typename _Graph, 
  1043 	   typename ForwardFilterMap, typename BackwardFilterMap>
  1044   class SubBidirGraphAdaptor : 
  1045     public IterableGraphExtender<
  1046     SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
  1047   public:
  1048     typedef _Graph Graph;
  1049     typedef IterableGraphExtender<
  1050       SubBidirGraphAdaptorBase<
  1051       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
  1052   protected:
  1053     SubBidirGraphAdaptor() { }
  1054   public:
  1055     SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, 
  1056 			 BackwardFilterMap& _backward_filter) { 
  1057       setGraph(_graph);
  1058       setForwardFilterMap(_forward_filter);
  1059       setBackwardFilterMap(_backward_filter);
  1060     }
  1061   };
  1062 
  1063 
  1064 
  1065   ///\brief An adaptor for composing bidirected graph from a directed one. 
  1066   ///
  1067   ///\warning Graph adaptors are in even more experimental state than the other
  1068   ///parts of the lib. Use them at you own risk.
  1069   ///
  1070   /// An adaptor for composing bidirected graph from a directed one. 
  1071   /// A bidirected graph is composed over the directed one without physical 
  1072   /// storage. As the oppositely directed edges are logically different ones 
  1073   /// the maps are able to attach different values for them.
  1074   template<typename Graph>
  1075   class BidirGraphAdaptor : 
  1076     public SubBidirGraphAdaptor<
  1077     Graph, 
  1078     ConstMap<typename Graph::Edge, bool>, 
  1079     ConstMap<typename Graph::Edge, bool> > {
  1080   public:
  1081     typedef  SubBidirGraphAdaptor<
  1082       Graph, 
  1083       ConstMap<typename Graph::Edge, bool>, 
  1084       ConstMap<typename Graph::Edge, bool> > Parent; 
  1085   protected:
  1086     ConstMap<typename Graph::Edge, bool> cm;
  1087 
  1088     BidirGraphAdaptor() : Parent(), cm(true) { 
  1089       Parent::setForwardFilterMap(cm);
  1090       Parent::setBackwardFilterMap(cm);
  1091     }
  1092   public:
  1093     BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { 
  1094       Parent::setGraph(_graph);
  1095       Parent::setForwardFilterMap(cm);
  1096       Parent::setBackwardFilterMap(cm);
  1097     }
  1098 
  1099     int edgeNum() const { 
  1100       return 2*this->graph->edgeNum();
  1101     }
  1102   };
  1103 
  1104 
  1105   template<typename Graph, typename Number,
  1106 	   typename CapacityMap, typename FlowMap>
  1107   class ResForwardFilter {
  1108     //    const Graph* graph;
  1109     const CapacityMap* capacity;
  1110     const FlowMap* flow;
  1111   public:
  1112     ResForwardFilter(/*const Graph& _graph, */
  1113 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1114       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1115     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1116     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1117     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1118     bool operator[](const typename Graph::Edge& e) const {
  1119       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1120     }
  1121   };
  1122 
  1123   template<typename Graph, typename Number,
  1124 	   typename CapacityMap, typename FlowMap>
  1125   class ResBackwardFilter {
  1126     const CapacityMap* capacity;
  1127     const FlowMap* flow;
  1128   public:
  1129     ResBackwardFilter(/*const Graph& _graph,*/ 
  1130 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1131       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1132     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1133     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1134     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1135     bool operator[](const typename Graph::Edge& e) const {
  1136       return (Number(0) < Number((*flow)[e]));
  1137     }
  1138   };
  1139 
  1140   
  1141   /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
  1142 
  1143   An adaptor for composing the residual graph for directed flow and circulation problems. 
  1144   Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
  1145   number type. Let moreover 
  1146   \f$f,c:A\to F\f$, be functions on the edge-set. 
  1147   In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
  1148   and \f$c\f$ for a capacity function.   
  1149   Suppose that a graph instange \c g of type 
  1150   \c ListGraph implements \f$G\f$.
  1151   \code
  1152   ListGraph g;
  1153   \endcode
  1154   Then RevGraphAdaptor implements the graph structure with node-set 
  1155   \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
  1156   \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
  1157   \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
  1158   i.e. the so called residual graph. 
  1159   When we take the union \f$A_{forward}\cup A_{backward}\f$, 
  1160   multilicities are counted, i.e. if an edge is in both 
  1161   \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
  1162   appears twice. 
  1163   The following code shows how 
  1164   such an instance can be constructed.
  1165   \code
  1166   typedef ListGraph Graph;
  1167   Graph::EdgeMap<int> f(g);
  1168   Graph::EdgeMap<int> c(g);
  1169   ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1170   \endcode
  1171   \author Marton Makai
  1172   */
  1173   template<typename Graph, typename Number, 
  1174 	   typename CapacityMap, typename FlowMap>
  1175   class ResGraphAdaptor : 
  1176     public SubBidirGraphAdaptor< 
  1177     Graph, 
  1178     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1179     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1180   public:
  1181     typedef SubBidirGraphAdaptor< 
  1182       Graph, 
  1183       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1184       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1185   protected:
  1186     const CapacityMap* capacity;
  1187     FlowMap* flow;
  1188     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1189     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1190     ResGraphAdaptor() : Parent(), 
  1191  			capacity(0), flow(0) { }
  1192     void setCapacityMap(const CapacityMap& _capacity) {
  1193       capacity=&_capacity;
  1194       forward_filter.setCapacity(_capacity);
  1195       backward_filter.setCapacity(_capacity);
  1196     }
  1197     void setFlowMap(FlowMap& _flow) {
  1198       flow=&_flow;
  1199       forward_filter.setFlow(_flow);
  1200       backward_filter.setFlow(_flow);
  1201     }
  1202   public:
  1203     ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
  1204 		       FlowMap& _flow) : 
  1205       Parent(), capacity(&_capacity), flow(&_flow), 
  1206       forward_filter(/*_graph,*/ _capacity, _flow), 
  1207       backward_filter(/*_graph,*/ _capacity, _flow) {
  1208       Parent::setGraph(_graph);
  1209       Parent::setForwardFilterMap(forward_filter);
  1210       Parent::setBackwardFilterMap(backward_filter);
  1211     }
  1212 
  1213     typedef typename Parent::Edge Edge;
  1214 
  1215     void augment(const Edge& e, Number a) const {
  1216       if (Parent::forward(e))  
  1217 	flow->set(e, (*flow)[e]+a);
  1218       else  
  1219 	flow->set(e, (*flow)[e]-a);
  1220     }
  1221 
  1222     /// \brief Residual capacity map.
  1223     ///
  1224     /// In generic residual graphs the residual capacity can be obtained 
  1225     /// as a map. 
  1226     class ResCap {
  1227     protected:
  1228       const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1229     public:
  1230       typedef Number Value;
  1231       typedef Edge Key;
  1232       ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& 
  1233 	     _res_graph) : res_graph(&_res_graph) { }
  1234       Number operator[](const Edge& e) const { 
  1235 	if (res_graph->forward(e)) 
  1236 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1237 	else 
  1238 	  return (*(res_graph->flow))[e]; 
  1239       }
  1240     };
  1241 
  1242     //    KEEP_MAPS(Parent, ResGraphAdaptor);
  1243   };
  1244 
  1245 
  1246 
  1247   template <typename _Graph, typename FirstOutEdgesMap>
  1248   class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
  1249   public:
  1250     typedef _Graph Graph;
  1251     typedef GraphAdaptorBase<_Graph> Parent;
  1252   protected:
  1253     FirstOutEdgesMap* first_out_edges;
  1254     ErasingFirstGraphAdaptorBase() : Parent(), 
  1255 				     first_out_edges(0) { }
  1256 
  1257     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1258       first_out_edges=&_first_out_edges;
  1259     }
  1260 
  1261   public:
  1262 
  1263     typedef typename Parent::Node Node;
  1264     typedef typename Parent::Edge Edge;
  1265 
  1266     void firstOut(Edge& i, const Node& n) const { 
  1267       i=(*first_out_edges)[n];
  1268     }
  1269 
  1270     void erase(const Edge& e) const {
  1271       Node n=source(e);
  1272       Edge f=e;
  1273       Parent::nextOut(f);
  1274       first_out_edges->set(n, f);
  1275     }    
  1276   };
  1277 
  1278 
  1279   /// For blocking flows.
  1280 
  1281   ///\warning Graph adaptors are in even more experimental state than the other
  1282   ///parts of the lib. Use them at you own risk.
  1283   ///
  1284   /// This graph adaptor is used for on-the-fly 
  1285   /// Dinits blocking flow computations.
  1286   /// For each node, an out-edge is stored which is used when the 
  1287   /// \code 
  1288   /// OutEdgeIt& first(OutEdgeIt&, const Node&)
  1289   /// \endcode
  1290   /// is called. 
  1291   ///
  1292   /// \author Marton Makai
  1293   template <typename _Graph, typename FirstOutEdgesMap>
  1294   class ErasingFirstGraphAdaptor : 
  1295     public IterableGraphExtender<
  1296     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1297   public:
  1298     typedef _Graph Graph;
  1299     typedef IterableGraphExtender<
  1300       ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
  1301     ErasingFirstGraphAdaptor(Graph& _graph, 
  1302 			     FirstOutEdgesMap& _first_out_edges) { 
  1303       setGraph(_graph);
  1304       setFirstOutEdgesMap(_first_out_edges);
  1305     } 
  1306 
  1307   };
  1308 
  1309   template <typename _Graph>
  1310   class SplitGraphAdaptorBase 
  1311     : public GraphAdaptorBase<_Graph> {
  1312   public:
  1313     typedef GraphAdaptorBase<_Graph> Parent;
  1314 
  1315     class Node;
  1316     class Edge;
  1317     template <typename T> class NodeMap;
  1318     template <typename T> class EdgeMap;
  1319     
  1320 
  1321     class Node : public Parent::Node {
  1322       friend class SplitGraphAdaptorBase;
  1323       template <typename T> friend class NodeMap;
  1324       typedef typename Parent::Node NodeParent;
  1325     private:
  1326 
  1327       bool entry;
  1328       Node(typename Parent::Node _node, bool _entry)
  1329 	: Parent::Node(_node), entry(_entry) {}
  1330       
  1331     public:
  1332       Node() {}
  1333       Node(Invalid) : NodeParent(INVALID), entry(true) {}
  1334 
  1335       bool operator==(const Node& node) const {
  1336 	return NodeParent::operator==(node) && entry == node.entry;
  1337       }
  1338       
  1339       bool operator!=(const Node& node) const {
  1340 	return !(*this == node);
  1341       }
  1342       
  1343       bool operator<(const Node& node) const {
  1344 	return NodeParent::operator<(node) || 
  1345 	  (NodeParent::operator==(node) && entry < node.entry);
  1346       }
  1347     };
  1348 
  1349     /// \todo May we want VARIANT/union type
  1350     class Edge : public Parent::Edge {
  1351       friend class SplitGraphAdaptorBase;
  1352       template <typename T> friend class EdgeMap;
  1353     private:
  1354       typedef typename Parent::Edge EdgeParent;
  1355       typedef typename Parent::Node NodeParent;
  1356       NodeParent bind;
  1357 
  1358       Edge(const EdgeParent& edge, const NodeParent& node)
  1359 	: EdgeParent(edge), bind(node) {}
  1360     public:
  1361       Edge() {}
  1362       Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {}
  1363 
  1364       bool operator==(const Edge& edge) const {
  1365 	return EdgeParent::operator==(edge) && bind == edge.bind;
  1366       }
  1367       
  1368       bool operator!=(const Edge& edge) const {
  1369 	return !(*this == edge);
  1370       }
  1371       
  1372       bool operator<(const Edge& edge) const {
  1373 	return EdgeParent::operator<(edge) || 
  1374 	  (EdgeParent::operator==(edge) && bind < edge.bind);
  1375       }
  1376     };
  1377 
  1378     void first(Node& node) const {
  1379       Parent::first(node);
  1380       node.entry = true;
  1381     } 
  1382 
  1383     void next(Node& node) const {
  1384       if (node.entry) {
  1385 	node.entry = false;
  1386       } else {
  1387 	node.entry = true;
  1388 	Parent::next(node);
  1389       }
  1390     }
  1391 
  1392     void first(Edge& edge) const {
  1393       Parent::first(edge);
  1394       if ((typename Parent::Edge&)edge == INVALID) {
  1395 	Parent::first(edge.bind);
  1396       } else {
  1397 	edge.bind = INVALID;
  1398       }
  1399     }
  1400 
  1401     void next(Edge& edge) const {
  1402       if ((typename Parent::Edge&)edge != INVALID) {
  1403 	Parent::next(edge);
  1404 	if ((typename Parent::Edge&)edge == INVALID) {
  1405 	  Parent::first(edge.bind);
  1406 	}
  1407       } else {
  1408 	Parent::next(edge.bind);
  1409       }      
  1410     }
  1411 
  1412     void firstIn(Edge& edge, const Node& node) const {
  1413       if (node.entry) {
  1414 	Parent::firstIn(edge, node);
  1415 	edge.bind = INVALID;
  1416       } else {
  1417 	(typename Parent::Edge&)edge = INVALID;
  1418 	edge.bind = node;
  1419       }
  1420     }
  1421 
  1422     void nextIn(Edge& edge) const {
  1423       if ((typename Parent::Edge&)edge != INVALID) {
  1424 	Parent::nextIn(edge);
  1425       } else {
  1426 	edge.bind = INVALID;
  1427       }      
  1428     }
  1429 
  1430     void firstOut(Edge& edge, const Node& node) const {
  1431       if (!node.entry) {
  1432 	Parent::firstOut(edge, node);
  1433 	edge.bind = INVALID;
  1434       } else {
  1435 	(typename Parent::Edge&)edge = INVALID;
  1436 	edge.bind = node;
  1437       }
  1438     }
  1439 
  1440     void nextOut(Edge& edge) const {
  1441       if ((typename Parent::Edge&)edge != INVALID) {
  1442 	Parent::nextOut(edge);
  1443       } else {
  1444 	edge.bind = INVALID;
  1445       }
  1446     }
  1447 
  1448     Node source(const Edge& edge) const {
  1449       if ((typename Parent::Edge&)edge != INVALID) {
  1450 	return Node(Parent::source(edge), false);
  1451       } else {
  1452 	return Node(edge.bind, true);
  1453       }
  1454     }
  1455 
  1456     Node target(const Edge& edge) const {
  1457       if ((typename Parent::Edge&)edge != INVALID) {
  1458 	return Node(Parent::target(edge), true);
  1459       } else {
  1460 	return Node(edge.bind, false);
  1461       }
  1462     }
  1463 
  1464     static bool entryNode(const Node& node) {
  1465       return node.entry;
  1466     }
  1467 
  1468     static bool exitNode(const Node& node) {
  1469       return !node.entry;
  1470     }
  1471 
  1472     static Node getEntry(const typename Parent::Node& node) {
  1473       return Node(node, true);
  1474     }
  1475 
  1476     static Node getExit(const typename Parent::Node& node) {
  1477       return Node(node, false);
  1478     }
  1479 
  1480     static bool originalEdge(const Edge& edge) {
  1481       return (typename Parent::Edge&)edge != INVALID;
  1482     }
  1483 
  1484     static bool bindingEdge(const Edge& edge) {
  1485       return edge.bind != INVALID;
  1486     }
  1487 
  1488     static Node getBindedNode(const Edge& edge) {
  1489       return edge.bind;
  1490     }
  1491 
  1492     int nodeNum() const {
  1493       return Parent::nodeNum() * 2;
  1494     }
  1495 
  1496     typedef CompileTimeAnd<typename Parent::NodeNumTag, 
  1497     			   typename Parent::EdgeNumTag> EdgeNumTag;
  1498     
  1499     int edgeNum() const {
  1500       return Parent::edgeNum() + Parent::nodeNum();
  1501     }
  1502 
  1503     Edge findEdge(const Node& source, const Node& target, 
  1504 		  const Edge& prev = INVALID) const {
  1505       if (exitNode(source) && entryNode(target)) {
  1506 	return Parent::findEdge(source, target, prev);
  1507       } else {
  1508 	if (prev == INVALID && entryNode(source) && exitNode(target) && 
  1509 	    (typename Parent::Node&)source == (typename Parent::Node&)target) {
  1510 	  return Edge(INVALID, source);
  1511 	} else {
  1512 	  return INVALID;
  1513 	}
  1514       }
  1515     }
  1516     
  1517     template <typename T>
  1518     class NodeMap : public MapBase<Node, T> {
  1519       typedef typename Parent::template NodeMap<T> NodeImpl;
  1520     public:
  1521       NodeMap(const SplitGraphAdaptorBase& _graph) 
  1522 	: entry(_graph), exit(_graph) {}
  1523       NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1524 	: entry(_graph, t), exit(_graph, t) {}
  1525       
  1526       void set(const Node& key, const T& val) {
  1527 	if (key.entry) { entry.set(key, val); }
  1528 	else {exit.set(key, val); }
  1529       }
  1530       
  1531       typename MapTraits<NodeImpl>::ReturnValue 
  1532       operator[](const Node& key) {
  1533 	if (key.entry) { return entry[key]; }
  1534 	else { return exit[key]; }
  1535       }
  1536 
  1537       typename MapTraits<NodeImpl>::ConstReturnValue
  1538       operator[](const Node& key) const {
  1539 	if (key.entry) { return entry[key]; }
  1540 	else { return exit[key]; }
  1541       }
  1542 
  1543     private:
  1544       NodeImpl entry, exit;
  1545     };
  1546 
  1547     template <typename T>
  1548     class EdgeMap : public MapBase<Edge, T> {
  1549       typedef typename Parent::template NodeMap<T> NodeImpl;
  1550       typedef typename Parent::template EdgeMap<T> EdgeImpl;
  1551     public:
  1552       EdgeMap(const SplitGraphAdaptorBase& _graph) 
  1553 	: bind(_graph), orig(_graph) {}
  1554       EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1555 	: bind(_graph, t), orig(_graph, t) {}
  1556       
  1557       void set(const Edge& key, const T& val) {
  1558 	if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); }
  1559 	else {bind.set(key.bind, val); }
  1560       }
  1561       
  1562       typename MapTraits<EdgeImpl>::ReturnValue
  1563       operator[](const Edge& key) {
  1564 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1565 	else {return bind[key.bind]; }
  1566       }
  1567 
  1568       typename MapTraits<EdgeImpl>::ConstReturnValue
  1569       operator[](const Edge& key) const {
  1570 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1571 	else {return bind[key.bind]; }
  1572       }
  1573 
  1574     private:
  1575       typename Parent::template NodeMap<T> bind;
  1576       typename Parent::template EdgeMap<T> orig;
  1577     };
  1578 
  1579     template <typename EntryMap, typename ExitMap>
  1580     class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> {
  1581     public:
  1582       typedef MapBase<Node, typename EntryMap::Value> Parent;
  1583 
  1584       typedef typename Parent::Key Key;
  1585       typedef typename Parent::Value Value;
  1586 
  1587       CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) 
  1588 	: entryMap(_entryMap), exitMap(_exitMap) {}
  1589 
  1590       Value& operator[](const Key& key) {
  1591 	if (key.entry) {
  1592 	  return entryMap[key];
  1593 	} else {
  1594 	  return exitMap[key];
  1595 	}
  1596       }
  1597 
  1598       Value operator[](const Key& key) const {
  1599 	if (key.entry) {
  1600 	  return entryMap[key];
  1601 	} else {
  1602 	  return exitMap[key];
  1603 	}
  1604       }
  1605 
  1606       void set(const Key& key, const Value& value) {
  1607 	if (key.entry) {
  1608 	  entryMap.set(key, value);
  1609 	} else {
  1610 	  exitMap.set(key, value);
  1611 	}
  1612       }
  1613       
  1614     private:
  1615       
  1616       EntryMap& entryMap;
  1617       ExitMap& exitMap;
  1618       
  1619     };
  1620 
  1621     template <typename EdgeMap, typename NodeMap>
  1622     class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> {
  1623     public:
  1624       typedef MapBase<Edge, typename EdgeMap::Value> Parent;
  1625 
  1626       typedef typename Parent::Key Key;
  1627       typedef typename Parent::Value Value;
  1628 
  1629       CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) 
  1630 	: edgeMap(_edgeMap), nodeMap(_nodeMap) {}
  1631 
  1632       void set(const Edge& edge, const Value& val) {
  1633 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1634 	  edgeMap.set(edge, val);
  1635 	} else {
  1636 	  nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val);
  1637 	}
  1638       }
  1639 
  1640       Value operator[](const Key& edge) const {
  1641 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1642 	  return edgeMap[edge];
  1643 	} else {
  1644 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1645 	}
  1646       }      
  1647 
  1648       Value& operator[](const Key& edge) {
  1649 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1650 	  return edgeMap[edge];
  1651 	} else {
  1652 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1653 	}
  1654       }      
  1655       
  1656     private:
  1657       EdgeMap& edgeMap;
  1658       NodeMap& nodeMap;
  1659     };
  1660 
  1661   };
  1662 
  1663   template <typename _Graph>
  1664   class SplitGraphAdaptor 
  1665     : public IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > {
  1666   public:
  1667     typedef IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  1668 
  1669     SplitGraphAdaptor(_Graph& graph) {
  1670       Parent::setGraph(graph);
  1671     }
  1672 
  1673 
  1674   };
  1675 
  1676   ///@}
  1677 
  1678 } //namespace lemon
  1679 
  1680 #endif //LEMON_GRAPH_ADAPTOR_H
  1681