- Timer can be stop()ed and (re)start()ed.
- Obsolete \bug removed
2 * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_LP_BASE_H
18 #define LEMON_LP_BASE_H
25 #include<lemon/utility.h>
26 #include<lemon/error.h>
27 #include<lemon/invalid.h>
30 ///\brief The interface of the LP solver interface.
31 ///\ingroup gen_opt_group
34 ///Internal data structure to convert floating id's to fix one's
36 ///\todo This might be implemented to be also usable in other places.
39 std::vector<int> index;
40 std::vector<int> cross;
43 _FixId() : first_free(-1) {};
44 ///Convert a floating id to a fix one
46 ///\param n is a floating id
47 ///\return the corresponding fix id
48 int fixId(int n) const {return cross[n];}
49 ///Convert a fix id to a floating one
51 ///\param n is a fix id
52 ///\return the corresponding floating id
53 int floatingId(int n) const { return index[n];}
54 ///Add a new floating id.
56 ///\param n is a floating id
57 ///\return the fix id of the new value
58 ///\todo Multiple additions should also be handled.
61 if(n>=int(cross.size())) {
64 cross[n]=index.size();
69 int next=index[first_free];
75 ///\todo Create an own exception type.
76 else throw LogicError(); //floatingId-s must form a continuous range;
80 ///\param n is a fix id
87 for(int i=fl+1;i<int(cross.size());++i) {
93 ///An upper bound on the largest fix id.
95 ///\todo Do we need this?
97 std::size_t maxFixId() { return cross.size()-1; }
101 ///Common base class for LP solvers
103 ///\todo Much more docs
104 ///\ingroup gen_opt_group
109 ///Possible outcomes of an LP solving procedure
110 enum SolveExitStatus {
111 ///This means that the problem has been successfully solved: either
112 ///an optimal solution has been found or infeasibility/unboundedness
115 ///Any other case (including the case when some user specified limit has been exceeded)
120 enum SolutionStatus {
121 ///Feasible solution has'n been found (but may exist).
123 ///\todo NOTFOUND might be a better name.
126 ///The problem has no feasible solution
128 ///Feasible solution found
130 ///Optimal solution exists and found
132 ///The cost function is unbounded
134 ///\todo Give a feasible solution and an infinite ray (and the
135 ///corresponding bases)
139 ///\e The type of the investigated LP problem
141 ///Primal-dual feasible
142 PRIMAL_DUAL_FEASIBLE = 0,
143 ///Primal feasible dual infeasible
144 PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
145 ///Primal infeasible dual feasible
146 PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
147 ///Primal-dual infeasible
148 PRIMAL_DUAL_INFEASIBLE = 3,
149 ///Could not determine so far
153 ///The floating point type used by the solver
154 typedef double Value;
155 ///The infinity constant
156 static const Value INF;
157 ///The not a number constant
158 static const Value NaN;
160 ///Refer to a column of the LP.
162 ///This type is used to refer to a column of the LP.
164 ///Its value remains valid and correct even after the addition or erase of
167 ///\todo Document what can one do with a Col (INVALID, comparing,
168 ///it is similar to Node/Edge)
172 friend class LpSolverBase;
174 typedef Value ExprValue;
175 typedef True LpSolverCol;
177 Col(const Invalid&) : id(-1) {}
178 bool operator<(Col c) const {return id<c.id;}
179 bool operator==(Col c) const {return id==c.id;}
180 bool operator!=(Col c) const {return id==c.id;}
183 ///Refer to a row of the LP.
185 ///This type is used to refer to a row of the LP.
187 ///Its value remains valid and correct even after the addition or erase of
190 ///\todo Document what can one do with a Row (INVALID, comparing,
191 ///it is similar to Node/Edge)
195 friend class LpSolverBase;
197 typedef Value ExprValue;
198 typedef True LpSolverRow;
200 Row(const Invalid&) : id(-1) {}
202 bool operator<(Row c) const {return id<c.id;}
203 bool operator==(Row c) const {return id==c.id;}
204 bool operator!=(Row c) const {return id==c.id;}
207 ///Linear expression of variables and a constant component
209 ///This data structure strores a linear expression of the variables
210 ///(\ref Col "Col"s) and also has a constant component.
212 ///There are several ways to access and modify the contents of this
214 ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
215 ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
216 ///read and modify the coefficients like
223 ///or you can also iterate through its elements.
226 ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
229 ///(This code computes the sum of all coefficients).
230 ///- Numbers (<tt>double</tt>'s)
231 ///and variables (\ref Col "Col"s) directly convert to an
232 ///\ref Expr and the usual linear operations are defined so
235 ///2*v-3.12*(v-w/2)+2
236 ///v*2.1+(3*v+(v*12+w+6)*3)/2
238 ///are valid \ref Expr "Expr"essions.
239 ///The usual assignment operations are also defined.
242 ///e+=2*v-3.12*(v-w/2)+2;
246 ///- The constant member can be set and read by \ref constComp()
249 ///double c=e.constComp();
252 ///\note \ref clear() not only sets all coefficients to 0 but also
253 ///clears the constant components.
257 class Expr : public std::map<Col,Value>
260 typedef LpSolverBase::Col Key;
261 typedef LpSolverBase::Value Value;
264 typedef std::map<Col,Value> Base;
268 typedef True IsLinExpression;
270 Expr() : Base(), const_comp(0) { }
272 Expr(const Key &v) : const_comp(0) {
273 Base::insert(std::make_pair(v, 1));
276 Expr(const Value &v) : const_comp(v) {}
278 void set(const Key &v,const Value &c) {
279 Base::insert(std::make_pair(v, c));
282 Value &constComp() { return const_comp; }
284 const Value &constComp() const { return const_comp; }
286 ///Removes the components with zero coefficient.
288 for (Base::iterator i=Base::begin(); i!=Base::end();) {
291 if ((*i).second==0) Base::erase(i);
296 ///Removes the coefficients closer to zero than \c tolerance.
297 void simplify(double &tolerance) {
298 for (Base::iterator i=Base::begin(); i!=Base::end();) {
301 if (std::fabs((*i).second)<tolerance) Base::erase(i);
306 ///Sets all coefficients and the constant component to 0.
313 Expr &operator+=(const Expr &e) {
314 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
315 (*this)[j->first]+=j->second;
316 const_comp+=e.const_comp;
320 Expr &operator-=(const Expr &e) {
321 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
322 (*this)[j->first]-=j->second;
323 const_comp-=e.const_comp;
327 Expr &operator*=(const Value &c) {
328 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
334 Expr &operator/=(const Value &c) {
335 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
344 ///This data stucture represents a linear constraint in the LP.
345 ///Basically it is a linear expression with a lower or an upper bound
346 ///(or both). These parts of the constraint can be obtained by the member
347 ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
349 ///There are two ways to construct a constraint.
350 ///- You can set the linear expression and the bounds directly
351 /// by the functions above.
352 ///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt>
353 /// are defined between expressions, or even between constraints whenever
354 /// it makes sense. Therefore if \c e and \c f are linear expressions and
355 /// \c s and \c t are numbers, then the followings are valid expressions
356 /// and thus they can be used directly e.g. in \ref addRow() whenever
364 ///\warning The validity of a constraint is checked only at run time, so
365 ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
366 ///\ref LogicError exception.
370 typedef LpSolverBase::Expr Expr;
371 typedef Expr::Key Key;
372 typedef Expr::Value Value;
374 // static const Value INF;
375 // static const Value NaN;
382 Constr() : _expr(), _lb(NaN), _ub(NaN) {}
384 Constr(Value lb,const Expr &e,Value ub) :
385 _expr(e), _lb(lb), _ub(ub) {}
387 Constr(const Expr &e,Value ub) :
388 _expr(e), _lb(NaN), _ub(ub) {}
390 Constr(Value lb,const Expr &e) :
391 _expr(e), _lb(lb), _ub(NaN) {}
393 Constr(const Expr &e) :
394 _expr(e), _lb(NaN), _ub(NaN) {}
402 ///Reference to the linear expression
403 Expr &expr() { return _expr; }
404 ///Cont reference to the linear expression
405 const Expr &expr() const { return _expr; }
406 ///Reference to the lower bound.
409 ///- \ref INF "INF": the constraint is lower unbounded.
410 ///- \ref NaN "NaN": lower bound has not been set.
411 ///- finite number: the lower bound
412 Value &lowerBound() { return _lb; }
413 ///The const version of \ref lowerBound()
414 const Value &lowerBound() const { return _lb; }
415 ///Reference to the upper bound.
418 ///- \ref INF "INF": the constraint is upper unbounded.
419 ///- \ref NaN "NaN": upper bound has not been set.
420 ///- finite number: the upper bound
421 Value &upperBound() { return _ub; }
422 ///The const version of \ref upperBound()
423 const Value &upperBound() const { return _ub; }
424 ///Is the constraint lower bounded?
425 bool lowerBounded() const {
429 ///Is the constraint upper bounded?
430 bool upperBounded() const {
436 ///Linear expression of rows
438 ///This data structure represents a column of the matrix,
439 ///thas is it strores a linear expression of the dual variables
440 ///(\ref Row "Row"s).
442 ///There are several ways to access and modify the contents of this
444 ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
445 ///if \c e is an DualExpr and \c v
446 ///and \c w are of type \ref Row, then you can
447 ///read and modify the coefficients like
454 ///or you can also iterate through its elements.
457 ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
460 ///(This code computes the sum of all coefficients).
461 ///- Numbers (<tt>double</tt>'s)
462 ///and variables (\ref Row "Row"s) directly convert to an
463 ///\ref DualExpr and the usual linear operations are defined so
467 ///v*2.1+(3*v+(v*12+w)*3)/2
469 ///are valid \ref DualExpr "DualExpr"essions.
470 ///The usual assignment operations are also defined.
473 ///e+=2*v-3.12*(v-w/2);
480 class DualExpr : public std::map<Row,Value>
483 typedef LpSolverBase::Row Key;
484 typedef LpSolverBase::Value Value;
487 typedef std::map<Row,Value> Base;
490 typedef True IsLinExpression;
492 DualExpr() : Base() { }
494 DualExpr(const Key &v) {
495 Base::insert(std::make_pair(v, 1));
498 void set(const Key &v,const Value &c) {
499 Base::insert(std::make_pair(v, c));
502 ///Removes the components with zero coefficient.
504 for (Base::iterator i=Base::begin(); i!=Base::end();) {
507 if ((*i).second==0) Base::erase(i);
512 ///Removes the coefficients closer to zero than \c tolerance.
513 void simplify(double &tolerance) {
514 for (Base::iterator i=Base::begin(); i!=Base::end();) {
517 if (std::fabs((*i).second)<tolerance) Base::erase(i);
523 ///Sets all coefficients to 0.
529 DualExpr &operator+=(const DualExpr &e) {
530 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
531 (*this)[j->first]+=j->second;
535 DualExpr &operator-=(const DualExpr &e) {
536 for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
537 (*this)[j->first]-=j->second;
541 DualExpr &operator*=(const Value &c) {
542 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
547 DualExpr &operator/=(const Value &c) {
548 for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
559 //Abstract virtual functions
560 virtual LpSolverBase &_newLp() = 0;
561 virtual LpSolverBase &_copyLp(){
562 ///\todo This should be implemented here, too, when we have problem retrieving routines. It can be overriden.
565 LpSolverBase & newlp(_newLp());
567 //return *(LpSolverBase*)0;
570 virtual int _addCol() = 0;
571 virtual int _addRow() = 0;
572 virtual void _eraseCol(int col) = 0;
573 virtual void _eraseRow(int row) = 0;
574 virtual void _setRowCoeffs(int i,
577 Value const * values ) = 0;
578 virtual void _setColCoeffs(int i,
581 Value const * values ) = 0;
582 virtual void _setCoeff(int row, int col, Value value) = 0;
583 virtual void _setColLowerBound(int i, Value value) = 0;
584 virtual void _setColUpperBound(int i, Value value) = 0;
585 // virtual void _setRowLowerBound(int i, Value value) = 0;
586 // virtual void _setRowUpperBound(int i, Value value) = 0;
587 virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
588 virtual void _setObjCoeff(int i, Value obj_coef) = 0;
589 virtual void _clearObj()=0;
590 // virtual void _setObj(int length,
591 // int const * indices,
592 // Value const * values ) = 0;
593 virtual SolveExitStatus _solve() = 0;
594 virtual Value _getPrimal(int i) = 0;
595 virtual Value _getPrimalValue() = 0;
596 virtual SolutionStatus _getPrimalStatus() = 0;
597 virtual SolutionStatus _getDualStatus() = 0;
598 ///\todo This could be implemented here, too, using _getPrimalStatus() and
600 virtual ProblemTypes _getProblemType() = 0;
602 virtual void _setMax() = 0;
603 virtual void _setMin() = 0;
605 //Own protected stuff
607 //Constant component of the objective function
608 Value obj_const_comp;
616 LpSolverBase() : obj_const_comp(0) {}
619 virtual ~LpSolverBase() {}
621 ///Creates a new LP problem
622 LpSolverBase &newLp() {return _newLp();}
623 ///Makes a copy of the LP problem
624 LpSolverBase ©Lp() {return _copyLp();}
626 ///\name Build up and modify the LP
630 ///Add a new empty column (i.e a new variable) to the LP
631 Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
633 ///\brief Adds several new columns
634 ///(i.e a variables) at once
636 ///This magic function takes a container as its argument
637 ///and fills its elements
638 ///with new columns (i.e. variables)
640 ///- a standard STL compatible iterable container with
641 ///\ref Col as its \c values_type
644 ///std::vector<LpSolverBase::Col>
645 ///std::list<LpSolverBase::Col>
647 ///- a standard STL compatible iterable container with
648 ///\ref Col as its \c mapped_type
651 ///std::map<AnyType,LpSolverBase::Col>
653 ///- an iterable lemon \ref concept::WriteMap "write map" like
655 ///ListGraph::NodeMap<LpSolverBase::Col>
656 ///ListGraph::EdgeMap<LpSolverBase::Col>
658 ///\return The number of the created column.
661 int addColSet(T &t) { return 0;}
664 typename enable_if<typename T::value_type::LpSolverCol,int>::type
665 addColSet(T &t,dummy<0> = 0) {
667 for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
671 typename enable_if<typename T::value_type::second_type::LpSolverCol,
673 addColSet(T &t,dummy<1> = 1) {
675 for(typename T::iterator i=t.begin();i!=t.end();++i) {
682 typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
684 addColSet(T &t,dummy<2> = 2) {
685 ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
687 for(typename T::ValueSet::iterator i=t.valueSet().begin();
688 i!=t.valueSet().end();
698 ///Set a column (i.e a dual constraint) of the LP
700 ///\param c is the column to be modified
701 ///\param e is a dual linear expression (see \ref DualExpr)
702 ///\bug This is a temporary function. The interface will change to
704 void setCol(Col c,const DualExpr &e) {
705 std::vector<int> indices;
706 std::vector<Value> values;
707 indices.push_back(0);
709 for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
710 if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
711 indices.push_back(cols.floatingId((*i).first.id));
712 values.push_back((*i).second);
714 _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
715 &indices[0],&values[0]);
718 ///Add a new column to the LP
720 ///\param e is a dual linear expression (see \ref DualExpr)
721 ///\param obj is the corresponding component of the objective
722 ///function. It is 0 by default.
723 ///\return The created column.
724 ///\bug This is a temportary function. The interface will change to
726 Col addCol(const DualExpr &e, Value obj=0) {
733 ///Add a new empty row (i.e a new constraint) to the LP
735 ///This function adds a new empty row (i.e a new constraint) to the LP.
736 ///\return The created row
737 Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
739 ///\brief Add several new rows
740 ///(i.e a constraints) at once
742 ///This magic function takes a container as its argument
743 ///and fills its elements
744 ///with new row (i.e. variables)
746 ///- a standard STL compatible iterable container with
747 ///\ref Row as its \c values_type
750 ///std::vector<LpSolverBase::Row>
751 ///std::list<LpSolverBase::Row>
753 ///- a standard STL compatible iterable container with
754 ///\ref Row as its \c mapped_type
757 ///std::map<AnyType,LpSolverBase::Row>
759 ///- an iterable lemon \ref concept::WriteMap "write map" like
761 ///ListGraph::NodeMap<LpSolverBase::Row>
762 ///ListGraph::EdgeMap<LpSolverBase::Row>
764 ///\return The number of rows created.
767 int addRowSet(T &t) { return 0;}
770 typename enable_if<typename T::value_type::LpSolverRow,int>::type
771 addRowSet(T &t,dummy<0> = 0) {
773 for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
777 typename enable_if<typename T::value_type::second_type::LpSolverRow,
779 addRowSet(T &t,dummy<1> = 1) {
781 for(typename T::iterator i=t.begin();i!=t.end();++i) {
788 typename enable_if<typename T::ValueSet::value_type::LpSolverRow,
790 addRowSet(T &t,dummy<2> = 2) {
791 ///\bug <tt>return addRowSet(t.valueSet());</tt> should also work.
793 for(typename T::ValueSet::iterator i=t.valueSet().begin();
794 i!=t.valueSet().end();
804 ///Set a row (i.e a constraint) of the LP
806 ///\param r is the row to be modified
807 ///\param l is lower bound (-\ref INF means no bound)
808 ///\param e is a linear expression (see \ref Expr)
809 ///\param u is the upper bound (\ref INF means no bound)
810 ///\bug This is a temportary function. The interface will change to
812 ///\todo Option to control whether a constraint with a single variable is
814 void setRow(Row r, Value l,const Expr &e, Value u) {
815 std::vector<int> indices;
816 std::vector<Value> values;
817 indices.push_back(0);
819 for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
820 if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
821 indices.push_back(cols.floatingId((*i).first.id));
822 values.push_back((*i).second);
824 _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
825 &indices[0],&values[0]);
826 // _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
827 // _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
828 _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
831 ///Set a row (i.e a constraint) of the LP
833 ///\param r is the row to be modified
834 ///\param c is a linear expression (see \ref Constr)
835 void setRow(Row r, const Constr &c) {
837 c.lowerBounded()?c.lowerBound():-INF,
839 c.upperBounded()?c.upperBound():INF);
842 ///Add a new row (i.e a new constraint) to the LP
844 ///\param l is the lower bound (-\ref INF means no bound)
845 ///\param e is a linear expression (see \ref Expr)
846 ///\param u is the upper bound (\ref INF means no bound)
847 ///\return The created row.
848 ///\bug This is a temportary function. The interface will change to
850 Row addRow(Value l,const Expr &e, Value u) {
856 ///Add a new row (i.e a new constraint) to the LP
858 ///\param c is a linear expression (see \ref Constr)
859 ///\return The created row.
860 Row addRow(const Constr &c) {
865 ///Erase a coloumn (i.e a variable) from the LP
867 ///\param c is the coloumn to be deleted
868 ///\todo Please check this
869 void eraseCol(Col c) {
870 _eraseCol(cols.floatingId(c.id));
873 ///Erase a row (i.e a constraint) from the LP
875 ///\param r is the row to be deleted
876 ///\todo Please check this
877 void eraseRow(Row r) {
878 _eraseRow(rows.floatingId(r.id));
882 ///Set an element of the coefficient matrix of the LP
884 ///\param r is the row of the element to be modified
885 ///\param c is the coloumn of the element to be modified
886 ///\param val is the new value of the coefficient
887 void setCoeff(Row r, Col c, Value val){
888 _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val);
891 /// Set the lower bound of a column (i.e a variable)
893 /// The upper bound of a variable (column) has to be given by an
894 /// extended number of type Value, i.e. a finite number of type
895 /// Value or -\ref INF.
896 void colLowerBound(Col c, Value value) {
897 _setColLowerBound(cols.floatingId(c.id),value);
899 /// Set the upper bound of a column (i.e a variable)
901 /// The upper bound of a variable (column) has to be given by an
902 /// extended number of type Value, i.e. a finite number of type
903 /// Value or \ref INF.
904 void colUpperBound(Col c, Value value) {
905 _setColUpperBound(cols.floatingId(c.id),value);
907 /// Set the lower and the upper bounds of a column (i.e a variable)
909 /// The lower and the upper bounds of
910 /// a variable (column) have to be given by an
911 /// extended number of type Value, i.e. a finite number of type
912 /// Value, -\ref INF or \ref INF.
913 void colBounds(Col c, Value lower, Value upper) {
914 _setColLowerBound(cols.floatingId(c.id),lower);
915 _setColUpperBound(cols.floatingId(c.id),upper);
918 // /// Set the lower bound of a row (i.e a constraint)
920 // /// The lower bound of a linear expression (row) has to be given by an
921 // /// extended number of type Value, i.e. a finite number of type
922 // /// Value or -\ref INF.
923 // void rowLowerBound(Row r, Value value) {
924 // _setRowLowerBound(rows.floatingId(r.id),value);
926 // /// Set the upper bound of a row (i.e a constraint)
928 // /// The upper bound of a linear expression (row) has to be given by an
929 // /// extended number of type Value, i.e. a finite number of type
930 // /// Value or \ref INF.
931 // void rowUpperBound(Row r, Value value) {
932 // _setRowUpperBound(rows.floatingId(r.id),value);
935 /// Set the lower and the upper bounds of a row (i.e a constraint)
937 /// The lower and the upper bounds of
938 /// a constraint (row) have to be given by an
939 /// extended number of type Value, i.e. a finite number of type
940 /// Value, -\ref INF or \ref INF.
941 void rowBounds(Row c, Value lower, Value upper) {
942 _setRowBounds(rows.floatingId(c.id),lower, upper);
943 // _setRowUpperBound(rows.floatingId(c.id),upper);
946 ///Set an element of the objective function
947 void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
948 ///Set the objective function
950 ///\param e is a linear expression of type \ref Expr.
951 ///\bug The previous objective function is not cleared!
952 void setObj(Expr e) {
954 for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
955 objCoeff((*i).first,(*i).second);
956 obj_const_comp=e.constComp();
960 void max() { _setMax(); }
962 void min() { _setMin(); }
968 ///\name Solve the LP
972 ///\e Solve the LP problem at hand
974 ///\return The result of the optimization procedure. Possible values and their meanings can be found in the documentation of \ref SolveExitStatus.
976 ///\todo Which method is used to solve the problem
977 SolveExitStatus solve() { return _solve(); }
981 ///\name Obtain the solution
985 /// The status of the primal problem (the original LP problem)
986 SolutionStatus primalStatus() {
987 return _getPrimalStatus();
990 /// The status of the dual (of the original LP) problem
991 SolutionStatus dualStatus() {
992 return _getDualStatus();
995 ///The type of the original LP problem
996 ProblemTypes problemType() {
997 return _getProblemType();
1001 Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
1006 ///- \ref INF or -\ref INF means either infeasibility or unboundedness
1007 /// of the primal problem, depending on whether we minimize or maximize.
1008 ///- \ref NaN if no primal solution is found.
1009 ///- The (finite) objective value if an optimal solution is found.
1010 Value primalValue() { return _getPrimalValue()+obj_const_comp;}
1017 ///\relates LpSolverBase::Expr
1019 inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
1020 const LpSolverBase::Expr &b)
1022 LpSolverBase::Expr tmp(a);
1028 ///\relates LpSolverBase::Expr
1030 inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
1031 const LpSolverBase::Expr &b)
1033 LpSolverBase::Expr tmp(a);
1039 ///\relates LpSolverBase::Expr
1041 inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
1042 const LpSolverBase::Value &b)
1044 LpSolverBase::Expr tmp(a);
1051 ///\relates LpSolverBase::Expr
1053 inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
1054 const LpSolverBase::Expr &b)
1056 LpSolverBase::Expr tmp(b);
1062 ///\relates LpSolverBase::Expr
1064 inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
1065 const LpSolverBase::Value &b)
1067 LpSolverBase::Expr tmp(a);
1074 ///\relates LpSolverBase::Constr
1076 inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1077 const LpSolverBase::Expr &f)
1079 return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
1084 ///\relates LpSolverBase::Constr
1086 inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
1087 const LpSolverBase::Expr &f)
1089 return LpSolverBase::Constr(e,f);
1094 ///\relates LpSolverBase::Constr
1096 inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
1097 const LpSolverBase::Value &f)
1099 return LpSolverBase::Constr(e,f);
1104 ///\relates LpSolverBase::Constr
1106 inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1107 const LpSolverBase::Expr &f)
1109 return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
1115 ///\relates LpSolverBase::Constr
1117 inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
1118 const LpSolverBase::Expr &f)
1120 return LpSolverBase::Constr(f,e);
1126 ///\relates LpSolverBase::Constr
1128 inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
1129 const LpSolverBase::Value &f)
1131 return LpSolverBase::Constr(f,e);
1136 ///\relates LpSolverBase::Constr
1138 inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
1139 const LpSolverBase::Expr &f)
1141 return LpSolverBase::Constr(0,e-f,0);
1146 ///\relates LpSolverBase::Constr
1148 inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
1149 const LpSolverBase::Constr&c)
1151 LpSolverBase::Constr tmp(c);
1152 ///\todo Create an own exception type.
1153 if(!isnan(tmp.lowerBound())) throw LogicError();
1154 else tmp.lowerBound()=n;
1159 ///\relates LpSolverBase::Constr
1161 inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
1162 const LpSolverBase::Value &n)
1164 LpSolverBase::Constr tmp(c);
1165 ///\todo Create an own exception type.
1166 if(!isnan(tmp.upperBound())) throw LogicError();
1167 else tmp.upperBound()=n;
1173 ///\relates LpSolverBase::Constr
1175 inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
1176 const LpSolverBase::Constr&c)
1178 LpSolverBase::Constr tmp(c);
1179 ///\todo Create an own exception type.
1180 if(!isnan(tmp.upperBound())) throw LogicError();
1181 else tmp.upperBound()=n;
1186 ///\relates LpSolverBase::Constr
1188 inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
1189 const LpSolverBase::Value &n)
1191 LpSolverBase::Constr tmp(c);
1192 ///\todo Create an own exception type.
1193 if(!isnan(tmp.lowerBound())) throw LogicError();
1194 else tmp.lowerBound()=n;
1200 ///\relates LpSolverBase::DualExpr
1202 inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
1203 const LpSolverBase::DualExpr &b)
1205 LpSolverBase::DualExpr tmp(a);
1211 ///\relates LpSolverBase::DualExpr
1213 inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
1214 const LpSolverBase::DualExpr &b)
1216 LpSolverBase::DualExpr tmp(a);
1222 ///\relates LpSolverBase::DualExpr
1224 inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
1225 const LpSolverBase::Value &b)
1227 LpSolverBase::DualExpr tmp(a);
1234 ///\relates LpSolverBase::DualExpr
1236 inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
1237 const LpSolverBase::DualExpr &b)
1239 LpSolverBase::DualExpr tmp(b);
1245 ///\relates LpSolverBase::DualExpr
1247 inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
1248 const LpSolverBase::Value &b)
1250 LpSolverBase::DualExpr tmp(a);
1258 #endif //LEMON_LP_BASE_H