lemon/radix_heap.h
author alpar
Fri, 03 Feb 2006 09:03:05 +0000
changeset 1948 9e9c035a08be
parent 1903 f3d24016dad5
child 1956 a055123339d5
permissions -rw-r--r--
Hopefully we can release 0.5 today
     1 /* -*- C++ -*-
     2  * lemon/radix_heap.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_RADIX_HEAP_H
    18 #define LEMON_RADIX_HEAP_H
    19 
    20 ///\ingroup auxdat
    21 ///\file
    22 ///\brief Radix Heap implementation.
    23 
    24 #include <vector>
    25 #include <lemon/error.h>
    26 
    27 namespace lemon {
    28 
    29   /// \brief Exception thrown by RadixHeap.
    30   ///  
    31   /// This Exception is thrown when a smaller priority
    32   /// is inserted into the \e RadixHeap then the last time erased.
    33   /// \see RadixHeap
    34   /// \author Balazs Dezso
    35 
    36   class UnderFlowPriorityError : public RuntimeError {
    37   public:
    38     virtual const char* exceptionName() const {
    39       return "lemon::UnderFlowPriorityError";
    40     }  
    41   };
    42 
    43   /// \ingroup auxdata
    44   ///
    45   /// \brief A Radix Heap implementation.
    46   ///
    47   /// This class implements the \e radix \e heap data structure. A \e heap
    48   /// is a data structure for storing items with specified values called \e
    49   /// priorities in such a way that finding the item with minimum priority is
    50   /// efficient. This heap type can store only items with \e int priority.
    51   /// In a heap one can change the priority of an item, add or erase an 
    52   /// item, but the priority cannot be decreased under the last removed 
    53   /// item's priority.
    54   ///
    55   /// \param _Item Type of the items to be stored.  
    56   /// \param _ItemIntMap A read and writable Item int map, used internally
    57   /// to handle the cross references.
    58   ///
    59   /// \see BinHeap
    60   /// \see Dijkstra
    61   /// \author Balazs Dezso
    62 
    63   template <typename _Item, typename _ItemIntMap>
    64   class RadixHeap {
    65 
    66   public:
    67     typedef _Item Item;
    68     typedef int Prio;
    69     typedef _ItemIntMap ItemIntMap;
    70 
    71     /// \brief Type to represent the items states.
    72     ///
    73     /// Each Item element have a state associated to it. It may be "in heap",
    74     /// "pre heap" or "post heap". The latter two are indifferent from the
    75     /// heap's point of view, but may be useful to the user.
    76     ///
    77     /// The ItemIntMap \e should be initialized in such way that it maps
    78     /// PRE_HEAP (-1) to any element to be put in the heap...
    79     enum state_enum {
    80       IN_HEAP = 0,
    81       PRE_HEAP = -1,
    82       POST_HEAP = -2
    83     };
    84 
    85   private:
    86     
    87     struct RadixItem {
    88       int prev, next, box;
    89       Item item;
    90       int prio;
    91       RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {}
    92     };
    93 
    94     struct RadixBox {
    95       int first;
    96       int min, size;
    97       RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {}
    98     };
    99 
   100     std::vector<RadixItem> data;
   101     std::vector<RadixBox> boxes;
   102 
   103     ItemIntMap &iim;
   104 
   105 
   106   public:
   107     /// \brief The constructor.
   108     ///
   109     /// The constructor.
   110     ///
   111     /// \param _iim It should be given to the constructor, since it is used
   112     /// internally to handle the cross references. The value of the map
   113     /// should be PRE_HEAP (-1) for each element.
   114     ///
   115     /// \param minimal The initial minimal value of the heap.
   116     /// \param capacity It determines the initial capacity of the heap. 
   117     RadixHeap(ItemIntMap &_iim, int minimal = 0, int capacity = 0) 
   118       : iim(_iim) {
   119       boxes.push_back(RadixBox(minimal, 1));
   120       boxes.push_back(RadixBox(minimal + 1, 1));
   121       while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   122 	extend();
   123       }
   124     }
   125 
   126     /// The number of items stored in the heap.
   127     ///
   128     /// \brief Returns the number of items stored in the heap.
   129     int size() const { return data.size(); }
   130     /// \brief Checks if the heap stores no items.
   131     ///
   132     /// Returns \c true if and only if the heap stores no items.
   133     bool empty() const { return data.empty(); }
   134 
   135     /// \brief Make empty this heap.
   136     /// 
   137     /// Make empty this heap.
   138     void clear(int minimal = 0, int capacity = 0) { 
   139       for (int i = 0; i < (int)data.size(); ++i) {
   140 	iim[data[i].item] = -2;
   141       }
   142       data.clear(); boxes.clear(); 
   143       boxes.push_back(RadixBox(minimal, 1));
   144       boxes.push_back(RadixBox(minimal + 1, 1));
   145       while (lower(boxes.size() - 1, capacity + minimal - 1)) {
   146 	extend();
   147       }
   148     }
   149 
   150   private:
   151 
   152     bool upper(int box, Prio prio) {
   153       return prio < boxes[box].min;
   154     }
   155 
   156     bool lower(int box, Prio prio) {
   157       return prio >= boxes[box].min + boxes[box].size;
   158     }
   159 
   160     /// \brief Remove item from the box list.
   161     void remove(int index) {
   162       if (data[index].prev >= 0) {
   163 	data[data[index].prev].next = data[index].next;
   164       } else {
   165 	boxes[data[index].box].first = data[index].next;
   166       }
   167       if (data[index].next >= 0) {
   168 	data[data[index].next].prev = data[index].prev;
   169       }
   170     }
   171 
   172     /// \brief Insert item into the box list.
   173     void insert(int box, int index) {
   174       if (boxes[box].first == -1) {
   175 	boxes[box].first = index;
   176 	data[index].next = data[index].prev = -1;
   177       } else {
   178 	data[index].next = boxes[box].first;
   179 	data[boxes[box].first].prev = index;
   180 	data[index].prev = -1;
   181 	boxes[box].first = index;
   182       }
   183       data[index].box = box;
   184     }
   185 
   186     /// \brief Add a new box to the box list.
   187     void extend() {
   188       int min = boxes.back().min + boxes.back().size;
   189       int size = 2 * boxes.back().size;
   190       boxes.push_back(RadixBox(min, size));
   191     }
   192 
   193     /// \brief Move an item up into the proper box.
   194     void bubble_up(int index) {
   195       if (!lower(data[index].box, data[index].prio)) return;
   196       remove(index);
   197       int box = findUp(data[index].box, data[index].prio);
   198       insert(box, index);      
   199     }
   200 
   201     /// \brief Find up the proper box for the item with the given prio.
   202     int findUp(int start, int prio) {
   203       while (lower(start, prio)) {
   204 	if (++start == (int)boxes.size()) {
   205 	  extend();
   206 	}
   207       }
   208       return start;
   209     }
   210 
   211     /// \brief Move an item down into the proper box.
   212     void bubble_down(int index) {
   213       if (!upper(data[index].box, data[index].prio)) return;
   214       remove(index);
   215       int box = findDown(data[index].box, data[index].prio);
   216       insert(box, index);
   217     }
   218 
   219     /// \brief Find up the proper box for the item with the given prio.
   220     int findDown(int start, int prio) {
   221       while (upper(start, prio)) {
   222 	if (--start < 0) throw UnderFlowPriorityError();
   223       }
   224       return start;
   225     }
   226 
   227     /// \brief Find the first not empty box.
   228     int findFirst() {
   229       int first = 0;
   230       while (boxes[first].first == -1) ++first;
   231       return first;
   232     }
   233 
   234     /// \brief Gives back the minimal prio of the box.
   235     int minValue(int box) {
   236       int min = data[boxes[box].first].prio;
   237       for (int k = boxes[box].first; k != -1; k = data[k].next) {
   238 	if (data[k].prio < min) min = data[k].prio;
   239       }
   240       return min;
   241     }
   242 
   243     /// \brief Rearrange the items of the heap and makes the 
   244     /// first box not empty.
   245     void moveDown() {
   246       int box = findFirst();
   247       if (box == 0) return;
   248       int min = minValue(box);
   249       for (int i = 0; i <= box; ++i) {
   250 	boxes[i].min = min;
   251 	min += boxes[i].size;
   252       }
   253       int curr = boxes[box].first, next;
   254       while (curr != -1) {
   255 	next = data[curr].next;
   256 	bubble_down(curr);
   257 	curr = next;
   258       }      
   259     }
   260 
   261     void relocate_last(int index) {
   262       if (index != (int)data.size() - 1) {
   263 	data[index] = data.back();
   264 	if (data[index].prev != -1) {
   265 	  data[data[index].prev].next = index;
   266 	} else {
   267 	  boxes[data[index].box].first = index;
   268 	}
   269 	if (data[index].next != -1) {
   270 	  data[data[index].next].prev = index;
   271 	}
   272 	iim[data[index].item] = index;
   273       }
   274       data.pop_back();
   275     }
   276 
   277   public:
   278 
   279     /// \brief Insert an item into the heap with the given priority.
   280     ///    
   281     /// Adds \c i to the heap with priority \c p. 
   282     /// \param i The item to insert.
   283     /// \param p The priority of the item.
   284     void push(const Item &i, const Prio &p) {
   285       int n = data.size();
   286       iim.set(i, n);
   287       data.push_back(RadixItem(i, p));
   288       while (lower(boxes.size() - 1, p)) {
   289 	extend();
   290       }
   291       int box = findDown(boxes.size() - 1, p);
   292       insert(box, n);
   293     }
   294 
   295     /// \brief Returns the item with minimum priority.
   296     ///
   297     /// This method returns the item with minimum priority.  
   298     /// \pre The heap must be nonempty.  
   299     Item top() const {
   300       const_cast<RadixHeap<Item, ItemIntMap>&>(*this).moveDown();
   301       return data[boxes[0].first].item;
   302     }
   303 
   304     /// \brief Returns the minimum priority.
   305     ///
   306     /// It returns the minimum priority.
   307     /// \pre The heap must be nonempty.
   308     Prio prio() const {
   309       const_cast<RadixHeap<Item, ItemIntMap>&>(*this).moveDown();
   310       return data[boxes[0].first].prio;
   311      }
   312 
   313     /// \brief Deletes the item with minimum priority.
   314     ///
   315     /// This method deletes the item with minimum priority.
   316     /// \pre The heap must be non-empty.  
   317     void pop() {
   318       moveDown();
   319       int index = boxes[0].first;
   320       iim[data[index].item] = POST_HEAP;
   321       remove(index);
   322       relocate_last(index);
   323     }
   324 
   325     /// \brief Deletes \c i from the heap.
   326     ///
   327     /// This method deletes item \c i from the heap, if \c i was
   328     /// already stored in the heap.
   329     /// \param i The item to erase. 
   330     void erase(const Item &i) {
   331       int index = iim[i];
   332       iim[i] = POST_HEAP;
   333       remove(index);
   334       relocate_last(index);
   335    }
   336 
   337     /// \brief Returns the priority of \c i.
   338     ///
   339     /// This function returns the priority of item \c i.  
   340     /// \pre \c i must be in the heap.
   341     /// \param i The item.
   342     Prio operator[](const Item &i) const {
   343       int idx = iim[i];
   344       return data[idx].prio;
   345     }
   346 
   347     /// \brief \c i gets to the heap with priority \c p independently 
   348     /// if \c i was already there.
   349     ///
   350     /// This method calls \ref push(\c i, \c p) if \c i is not stored
   351     /// in the heap and sets the priority of \c i to \c p otherwise.
   352     /// It may throw an \e UnderFlowPriorityException. 
   353     /// \param i The item.
   354     /// \param p The priority.
   355     void set(const Item &i, const Prio &p) {
   356       int idx = iim[i];
   357       if( idx < 0 ) {
   358 	push(i, p);
   359       }
   360       else if( p >= data[idx].prio ) {
   361 	data[idx].prio = p;
   362 	bubble_up(idx);
   363       } else {
   364 	data[idx].prio = p;
   365 	bubble_down(idx);
   366       }
   367     }
   368 
   369 
   370     /// \brief Decreases the priority of \c i to \c p.
   371     ///
   372     /// This method decreases the priority of item \c i to \c p.
   373     /// \pre \c i must be stored in the heap with priority at least \c p, and
   374     /// \c should be greater or equal to the last removed item's priority.
   375     /// \param i The item.
   376     /// \param p The priority.
   377     void decrease(const Item &i, const Prio &p) {
   378       int idx = iim[i];
   379       data[idx].prio = p;
   380       bubble_down(idx);
   381     }
   382 
   383     /// \brief Increases the priority of \c i to \c p.
   384     ///
   385     /// This method sets the priority of item \c i to \c p. 
   386     /// \pre \c i must be stored in the heap with priority at most \c p
   387     /// \param i The item.
   388     /// \param p The priority.
   389     void increase(const Item &i, const Prio &p) {
   390       int idx = iim[i];
   391       data[idx].prio = p;
   392       bubble_up(idx);
   393     }
   394 
   395     /// \brief Returns if \c item is in, has already been in, or has 
   396     /// never been in the heap.
   397     ///
   398     /// This method returns PRE_HEAP if \c item has never been in the
   399     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   400     /// otherwise. In the latter case it is possible that \c item will
   401     /// get back to the heap again.
   402     /// \param i The item.
   403     state_enum state(const Item &i) const {
   404       int s = iim[i];
   405       if( s >= 0 ) s = 0;
   406       return state_enum(s);
   407     }
   408 
   409     /// \brief Sets the state of the \c item in the heap.
   410     ///
   411     /// Sets the state of the \c item in the heap. It can be used to
   412     /// manually clear the heap when it is important to achive the
   413     /// better time complexity.
   414     /// \param i The item.
   415     /// \param st The state. It should not be \c IN_HEAP. 
   416     void state(const Item& i, state_enum st) {
   417       switch (st) {
   418       case POST_HEAP:
   419       case PRE_HEAP:
   420         if (state(i) == IN_HEAP) {
   421           erase(i);
   422         }
   423         iim[i] = st;
   424         break;
   425       case IN_HEAP:
   426         break;
   427       }
   428     }
   429 
   430   }; // class RadixHeap
   431 
   432 } // namespace lemon
   433 
   434 #endif // LEMON_RADIX_HEAP_H