lemon/topology.h
author alpar
Tue, 08 Nov 2005 10:12:45 +0000
changeset 1780 9f052750753f
parent 1763 49045f2d28d4
child 1793 d8130458dd86
permissions -rw-r--r--
- Timer can be stop()ed and (re)start()ed.
- Obsolete \bug removed
     1 /* -*- C++ -*-
     2  * lemon/topology.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_TOPOLOGY_H
    18 #define LEMON_TOPOLOGY_H
    19 
    20 #include <lemon/dfs.h>
    21 #include <lemon/bfs.h>
    22 #include <lemon/graph_utils.h>
    23 #include <lemon/graph_adaptor.h>
    24 #include <lemon/maps.h>
    25 
    26 #include <lemon/concept/graph.h>
    27 #include <lemon/concept/undir_graph.h>
    28 #include <lemon/concept_check.h>
    29 
    30 #include <lemon/bin_heap.h>
    31 #include <lemon/linear_heap.h>
    32 
    33 #include <stack>
    34 #include <functional>
    35 
    36 /// \ingroup topology
    37 /// \file
    38 /// \brief Topology related algorithms
    39 ///
    40 /// Topology related algorithms
    41 
    42 namespace lemon {
    43 
    44   /// \ingroup topology
    45   ///
    46   /// \brief Check that the given undirected graph is connected.
    47   ///
    48   /// Check that the given undirected graph connected.
    49   /// \param graph The undirected graph.
    50   /// \return %True when there is path between any two nodes in the graph.
    51   /// \warning The empty graph is not connected.
    52   template <typename UndirGraph>
    53   bool connected(const UndirGraph& graph) {
    54     checkConcept<concept::UndirGraph, UndirGraph>();
    55     typedef typename UndirGraph::NodeIt NodeIt;
    56     if (NodeIt(graph) == INVALID) return false;
    57     Dfs<UndirGraph> dfs(graph);
    58     dfs.run(NodeIt(graph));
    59     for (NodeIt it(graph); it != INVALID; ++it) {
    60       if (!dfs.reached(it)) {
    61 	return false;
    62       }
    63     }
    64     return true;
    65   }
    66 
    67   /// \ingroup topology
    68   ///
    69   /// \brief Count the number of connected components of an undirected graph
    70   ///
    71   /// Count the number of connected components of an undirected graph
    72   ///
    73   /// \param g The graph. In must be undirected.
    74   /// \return The number of components
    75   template <typename UndirGraph>
    76   int countConnectedComponents(const UndirGraph &graph) {
    77     checkConcept<concept::UndirGraph, UndirGraph>();
    78     typedef typename UndirGraph::Node Node;
    79     typedef typename UndirGraph::Edge Edge;
    80 
    81     typedef NullMap<Node, Edge> PredMap;
    82     typedef NullMap<Node, int> DistMap;
    83 
    84     int compNum = 0;
    85     typename Bfs<UndirGraph>::
    86       template DefPredMap<PredMap>::
    87       template DefDistMap<DistMap>::
    88       Create bfs(graph);
    89 
    90     PredMap predMap;
    91     bfs.predMap(predMap);
    92 
    93     DistMap distMap;
    94     bfs.distMap(distMap);
    95 
    96     bfs.init();
    97     for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) {
    98       if (!bfs.reached(n)) {
    99 	bfs.addSource(n);
   100 	bfs.start();
   101 	++compNum;
   102       }
   103     }
   104     return compNum;
   105   }
   106 
   107   /// \ingroup topology
   108   ///
   109   /// \brief Find the connected components of an undirected graph
   110   ///
   111   /// Find the connected components of an undirected graph.
   112   ///
   113   /// \image html connected_components.png
   114   /// \image latex connected_components.eps "Connected components" width=\textwidth
   115   ///
   116   /// \param g The graph. In must be undirected.
   117   /// \retval comp A writable node map. The values will be set from 0 to
   118   /// the number of the connected components minus one. Each values of the map
   119   /// will be set exactly once, the values of a certain component will be
   120   /// set continuously.
   121   /// \return The number of components
   122   ///
   123   template <class UndirGraph, class NodeMap>
   124   int connectedComponents(const UndirGraph &graph, NodeMap &compMap) {
   125     checkConcept<concept::UndirGraph, UndirGraph>();
   126     typedef typename UndirGraph::Node Node;
   127     typedef typename UndirGraph::Edge Edge;
   128     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   129 
   130     typedef NullMap<Node, Edge> PredMap;
   131     typedef NullMap<Node, int> DistMap;
   132 
   133     int compNum = 0;
   134     typename Bfs<UndirGraph>::
   135       template DefPredMap<PredMap>::
   136       template DefDistMap<DistMap>::
   137       Create bfs(graph);
   138 
   139     PredMap predMap;
   140     bfs.predMap(predMap);
   141 
   142     DistMap distMap;
   143     bfs.distMap(distMap);
   144     
   145     bfs.init();
   146     for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) {
   147       if(!bfs.reached(n)) {
   148 	bfs.addSource(n);
   149 	while (!bfs.emptyQueue()) {
   150 	  compMap.set(bfs.nextNode(), compNum);
   151 	  bfs.processNextNode();
   152 	}
   153 	++compNum;
   154       }
   155     }
   156     return compNum;
   157   }
   158 
   159   namespace _topology_bits {
   160 
   161     template <typename Graph, typename Iterator >
   162     struct LeaveOrderVisitor : public DfsVisitor<Graph> {
   163     public:
   164       typedef typename Graph::Node Node;
   165       LeaveOrderVisitor(Iterator it) : _it(it) {}
   166 
   167       void leave(const Node& node) {
   168 	*(_it++) = node;
   169       }
   170 
   171     private:
   172       Iterator _it;
   173     };
   174 
   175     template <typename Graph, typename Map>
   176     struct FillMapVisitor : public DfsVisitor<Graph> {
   177     public:
   178       typedef typename Graph::Node Node;
   179       typedef typename Map::Value Value;
   180 
   181       FillMapVisitor(Map& map, Value& value) 
   182 	: _map(map), _value(value) {}
   183 
   184       void reach(const Node& node) {
   185 	_map.set(node, _value);
   186       }
   187     private:
   188       Map& _map;
   189       Value& _value;
   190     };
   191 
   192     template <typename Graph, typename EdgeMap>
   193     struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   194     public:
   195       typedef typename Graph::Node Node;
   196       typedef typename Graph::Edge Edge;
   197 
   198       StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, 
   199 				       int& cutNum) 
   200 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   201 	  _compMap(graph), _num(0) {
   202       }
   203 
   204       void stop(const Node&) {
   205 	++_num;
   206       }
   207 
   208       void reach(const Node& node) {
   209 	_compMap.set(node, _num);
   210       }
   211 
   212       void examine(const Edge& edge) {
   213  	if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) {
   214  	  _cutMap.set(edge, true);
   215  	  ++_cutNum;
   216  	}
   217       }
   218     private:
   219       const Graph& _graph;
   220       EdgeMap& _cutMap;
   221       int& _cutNum;
   222 
   223       typename Graph::template NodeMap<int> _compMap;
   224       int _num;
   225     };
   226 
   227   }
   228 
   229 
   230   /// \ingroup topology
   231   ///
   232   /// \brief Check that the given directed graph is strongly connected.
   233   ///
   234   /// Check that the given directed graph is strongly connected. The
   235   /// graph is strongly connected when any two nodes of the graph are
   236   /// connected with directed pathes in both direction.
   237   /// \return %False when the graph is not strongly connected.
   238   /// \see connected
   239   ///
   240   /// \waning Empty graph is not strongly connected.
   241   template <typename Graph>
   242   bool stronglyConnected(const Graph& graph) {
   243     checkConcept<concept::StaticGraph, Graph>();
   244     if (NodeIt(graph) == INVALID) return false;
   245 
   246     typedef typename Graph::Node Node;
   247     typedef typename Graph::NodeIt NodeIt;
   248 
   249     using namespace _topology_bits;
   250 
   251     typedef DfsVisitor<Graph> Visitor;
   252     Visitor visitor;
   253 
   254     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   255     dfs.init();
   256     dfs.addSource(NodeIt(graph));
   257     dfs.start();
   258 
   259     for (NodeIt it(graph); it != INVALID; ++it) {
   260       if (!dfs.reached(it)) {
   261 	return false;
   262       }
   263     }
   264 
   265     typedef RevGraphAdaptor<const Graph> RGraph;
   266     RGraph rgraph(graph);
   267 
   268     typedef DfsVisitor<Graph> RVisitor;
   269     RVisitor rvisitor;
   270 
   271     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   272     rdfs.init();    
   273     rdfs.addSource(NodeIt(graph));
   274     rdfs.start();
   275 
   276     for (NodeIt it(graph); it != INVALID; ++it) {
   277       if (!rdfs.reached(it)) {
   278 	return false;
   279       }
   280     }
   281 
   282     return true;
   283   }
   284 
   285   /// \ingroup topology
   286   ///
   287   /// \brief Count the strongly connected components of a directed graph
   288   ///
   289   /// Count the strongly connected components of a directed graph.
   290   /// The strongly connected components are the classes of an equivalence
   291   /// relation on the nodes of the graph. Two nodes are connected with
   292   /// directed paths in both direction.
   293   ///
   294   /// \param g The graph.
   295   /// \return The number of components
   296   template <typename Graph>
   297   int countStronglyConnectedComponents(const Graph& graph) {
   298     checkConcept<concept::StaticGraph, Graph>();
   299 
   300     using namespace _topology_bits;
   301 
   302     typedef typename Graph::Node Node;
   303     typedef typename Graph::Edge Edge;
   304     typedef typename Graph::NodeIt NodeIt;
   305     typedef typename Graph::EdgeIt EdgeIt;
   306     
   307     typedef std::vector<Node> Container;
   308     typedef typename Container::iterator Iterator;
   309 
   310     Container nodes(countNodes(graph));
   311     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   312     Visitor visitor(nodes.begin());
   313       
   314     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   315     dfs.init();
   316     for (NodeIt it(graph); it != INVALID; ++it) {
   317       if (!dfs.reached(it)) {
   318 	dfs.addSource(it);
   319 	dfs.start();
   320       }
   321     }
   322 
   323     typedef typename Container::reverse_iterator RIterator;
   324     typedef RevGraphAdaptor<const Graph> RGraph;
   325 
   326     RGraph rgraph(graph);
   327 
   328     typedef DfsVisitor<Graph> RVisitor;
   329     RVisitor rvisitor;
   330 
   331     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   332 
   333     int compNum = 0;
   334 
   335     rdfs.init();
   336     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   337       if (!rdfs.reached(*it)) {
   338 	rdfs.addSource(*it);
   339 	rdfs.start();
   340 	++compNum;
   341       }
   342     }
   343     return compNum;
   344   }
   345 
   346   /// \ingroup topology
   347   ///
   348   /// \brief Find the strongly connected components of a directed graph
   349   ///
   350   /// Find the strongly connected components of a directed graph.
   351   /// The strongly connected components are the classes of an equivalence
   352   /// relation on the nodes of the graph. Two nodes are in relationship
   353   /// when there are directed paths between them in both direction.
   354   ///
   355   /// \image html strongly_connected_components.png
   356   /// \image latex strongly_connected_components.eps "Strongly connected components" width=\textwidth
   357   ///
   358   /// \param g The graph.
   359   /// \retval comp A writable node map. The values will be set from 0 to
   360   /// the number of the strongly connected components minus one. Each values 
   361   /// of the map will be set exactly once, the values of a certain component 
   362   /// will be set continuously.
   363   /// \return The number of components
   364   ///
   365   template <typename Graph, typename NodeMap>
   366   int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) {
   367     checkConcept<concept::StaticGraph, Graph>();
   368     typedef typename Graph::Node Node;
   369     typedef typename Graph::NodeIt NodeIt;
   370     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   371 
   372     using namespace _topology_bits;
   373     
   374     typedef std::vector<Node> Container;
   375     typedef typename Container::iterator Iterator;
   376 
   377     Container nodes(countNodes(graph));
   378     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   379     Visitor visitor(nodes.begin());
   380       
   381     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   382     dfs.init();
   383     for (NodeIt it(graph); it != INVALID; ++it) {
   384       if (!dfs.reached(it)) {
   385 	dfs.addSource(it);
   386 	dfs.start();
   387       }
   388     }
   389 
   390     typedef typename Container::reverse_iterator RIterator;
   391     typedef RevGraphAdaptor<const Graph> RGraph;
   392 
   393     RGraph rgraph(graph);
   394 
   395     int compNum = 0;
   396 
   397     typedef FillMapVisitor<RGraph, NodeMap> RVisitor;
   398     RVisitor rvisitor(compMap, compNum);
   399 
   400     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   401 
   402     rdfs.init();
   403     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   404       if (!rdfs.reached(*it)) {
   405 	rdfs.addSource(*it);
   406 	rdfs.start();
   407 	++compNum;
   408       }
   409     }
   410     return compNum;
   411   }
   412 
   413   /// \ingroup topology
   414   ///
   415   /// \brief Find the cut edges of the strongly connected components.
   416   ///
   417   /// Find the cut edges of the strongly connected components.
   418   /// The strongly connected components are the classes of an equivalence
   419   /// relation on the nodes of the graph. Two nodes are in relationship
   420   /// when there are directed paths between them in both direction.
   421   /// The strongly connected components are separated by the cut edges.
   422   ///
   423   /// \param g The graph.
   424   /// \retval comp A writable edge map. The values will be set true when
   425   /// the edge is cut edge otherwise false.
   426   ///
   427   /// \return The number of cut edges
   428   template <typename Graph, typename EdgeMap>
   429   int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
   430     checkConcept<concept::StaticGraph, Graph>();
   431     typedef typename Graph::Node Node;
   432     typedef typename Graph::Edge Edge;
   433     typedef typename Graph::NodeIt NodeIt;
   434     checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>();
   435 
   436     using namespace _topology_bits;
   437     
   438     typedef std::vector<Node> Container;
   439     typedef typename Container::iterator Iterator;
   440 
   441     Container nodes(countNodes(graph));
   442     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   443     Visitor visitor(nodes.begin());
   444       
   445     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   446     dfs.init();
   447     for (NodeIt it(graph); it != INVALID; ++it) {
   448       if (!dfs.reached(it)) {
   449 	dfs.addSource(it);
   450 	dfs.start();
   451       }
   452     }
   453 
   454     typedef typename Container::reverse_iterator RIterator;
   455     typedef RevGraphAdaptor<const Graph> RGraph;
   456 
   457     RGraph rgraph(graph);
   458 
   459     int cutNum = 0;
   460 
   461     typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor;
   462     RVisitor rvisitor(rgraph, cutMap, cutNum);
   463 
   464     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   465 
   466     rdfs.init();
   467     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   468       if (!rdfs.reached(*it)) {
   469 	rdfs.addSource(*it);
   470 	rdfs.start();
   471       }
   472     }
   473     return cutNum;
   474   }
   475 
   476   namespace _topology_bits {
   477     
   478     template <typename Graph>
   479     class CountNodeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   480     public:
   481       typedef typename Graph::Node Node;
   482       typedef typename Graph::Edge Edge;
   483       typedef typename Graph::UndirEdge UndirEdge;
   484 
   485       CountNodeBiconnectedComponentsVisitor(const Graph& graph, int &compNum) 
   486 	: _graph(graph), _compNum(compNum), 
   487 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   488 
   489       void start(const Node& node) {
   490 	_predMap.set(node, INVALID);
   491       }
   492       
   493       void reach(const Node& node) {
   494 	_numMap.set(node, _num);
   495 	_retMap.set(node, _num);
   496 	++_num;
   497       }
   498 
   499       void discover(const Edge& edge) {
   500 	_predMap.set(_graph.target(edge), _graph.source(edge));
   501       }
   502 
   503       void examine(const Edge& edge) {
   504 	if (_graph.source(edge) == _graph.target(edge) && 
   505 	    _graph.direction(edge)) {
   506 	  ++_compNum;
   507 	  return;
   508 	}
   509 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   510 	  return;
   511 	}
   512 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   513 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   514 	}
   515       }
   516 
   517       void backtrack(const Edge& edge) {
   518 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   519 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   520 	}  
   521 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   522 	  ++_compNum;
   523 	}
   524       }
   525       
   526     private:
   527       const Graph& _graph;
   528       int& _compNum; 
   529 
   530       typename Graph::template NodeMap<int> _numMap;
   531       typename Graph::template NodeMap<int> _retMap;
   532       typename Graph::template NodeMap<Node> _predMap;
   533       int _num;
   534     };
   535 
   536     template <typename Graph, typename EdgeMap>
   537     class NodeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   538     public:
   539       typedef typename Graph::Node Node;
   540       typedef typename Graph::Edge Edge;
   541       typedef typename Graph::UndirEdge UndirEdge;
   542 
   543       NodeBiconnectedComponentsVisitor(const Graph& graph, 
   544 				       EdgeMap& compMap, int &compNum) 
   545 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   546 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   547 
   548       void start(const Node& node) {
   549 	_predMap.set(node, INVALID);
   550       }
   551       
   552       void reach(const Node& node) {
   553 	_numMap.set(node, _num);
   554 	_retMap.set(node, _num);
   555 	++_num;
   556       }
   557 
   558       void discover(const Edge& edge) {
   559 	Node target = _graph.target(edge);
   560 	_predMap.set(target, edge);
   561 	_edgeStack.push(edge);
   562       }
   563 
   564       void examine(const Edge& edge) {
   565 	Node source = _graph.source(edge);
   566 	Node target = _graph.target(edge);
   567 	if (source == target && _graph.direction(edge)) {
   568 	  _compMap.set(edge, _compNum);
   569 	  ++_compNum;
   570 	  return;
   571 	}
   572 	if (_numMap[target] < _numMap[source]) {
   573 	  if (_predMap[source] != _graph.oppositeEdge(edge)) {
   574 	    _edgeStack.push(edge);
   575 	  }
   576 	}
   577 	if (_predMap[source] != INVALID && 
   578 	    target == _graph.source(_predMap[source])) {
   579 	  return;
   580 	}
   581 	if (_retMap[source] > _numMap[target]) {
   582 	  _retMap.set(source, _numMap[target]);
   583 	}
   584       }
   585 
   586       void backtrack(const Edge& edge) {
   587 	Node source = _graph.source(edge);
   588 	Node target = _graph.target(edge);
   589 	if (_retMap[source] > _retMap[target]) {
   590 	  _retMap.set(source, _retMap[target]);
   591 	}  
   592 	if (_numMap[source] <= _retMap[target]) {
   593 	  while (_edgeStack.top() != edge) {
   594 	    _compMap.set(_edgeStack.top(), _compNum);
   595 	    _edgeStack.pop();
   596 	  }
   597 	  _compMap.set(edge, _compNum);
   598 	  _edgeStack.pop();
   599 	  ++_compNum;
   600 	}
   601       }
   602       
   603     private:
   604       const Graph& _graph;
   605       EdgeMap& _compMap;
   606       int& _compNum; 
   607 
   608       typename Graph::template NodeMap<int> _numMap;
   609       typename Graph::template NodeMap<int> _retMap;
   610       typename Graph::template NodeMap<Edge> _predMap;
   611       std::stack<UndirEdge> _edgeStack;
   612       int _num;
   613     };
   614 
   615 
   616     template <typename Graph, typename NodeMap>
   617     class NodeBiconnectedCutNodesVisitor : public DfsVisitor<Graph> {
   618     public:
   619       typedef typename Graph::Node Node;
   620       typedef typename Graph::Edge Edge;
   621       typedef typename Graph::UndirEdge UndirEdge;
   622 
   623       NodeBiconnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap,
   624 				     int& cutNum) 
   625 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   626 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   627 
   628       void start(const Node& node) {
   629 	_predMap.set(node, INVALID);
   630 	rootCut = false;
   631       }
   632       
   633       void reach(const Node& node) {
   634 	_numMap.set(node, _num);
   635 	_retMap.set(node, _num);
   636 	++_num;
   637       }
   638 
   639       void discover(const Edge& edge) {
   640 	_predMap.set(_graph.target(edge), _graph.source(edge));
   641       }
   642 
   643       void examine(const Edge& edge) {
   644 	if (_graph.source(edge) == _graph.target(edge) && 
   645 	    _graph.direction(edge)) {
   646 	  if (!_cutMap[_graph.source(edge)]) {
   647 	    _cutMap.set(_graph.source(edge), true);
   648 	    ++_cutNum;
   649 	  }
   650 	  return;
   651 	}
   652 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   653 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   654 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   655 	}
   656       }
   657 
   658       void backtrack(const Edge& edge) {
   659 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   660 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   661 	}  
   662 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   663 	  if (_predMap[_graph.source(edge)] != INVALID) {
   664 	    if (!_cutMap[_graph.source(edge)]) {
   665 	      _cutMap.set(_graph.source(edge), true);
   666 	      ++_cutNum;
   667 	    }
   668 	  } else if (rootCut) {
   669 	    if (!_cutMap[_graph.source(edge)]) {
   670 	      _cutMap.set(_graph.source(edge), true);
   671 	      ++_cutNum;
   672 	    }
   673 	  } else {
   674 	    rootCut = true;
   675 	  }
   676 	}
   677       }
   678       
   679     private:
   680       const Graph& _graph;
   681       NodeMap& _cutMap;
   682       int& _cutNum; 
   683 
   684       typename Graph::template NodeMap<int> _numMap;
   685       typename Graph::template NodeMap<int> _retMap;
   686       typename Graph::template NodeMap<Node> _predMap;
   687       std::stack<UndirEdge> _edgeStack;
   688       int _num;
   689       bool rootCut;
   690     };
   691 
   692   }
   693 
   694   template <typename UndirGraph>
   695   int countNodeBiconnectedComponents(const UndirGraph& graph);
   696 
   697   /// \ingroup topology
   698   ///
   699   /// \brief Checks the graph is bi-node-connected.
   700   ///
   701   /// This function checks that the undirected graph is bi-node-connected  
   702   /// graph. The graph is bi-node-connected if any two undirected edge is 
   703   /// on same circle.
   704   ///
   705   /// \param graph The graph.
   706   /// \return %True when the graph bi-node-connected.
   707   /// \todo Make it faster.
   708   template <typename UndirGraph>
   709   bool biNodeConnected(const UndirGraph& graph) {
   710     return countNodeBiconnectedComponents(graph) == 1;
   711   }
   712 
   713   /// \ingroup topology
   714   ///
   715   /// \brief Count the biconnected components.
   716   ///
   717   /// This function finds the bi-node-connected components in an undirected 
   718   /// graph. The biconnected components are the classes of an equivalence 
   719   /// relation on the undirected edges. Two undirected edge is in relationship
   720   /// when they are on same circle.
   721   ///
   722   /// \param graph The graph.
   723   /// \return The number of components.
   724   template <typename UndirGraph>
   725   int countNodeBiconnectedComponents(const UndirGraph& graph) {
   726     checkConcept<concept::UndirGraph, UndirGraph>();
   727     typedef typename UndirGraph::NodeIt NodeIt;
   728 
   729     using namespace _topology_bits;
   730 
   731     typedef CountNodeBiconnectedComponentsVisitor<UndirGraph> Visitor;
   732 
   733     int compNum = 0;
   734     Visitor visitor(graph, compNum);
   735 
   736     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   737     dfs.init();
   738     
   739     for (NodeIt it(graph); it != INVALID; ++it) {
   740       if (!dfs.reached(it)) {
   741 	dfs.addSource(it);
   742 	dfs.start();
   743       }
   744     }
   745     return compNum;
   746   }
   747 
   748   /// \ingroup topology
   749   ///
   750   /// \brief Find the bi-node-connected components.
   751   ///
   752   /// This function finds the bi-node-connected components in an undirected 
   753   /// graph. The bi-node-connected components are the classes of an equivalence
   754   /// relation on the undirected edges. Two undirected edge are in relationship
   755   /// when they are on same circle.
   756   ///
   757   /// \image html node_biconnected_components.png
   758   /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
   759   ///
   760   /// \param graph The graph.
   761   /// \retval comp A writable undir edge map. The values will be set from 0 to
   762   /// the number of the biconnected components minus one. Each values 
   763   /// of the map will be set exactly once, the values of a certain component 
   764   /// will be set continuously.
   765   /// \return The number of components.
   766   ///
   767   template <typename UndirGraph, typename UndirEdgeMap>
   768   int biNodeConnectedComponents(const UndirGraph& graph, 
   769 				UndirEdgeMap& compMap) {
   770     checkConcept<concept::UndirGraph, UndirGraph>();
   771     typedef typename UndirGraph::NodeIt NodeIt;
   772     typedef typename UndirGraph::UndirEdge UndirEdge;
   773     checkConcept<concept::WriteMap<UndirEdge, int>, UndirEdgeMap>();
   774 
   775     using namespace _topology_bits;
   776 
   777     typedef NodeBiconnectedComponentsVisitor<UndirGraph, UndirEdgeMap> Visitor;
   778     
   779     int compNum = 0;
   780     Visitor visitor(graph, compMap, compNum);
   781 
   782     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   783     dfs.init();
   784     
   785     for (NodeIt it(graph); it != INVALID; ++it) {
   786       if (!dfs.reached(it)) {
   787 	dfs.addSource(it);
   788 	dfs.start();
   789       }
   790     }
   791     return compNum;
   792   }
   793 
   794   /// \ingroup topology
   795   ///
   796   /// \brief Find the bi-node-connected cut nodes.
   797   ///
   798   /// This function finds the bi-node-connected cut nodes in an undirected 
   799   /// graph. The bi-node-connected components are the classes of an equivalence
   800   /// relation on the undirected edges. Two undirected edges are in 
   801   /// relationship when they are on same circle. The biconnected components 
   802   /// are separted by nodes which are the cut nodes of the components.
   803   ///
   804   /// \param graph The graph.
   805   /// \retval comp A writable edge map. The values will be set true when
   806   /// the node separate two or more components.
   807   /// \return The number of the cut nodes.
   808   template <typename UndirGraph, typename NodeMap>
   809   int biNodeConnectedCutNodes(const UndirGraph& graph, NodeMap& cutMap) {
   810     checkConcept<concept::UndirGraph, UndirGraph>();
   811     typedef typename UndirGraph::Node Node;
   812     typedef typename UndirGraph::NodeIt NodeIt;
   813     checkConcept<concept::WriteMap<Node, bool>, NodeMap>();
   814 
   815     using namespace _topology_bits;
   816 
   817     typedef NodeBiconnectedCutNodesVisitor<UndirGraph, NodeMap> Visitor;
   818     
   819     int cutNum = 0;
   820     Visitor visitor(graph, cutMap, cutNum);
   821 
   822     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   823     dfs.init();
   824     
   825     for (NodeIt it(graph); it != INVALID; ++it) {
   826       if (!dfs.reached(it)) {
   827 	dfs.addSource(it);
   828 	dfs.start();
   829       }
   830     }
   831     return cutNum;
   832   }
   833 
   834   namespace _topology_bits {
   835     
   836     template <typename Graph>
   837     class CountEdgeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   838     public:
   839       typedef typename Graph::Node Node;
   840       typedef typename Graph::Edge Edge;
   841       typedef typename Graph::UndirEdge UndirEdge;
   842 
   843       CountEdgeBiconnectedComponentsVisitor(const Graph& graph, int &compNum) 
   844 	: _graph(graph), _compNum(compNum), 
   845 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   846 
   847       void start(const Node& node) {
   848 	_predMap.set(node, INVALID);
   849       }
   850       
   851       void reach(const Node& node) {
   852 	_numMap.set(node, _num);
   853 	_retMap.set(node, _num);
   854 	++_num;
   855       }
   856       
   857       void leave(const Node& node) {
   858 	if (_numMap[node] <= _retMap[node]) {
   859 	  ++_compNum;
   860 	}	
   861       }
   862 
   863       void discover(const Edge& edge) {
   864 	_predMap.set(_graph.target(edge), edge);
   865       }
   866 
   867       void examine(const Edge& edge) {
   868 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   869 	  return;
   870 	}
   871 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   872 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   873 	}
   874       }
   875 
   876       void backtrack(const Edge& edge) {
   877 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   878 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   879 	}  
   880       }
   881       
   882     private:
   883       const Graph& _graph;
   884       int& _compNum; 
   885 
   886       typename Graph::template NodeMap<int> _numMap;
   887       typename Graph::template NodeMap<int> _retMap;
   888       typename Graph::template NodeMap<Edge> _predMap;
   889       int _num;
   890     };
   891 
   892     template <typename Graph, typename NodeMap>
   893     class EdgeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   894     public:
   895       typedef typename Graph::Node Node;
   896       typedef typename Graph::Edge Edge;
   897       typedef typename Graph::UndirEdge UndirEdge;
   898 
   899       EdgeBiconnectedComponentsVisitor(const Graph& graph, 
   900 				       NodeMap& compMap, int &compNum) 
   901 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   902 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   903 
   904       void start(const Node& node) {
   905 	_predMap.set(node, INVALID);
   906       }
   907       
   908       void reach(const Node& node) {
   909 	_numMap.set(node, _num);
   910 	_retMap.set(node, _num);
   911 	_nodeStack.push(node);
   912 	++_num;
   913       }
   914       
   915       void leave(const Node& node) {
   916 	if (_numMap[node] <= _retMap[node]) {
   917 	  while (_nodeStack.top() != node) {
   918 	    _compMap.set(_nodeStack.top(), _compNum);
   919 	    _nodeStack.pop();
   920 	  }
   921 	  _compMap.set(node, _compNum);
   922 	  _nodeStack.pop();
   923 	  ++_compNum;
   924 	}	
   925       }
   926 
   927       void discover(const Edge& edge) {
   928 	_predMap.set(_graph.target(edge), edge);
   929       }
   930 
   931       void examine(const Edge& edge) {
   932 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   933 	  return;
   934 	}
   935 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   936 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   937 	}
   938       }
   939 
   940       void backtrack(const Edge& edge) {
   941 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   942 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   943 	}  
   944       }
   945       
   946     private:
   947       const Graph& _graph;
   948       NodeMap& _compMap;
   949       int& _compNum; 
   950 
   951       typename Graph::template NodeMap<int> _numMap;
   952       typename Graph::template NodeMap<int> _retMap;
   953       typename Graph::template NodeMap<Edge> _predMap;
   954       std::stack<Node> _nodeStack;
   955       int _num;
   956     };
   957 
   958 
   959     template <typename Graph, typename EdgeMap>
   960     class EdgeBiconnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   961     public:
   962       typedef typename Graph::Node Node;
   963       typedef typename Graph::Edge Edge;
   964       typedef typename Graph::UndirEdge UndirEdge;
   965 
   966       EdgeBiconnectedCutEdgesVisitor(const Graph& graph, 
   967 				     EdgeMap& cutMap, int &cutNum) 
   968 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   969 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   970 
   971       void start(const Node& node) {
   972 	_predMap[node] = INVALID;
   973       }
   974       
   975       void reach(const Node& node) {
   976 	_numMap.set(node, _num);
   977 	_retMap.set(node, _num);
   978 	++_num;
   979       }
   980       
   981       void leave(const Node& node) {
   982 	if (_numMap[node] <= _retMap[node]) {
   983 	  if (_predMap[node] != INVALID) {
   984 	    _cutMap.set(_predMap[node], true);
   985 	    ++_cutNum;
   986 	  }
   987 	}	
   988       }
   989 
   990       void discover(const Edge& edge) {
   991 	_predMap.set(_graph.target(edge), edge);
   992       }
   993 
   994       void examine(const Edge& edge) {
   995 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   996 	  return;
   997 	}
   998 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   999 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1000 	}
  1001       }
  1002 
  1003       void backtrack(const Edge& edge) {
  1004 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
  1005 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
  1006 	}  
  1007       }
  1008       
  1009     private:
  1010       const Graph& _graph;
  1011       EdgeMap& _cutMap;
  1012       int& _cutNum; 
  1013 
  1014       typename Graph::template NodeMap<int> _numMap;
  1015       typename Graph::template NodeMap<int> _retMap;
  1016       typename Graph::template NodeMap<Edge> _predMap;
  1017       int _num;
  1018     };
  1019   }
  1020 
  1021   template <typename UndirGraph>
  1022   int countEdgeBiconnectedComponents(const UndirGraph& graph);
  1023 
  1024   /// \ingroup topology
  1025   ///
  1026   /// \brief Checks that the graph is bi-edge-connected.
  1027   ///
  1028   /// This function checks that the graph is bi-edge-connected. The undirected
  1029   /// graph is bi-edge-connected when any two nodes are connected with two
  1030   /// edge-disjoint paths.
  1031   ///
  1032   /// \param graph The undirected graph.
  1033   /// \return The number of components.
  1034   /// \todo Make it faster.
  1035   template <typename UndirGraph>
  1036   bool biEdgeConnected(const UndirGraph& graph) { 
  1037     return countEdgeBiconnectedComponents(graph) == 1;
  1038   }
  1039 
  1040   /// \ingroup topology
  1041   ///
  1042   /// \brief Count the bi-edge-connected components.
  1043   ///
  1044   /// This function count the bi-edge-connected components in an undirected 
  1045   /// graph. The bi-edge-connected components are the classes of an equivalence
  1046   /// relation on the nodes. Two nodes are in relationship when they are  
  1047   /// connected with at least two edge-disjoint paths.
  1048   ///
  1049   /// \param graph The undirected graph.
  1050   /// \return The number of components.
  1051   template <typename UndirGraph>
  1052   int countEdgeBiconnectedComponents(const UndirGraph& graph) { 
  1053     checkConcept<concept::UndirGraph, UndirGraph>();
  1054     typedef typename UndirGraph::NodeIt NodeIt;
  1055 
  1056     using namespace _topology_bits;
  1057 
  1058     typedef CountEdgeBiconnectedComponentsVisitor<UndirGraph> Visitor;
  1059     
  1060     int compNum = 0;
  1061     Visitor visitor(graph, compNum);
  1062 
  1063     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1064     dfs.init();
  1065     
  1066     for (NodeIt it(graph); it != INVALID; ++it) {
  1067       if (!dfs.reached(it)) {
  1068 	dfs.addSource(it);
  1069 	dfs.start();
  1070       }
  1071     }
  1072     return compNum;
  1073   }
  1074 
  1075   /// \ingroup topology
  1076   ///
  1077   /// \brief Find the bi-edge-connected components.
  1078   ///
  1079   /// This function finds the bi-edge-connected components in an undirected 
  1080   /// graph. The bi-edge-connected components are the classes of an equivalence
  1081   /// relation on the nodes. Two nodes are in relationship when they are  
  1082   /// connected at least two edge-disjoint paths.
  1083   ///
  1084   /// \image html edge_biconnected_components.png
  1085   /// \image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
  1086   ///
  1087   /// \param graph The graph.
  1088   /// \retval comp A writable node map. The values will be set from 0 to
  1089   /// the number of the biconnected components minus one. Each values 
  1090   /// of the map will be set exactly once, the values of a certain component 
  1091   /// will be set continuously.
  1092   /// \return The number of components.
  1093   ///
  1094   template <typename UndirGraph, typename NodeMap>
  1095   int biEdgeConnectedComponents(const UndirGraph& graph, NodeMap& compMap) { 
  1096     checkConcept<concept::UndirGraph, UndirGraph>();
  1097     typedef typename UndirGraph::NodeIt NodeIt;
  1098     typedef typename UndirGraph::Node Node;
  1099     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
  1100 
  1101     using namespace _topology_bits;
  1102 
  1103     typedef EdgeBiconnectedComponentsVisitor<UndirGraph, NodeMap> Visitor;
  1104     
  1105     int compNum = 0;
  1106     Visitor visitor(graph, compMap, compNum);
  1107 
  1108     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1109     dfs.init();
  1110     
  1111     for (NodeIt it(graph); it != INVALID; ++it) {
  1112       if (!dfs.reached(it)) {
  1113 	dfs.addSource(it);
  1114 	dfs.start();
  1115       }
  1116     }
  1117     return compNum;
  1118   }
  1119 
  1120   /// \ingroup topology
  1121   ///
  1122   /// \brief Find the bi-edge-connected cut edges.
  1123   ///
  1124   /// This function finds the bi-edge-connected components in an undirected 
  1125   /// graph. The bi-edge-connected components are the classes of an equivalence
  1126   /// relation on the nodes. Two nodes are in relationship when they are 
  1127   /// connected with at least two edge-disjoint paths. The bi-edge-connected 
  1128   /// components are separted by edges which are the cut edges of the 
  1129   /// components.
  1130   ///
  1131   /// \param graph The graph.
  1132   /// \retval comp A writable node map. The values will be set true when the
  1133   /// edge is a cut edge.
  1134   /// \return The number of cut edges.
  1135   template <typename UndirGraph, typename UndirEdgeMap>
  1136   int biEdgeConnectedCutEdges(const UndirGraph& graph, UndirEdgeMap& cutMap) { 
  1137     checkConcept<concept::UndirGraph, UndirGraph>();
  1138     typedef typename UndirGraph::NodeIt NodeIt;
  1139     typedef typename UndirGraph::UndirEdge UndirEdge;
  1140     checkConcept<concept::WriteMap<UndirEdge, bool>, UndirEdgeMap>();
  1141 
  1142     using namespace _topology_bits;
  1143 
  1144     typedef EdgeBiconnectedCutEdgesVisitor<UndirGraph, UndirEdgeMap> Visitor;
  1145     
  1146     int cutNum = 0;
  1147     Visitor visitor(graph, cutMap, cutNum);
  1148 
  1149     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1150     dfs.init();
  1151     
  1152     for (NodeIt it(graph); it != INVALID; ++it) {
  1153       if (!dfs.reached(it)) {
  1154 	dfs.addSource(it);
  1155 	dfs.start();
  1156       }
  1157     }
  1158     return cutNum;
  1159   }
  1160 
  1161 
  1162   namespace _topology_bits {
  1163     
  1164     template <typename Graph, typename IntNodeMap>
  1165     class TopologicalSortVisitor : public DfsVisitor<Graph> {
  1166     public:
  1167       typedef typename Graph::Node Node;
  1168       typedef typename Graph::Edge edge;
  1169 
  1170       TopologicalSortVisitor(IntNodeMap& order, int num) 
  1171 	: _order(order), _num(num) {}
  1172       
  1173       void leave(const Node& node) {
  1174 	_order.set(node, --_num);
  1175       }
  1176 
  1177     private:
  1178       IntNodeMap& _order;
  1179       int _num;
  1180     };
  1181     
  1182   }
  1183 
  1184   /// \ingroup topology
  1185   ///
  1186   /// \brief Sort the nodes of a DAG into topolgical order.
  1187   ///
  1188   /// Sort the nodes of a DAG into topolgical order.
  1189   ///
  1190   /// \param g The graph. In must be directed and acyclic.
  1191   /// \retval comp A writable node map. The values will be set from 0 to
  1192   /// the number of the nodes in the graph minus one. Each values of the map
  1193   /// will be set exactly once, the values  will be set descending order.
  1194   ///
  1195   /// \see checkedTopologicalSort
  1196   /// \see dag
  1197   template <typename Graph, typename NodeMap>
  1198   void topologicalSort(const Graph& graph, NodeMap& order) {
  1199     using namespace _topology_bits;
  1200 
  1201     checkConcept<concept::StaticGraph, Graph>();
  1202     checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>();
  1203 
  1204     typedef typename Graph::Node Node;
  1205     typedef typename Graph::NodeIt NodeIt;
  1206     typedef typename Graph::Edge Edge;
  1207 
  1208     TopologicalSortVisitor<Graph, NodeMap> 
  1209       visitor(order, countNodes(graph)); 
  1210 
  1211     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1212       dfs(graph, visitor);
  1213 
  1214     dfs.init();
  1215     for (NodeIt it(graph); it != INVALID; ++it) {
  1216       if (!dfs.reached(it)) {
  1217 	dfs.addSource(it);
  1218 	dfs.start();
  1219       }
  1220     }    
  1221   }
  1222 
  1223   /// \ingroup topology
  1224   ///
  1225   /// \brief Sort the nodes of a DAG into topolgical order.
  1226   ///
  1227   /// Sort the nodes of a DAG into topolgical order. It also checks
  1228   /// that the given graph is DAG.
  1229   ///
  1230   /// \param g The graph. In must be directed and acyclic.
  1231   /// \retval order A readable - writable node map. The values will be set 
  1232   /// from 0 to the number of the nodes in the graph minus one. Each values 
  1233   /// of the map will be set exactly once, the values will be set descending 
  1234   /// order.
  1235   /// \return %False when the graph is not DAG.
  1236   ///
  1237   /// \see topologicalSort
  1238   /// \see dag
  1239   template <typename Graph, typename NodeMap>
  1240   bool checkedTopologicalSort(const Graph& graph, NodeMap& order) {
  1241     using namespace _topology_bits;
  1242 
  1243     checkConcept<concept::StaticGraph, Graph>();
  1244     checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
  1245 
  1246     typedef typename Graph::Node Node;
  1247     typedef typename Graph::NodeIt NodeIt;
  1248     typedef typename Graph::Edge Edge;
  1249 
  1250     order = constMap<Node, int, -1>();
  1251 
  1252     TopologicalSortVisitor<Graph, NodeMap> 
  1253       visitor(order, countNodes(graph)); 
  1254 
  1255     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1256       dfs(graph, visitor);
  1257 
  1258     dfs.init();
  1259     for (NodeIt it(graph); it != INVALID; ++it) {
  1260       if (!dfs.reached(it)) {
  1261 	dfs.addSource(it);
  1262 	while (!dfs.emptyQueue()) {
  1263  	  Edge edge = dfs.nextEdge();
  1264  	  Node target = graph.target(edge);
  1265  	  if (dfs.reached(target) && order[target] == -1) {
  1266  	    return false;
  1267  	  }
  1268  	  dfs.processNextEdge();
  1269  	}
  1270       }
  1271     }
  1272     return true;
  1273   }
  1274 
  1275   /// \ingroup topology
  1276   ///
  1277   /// \brief Check that the given directed graph is a DAG.
  1278   ///
  1279   /// Check that the given directed graph is a DAG. The DAG is
  1280   /// an Directed Acyclic Graph.
  1281   /// \return %False when the graph is not DAG.
  1282   /// \see acyclic
  1283   template <typename Graph>
  1284   bool dag(const Graph& graph) {
  1285 
  1286     checkConcept<concept::StaticGraph, Graph>();
  1287 
  1288     typedef typename Graph::Node Node;
  1289     typedef typename Graph::NodeIt NodeIt;
  1290     typedef typename Graph::Edge Edge;
  1291 
  1292     typedef typename Graph::template NodeMap<bool> ProcessedMap;
  1293 
  1294     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
  1295       Create dfs(graph);
  1296 
  1297     ProcessedMap processed(graph);
  1298     dfs.processedMap(processed);
  1299 
  1300     dfs.init();
  1301     for (NodeIt it(graph); it != INVALID; ++it) {
  1302       if (!dfs.reached(it)) {
  1303 	dfs.addSource(it);
  1304 	while (!dfs.emptyQueue()) {
  1305 	  Edge edge = dfs.nextEdge();
  1306 	  Node target = graph.target(edge);
  1307 	  if (dfs.reached(target) && !processed[target]) {
  1308 	    return false;
  1309 	  }
  1310 	  dfs.processNextEdge();
  1311 	}
  1312       }
  1313     }    
  1314     return true;
  1315   }
  1316 
  1317   /// \ingroup topology
  1318   ///
  1319   /// \brief Check that the given undirected graph is acyclic.
  1320   ///
  1321   /// Check that the given undirected graph acyclic.
  1322   /// \param graph The undirected graph.
  1323   /// \return %True when there is no circle in the graph.
  1324   /// \see dag
  1325   template <typename UndirGraph>
  1326   bool acyclic(const UndirGraph& graph) {
  1327     checkConcept<concept::UndirGraph, UndirGraph>();
  1328     typedef typename UndirGraph::Node Node;
  1329     typedef typename UndirGraph::NodeIt NodeIt;
  1330     typedef typename UndirGraph::Edge Edge;
  1331     Dfs<UndirGraph> dfs(graph);
  1332     dfs.init();
  1333     for (NodeIt it(graph); it != INVALID; ++it) {
  1334       if (!dfs.reached(it)) {
  1335 	dfs.addSource(it);
  1336 	while (!dfs.emptyQueue()) {
  1337 	  Edge edge = dfs.nextEdge();
  1338 	  Node source = graph.source(edge);
  1339 	  Node target = graph.target(edge);
  1340 	  if (dfs.reached(target) && 
  1341 	      dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1342 	    return false;
  1343 	  }
  1344 	  dfs.processNextEdge();
  1345 	}
  1346       }
  1347     }
  1348     return true;
  1349   }
  1350 
  1351   /// \ingroup topology
  1352   ///
  1353   /// \brief Check that the given undirected graph is tree.
  1354   ///
  1355   /// Check that the given undirected graph is tree.
  1356   /// \param graph The undirected graph.
  1357   /// \return %True when the graph is acyclic and connected.
  1358   template <typename UndirGraph>
  1359   bool tree(const UndirGraph& graph) {
  1360     checkConcept<concept::UndirGraph, UndirGraph>();
  1361     typedef typename UndirGraph::Node Node;
  1362     typedef typename UndirGraph::NodeIt NodeIt;
  1363     typedef typename UndirGraph::Edge Edge;
  1364     Dfs<UndirGraph> dfs(graph);
  1365     dfs.init();
  1366     dfs.addSource(NodeIt(graph));
  1367     while (!dfs.emptyQueue()) {
  1368       Edge edge = dfs.nextEdge();
  1369       Node source = graph.source(edge);
  1370       Node target = graph.target(edge);
  1371       if (dfs.reached(target) && 
  1372 	  dfs.predEdge(source) != graph.oppositeEdge(edge)) {
  1373 	return false;
  1374       }
  1375       dfs.processNextEdge();
  1376     }
  1377     for (NodeIt it(graph); it != INVALID; ++it) {
  1378       if (!dfs.reached(it)) {
  1379 	return false;
  1380       }
  1381     }    
  1382     return true;
  1383   }
  1384 
  1385   /// \ingroup topology
  1386   ///
  1387   /// \brief Check that the given undirected graph is bipartite.
  1388   ///
  1389   /// Check that the given undirected graph is bipartite.
  1390   /// \param graph The undirected graph.
  1391   /// \return %True when the nodes can be separated into two sets that
  1392   /// there are not connected nodes in neither sets.
  1393   template <typename UndirGraph>
  1394   bool bipartite(const UndirGraph& graph) {
  1395     checkConcept<concept::UndirGraph, UndirGraph>();
  1396     typedef typename UndirGraph::Node Node;
  1397     typedef typename UndirGraph::NodeIt NodeIt;
  1398     typedef typename UndirGraph::Edge Edge;
  1399     if (NodeIt(graph) == INVALID) return false;
  1400     Dfs<UndirGraph> dfs(graph);
  1401     dfs.init();
  1402     typename UndirGraph::template NodeMap<bool> red(graph);
  1403     for (NodeIt it(graph); it != INVALID; ++it) {
  1404       if (!dfs.reached(it)) {
  1405 	dfs.addSource(it);
  1406 	red[it] = true;
  1407 	while (!dfs.emptyQueue()) {
  1408 	  Edge edge = dfs.nextEdge();
  1409 	  Node source = graph.source(edge);
  1410 	  Node target = graph.target(edge);
  1411 	  if (dfs.reached(target) && red[source] == red[target]) {
  1412 	    return false;
  1413 	  } else {
  1414 	    red[target] = !red[source];
  1415 	  }
  1416 	  dfs.processNextEdge();
  1417 	}
  1418       }
  1419     }
  1420     return true;
  1421   }
  1422    
  1423 } //namespace lemon
  1424 
  1425 #endif //LEMON_TOPOLOGY_H