lemon/hao_orlin.h
author alpar
Thu, 12 Oct 2006 10:53:49 +0000
changeset 2236 9f329faa4aee
parent 2225 bb3d5e6f9fcb
child 2273 507232469f5e
permissions -rw-r--r--
EdgeLookUp and AllEdgeLookUp tests added.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HAO_ORLIN_H
    20 #define LEMON_HAO_ORLIN_H
    21 
    22 #include <vector>
    23 #include <queue>
    24 #include <limits>
    25 
    26 #include <lemon/maps.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/graph_adaptor.h>
    29 #include <lemon/iterable_maps.h>
    30  
    31 
    32 /// \file
    33 /// \ingroup flowalgs
    34 /// \brief Implementation of the Hao-Orlin algorithm.
    35 ///
    36 /// Implementation of the HaoOrlin algorithms class for testing network 
    37 /// reliability.
    38 
    39 namespace lemon {
    40 
    41   /// \ingroup flowalgs
    42   ///
    43   /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
    44   ///
    45   /// Hao-Orlin calculates a minimum cut in a directed graph \f$
    46   /// D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists
    47   /// of two phases: in the first phase it determines a minimum cut
    48   /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V
    49   /// \f$ with \f$ source \in X \f$ and minimal out-degree) and in the
    50   /// second phase it determines a minimum cut with \f$ source \f$ on the
    51   /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X \f$
    52   /// and minimal out-degree). Obviously, the smaller of these two
    53   /// cuts will be a minimum cut of \f$ D \f$. The algorithm is a
    54   /// modified push-relabel preflow algorithm and our implementation
    55   /// calculates the minimum cut in \f$ O(n^3) \f$ time (we use the
    56   /// highest-label rule). The purpose of such an algorithm is testing
    57   /// network reliability. For an undirected graph with \f$ n \f$
    58   /// nodes and \f$ e \f$ edges you can use the algorithm of Nagamochi
    59   /// and Ibaraki which solves the undirected problem in \f$ O(ne +
    60   /// n^2 \log(n)) \f$ time: it is implemented in the MinCut algorithm
    61   /// class.
    62   ///
    63   /// \param _Graph is the graph type of the algorithm.
    64   /// \param _CapacityMap is an edge map of capacities which should
    65   /// be any numreric type. The default type is _Graph::EdgeMap<int>.
    66   /// \param _Tolerance is the handler of the inexact computation. The
    67   /// default type for this is Tolerance<typename CapacityMap::Value>.
    68   ///
    69   /// \author Attila Bernath and Balazs Dezso
    70 #ifdef DOXYGEN
    71   template <typename _Graph, typename _CapacityMap, typename _Tolerance>
    72 #else
    73   template <typename _Graph,
    74 	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
    75             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
    76 #endif
    77   class HaoOrlin {
    78   protected:
    79 
    80     typedef _Graph Graph;
    81     typedef _CapacityMap CapacityMap;
    82     typedef _Tolerance Tolerance;
    83 
    84     typedef typename CapacityMap::Value Value;
    85 
    86     
    87     typedef typename Graph::Node Node;
    88     typedef typename Graph::NodeIt NodeIt;
    89     typedef typename Graph::EdgeIt EdgeIt;
    90     typedef typename Graph::OutEdgeIt OutEdgeIt;
    91     typedef typename Graph::InEdgeIt InEdgeIt;
    92 
    93     const Graph* _graph;
    94 
    95     const CapacityMap* _capacity;
    96 
    97     typedef typename Graph::template EdgeMap<Value> FlowMap;
    98 
    99     FlowMap* _preflow;
   100 
   101     Node _source, _target;
   102     int _node_num;
   103 
   104     typedef ResGraphAdaptor<const Graph, Value, CapacityMap, 
   105                             FlowMap, Tolerance> OutResGraph;
   106     typedef typename OutResGraph::Edge OutResEdge;
   107     
   108     OutResGraph* _out_res_graph;
   109 
   110     typedef typename Graph::template NodeMap<OutResEdge> OutCurrentEdgeMap;
   111     OutCurrentEdgeMap* _out_current_edge;  
   112 
   113     typedef RevGraphAdaptor<const Graph> RevGraph;
   114     RevGraph* _rev_graph;
   115 
   116     typedef ResGraphAdaptor<const RevGraph, Value, CapacityMap, 
   117                             FlowMap, Tolerance> InResGraph;
   118     typedef typename InResGraph::Edge InResEdge;
   119     
   120     InResGraph* _in_res_graph;
   121 
   122     typedef typename Graph::template NodeMap<InResEdge> InCurrentEdgeMap;
   123     InCurrentEdgeMap* _in_current_edge;  
   124 
   125 
   126     typedef IterableBoolMap<Graph, Node> WakeMap;
   127     WakeMap* _wake;
   128 
   129     typedef typename Graph::template NodeMap<int> DistMap;
   130     DistMap* _dist;  
   131     
   132     typedef typename Graph::template NodeMap<Value> ExcessMap;
   133     ExcessMap* _excess;
   134 
   135     typedef typename Graph::template NodeMap<bool> SourceSetMap;
   136     SourceSetMap* _source_set;
   137 
   138     std::vector<int> _level_size;
   139 
   140     int _highest_active;
   141     std::vector<std::list<Node> > _active_nodes;
   142 
   143     int _dormant_max;
   144     std::vector<std::list<Node> > _dormant;
   145 
   146 
   147     Value _min_cut;
   148 
   149     typedef typename Graph::template NodeMap<bool> MinCutMap;
   150     MinCutMap* _min_cut_map;
   151 
   152     Tolerance _tolerance;
   153 
   154   public: 
   155 
   156     /// \brief Constructor
   157     ///
   158     /// Constructor of the algorithm class. 
   159     HaoOrlin(const Graph& graph, const CapacityMap& capacity, 
   160              const Tolerance& tolerance = Tolerance()) :
   161       _graph(&graph), _capacity(&capacity), 
   162       _preflow(0), _source(), _target(), 
   163       _out_res_graph(0), _out_current_edge(0),
   164       _rev_graph(0), _in_res_graph(0), _in_current_edge(0),
   165       _wake(0),_dist(0), _excess(0), _source_set(0), 
   166       _highest_active(), _active_nodes(), _dormant_max(), _dormant(), 
   167       _min_cut(), _min_cut_map(0), _tolerance(tolerance) {}
   168 
   169     ~HaoOrlin() {
   170       if (_min_cut_map) {
   171         delete _min_cut_map;
   172       } 
   173       if (_in_current_edge) {
   174         delete _in_current_edge;
   175       }
   176       if (_in_res_graph) {
   177         delete _in_res_graph;
   178       }
   179       if (_rev_graph) {
   180         delete _rev_graph;
   181       }
   182       if (_out_current_edge) {
   183         delete _out_current_edge;
   184       }
   185       if (_out_res_graph) {
   186         delete _out_res_graph;
   187       }
   188       if (_source_set) {
   189         delete _source_set;
   190       }
   191       if (_excess) {
   192         delete _excess;
   193       }
   194       if (_dist) {
   195         delete _dist;
   196       }
   197       if (_wake) {
   198         delete _wake;
   199       }
   200       if (_preflow) {
   201         delete _preflow;
   202       }
   203     }
   204     
   205   private:
   206     
   207     template <typename ResGraph, typename EdgeMap>
   208     void findMinCut(const Node& target, bool out, 
   209                     ResGraph& res_graph, EdgeMap& current_edge) {
   210       typedef typename ResGraph::Edge ResEdge;
   211       typedef typename ResGraph::OutEdgeIt ResOutEdgeIt;
   212 
   213       for (typename Graph::EdgeIt it(*_graph); it != INVALID; ++it) {
   214         (*_preflow)[it] = 0;      
   215       }
   216       for (NodeIt it(*_graph); it != INVALID; ++it) {
   217         (*_wake)[it] = true;
   218         (*_dist)[it] = 1;
   219         (*_excess)[it] = 0;
   220         (*_source_set)[it] = false;
   221 
   222         res_graph.firstOut(current_edge[it], it);
   223       }
   224 
   225       _target = target;
   226       (*_dist)[target] = 0;
   227 
   228       for (ResOutEdgeIt it(res_graph, _source); it != INVALID; ++it) {
   229         Value delta = res_graph.rescap(it);
   230         if (!_tolerance.positive(delta)) continue;
   231         
   232         (*_excess)[res_graph.source(it)] -= delta;
   233         res_graph.augment(it, delta);
   234         Node a = res_graph.target(it);
   235         if (!_tolerance.positive((*_excess)[a]) && 
   236             (*_wake)[a] && a != _target) {
   237           _active_nodes[(*_dist)[a]].push_front(a);
   238           if (_highest_active < (*_dist)[a]) {
   239             _highest_active = (*_dist)[a];
   240           }
   241         }
   242         (*_excess)[a] += delta;
   243       }
   244 
   245       _dormant[0].push_front(_source);
   246       (*_source_set)[_source] = true;
   247       _dormant_max = 0;
   248       (*_wake)[_source] = false;
   249 
   250       _level_size[0] = 1;
   251       _level_size[1] = _node_num - 1;
   252 
   253       do {
   254 	Node n;
   255 	while ((n = findActiveNode()) != INVALID) {
   256 	  ResEdge e;
   257 	  while (_tolerance.positive((*_excess)[n]) && 
   258                  (e = findAdmissibleEdge(n, res_graph, current_edge)) 
   259                  != INVALID){
   260 	    Value delta;
   261 	    if ((*_excess)[n] < res_graph.rescap(e)) {
   262 	      delta = (*_excess)[n];
   263 	    } else {
   264 	      delta = res_graph.rescap(e);
   265 	      res_graph.nextOut(current_edge[n]);
   266 	    }
   267             if (!_tolerance.positive(delta)) continue;
   268 	    res_graph.augment(e, delta);
   269 	    (*_excess)[res_graph.source(e)] -= delta;
   270 	    Node a = res_graph.target(e);
   271 	    if (!_tolerance.positive((*_excess)[a]) && a != _target) {
   272 	      _active_nodes[(*_dist)[a]].push_front(a);
   273 	    }
   274 	    (*_excess)[a] += delta;
   275 	  }
   276 	  if (_tolerance.positive((*_excess)[n])) {
   277 	    relabel(n, res_graph, current_edge);
   278           }
   279 	}
   280 
   281 	Value current_value = cutValue(out);
   282  	if (_min_cut > current_value){
   283           if (out) {
   284             for (NodeIt it(*_graph); it != INVALID; ++it) {
   285               _min_cut_map->set(it, !(*_wake)[it]);
   286             } 
   287           } else {
   288             for (NodeIt it(*_graph); it != INVALID; ++it) {
   289               _min_cut_map->set(it, (*_wake)[it]);
   290             } 
   291           }
   292 
   293 	  _min_cut = current_value;
   294  	}
   295 
   296       } while (selectNewSink(res_graph));
   297     }
   298 
   299     template <typename ResGraph, typename EdgeMap>
   300     void relabel(const Node& n, ResGraph& res_graph, EdgeMap& current_edge) {
   301       typedef typename ResGraph::OutEdgeIt ResOutEdgeIt;
   302 
   303       int k = (*_dist)[n];
   304       if (_level_size[k] == 1) {
   305 	++_dormant_max;
   306 	for (NodeIt it(*_graph); it != INVALID; ++it) {
   307 	  if ((*_wake)[it] && (*_dist)[it] >= k) {
   308 	    (*_wake)[it] = false;
   309 	    _dormant[_dormant_max].push_front(it);
   310 	    --_level_size[(*_dist)[it]];
   311 	  }
   312 	}
   313 	--_highest_active;
   314       } else {	
   315         int new_dist = _node_num;
   316         for (ResOutEdgeIt e(res_graph, n); e != INVALID; ++e) {
   317           Node t = res_graph.target(e);
   318           if ((*_wake)[t] && new_dist > (*_dist)[t]) {
   319             new_dist = (*_dist)[t];
   320           }
   321         }
   322         if (new_dist == _node_num) {
   323 	  ++_dormant_max;
   324 	  (*_wake)[n] = false;
   325 	  _dormant[_dormant_max].push_front(n);
   326 	  --_level_size[(*_dist)[n]];
   327 	} else {	    
   328 	  --_level_size[(*_dist)[n]];
   329 	  (*_dist)[n] = new_dist + 1;
   330 	  _highest_active = (*_dist)[n];
   331 	  _active_nodes[_highest_active].push_front(n);
   332 	  ++_level_size[(*_dist)[n]];
   333 	  res_graph.firstOut(current_edge[n], n);
   334 	}
   335       }
   336     }
   337 
   338     template <typename ResGraph>
   339     bool selectNewSink(ResGraph& res_graph) {
   340       typedef typename ResGraph::OutEdgeIt ResOutEdgeIt;
   341 
   342       Node old_target = _target;
   343       (*_wake)[_target] = false;
   344       --_level_size[(*_dist)[_target]];
   345       _dormant[0].push_front(_target);
   346       (*_source_set)[_target] = true;
   347       if ((int)_dormant[0].size() == _node_num){
   348         _dormant[0].clear();
   349 	return false;
   350       }
   351 
   352       bool wake_was_empty = false;
   353 
   354       if(_wake->trueNum() == 0) {
   355 	while (!_dormant[_dormant_max].empty()){
   356 	  (*_wake)[_dormant[_dormant_max].front()] = true;
   357 	  ++_level_size[(*_dist)[_dormant[_dormant_max].front()]];
   358 	  _dormant[_dormant_max].pop_front();
   359 	}
   360 	--_dormant_max;
   361 	wake_was_empty = true;
   362       }
   363 
   364       int min_dist = std::numeric_limits<int>::max();
   365       for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) {
   366 	if (min_dist > (*_dist)[it]){
   367 	  _target = it;
   368 	  min_dist = (*_dist)[it];
   369 	}
   370       }
   371 
   372       if (wake_was_empty){
   373 	for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) {
   374           if (_tolerance.positive((*_excess)[it])) {
   375 	    if ((*_wake)[it] && it != _target) {
   376 	      _active_nodes[(*_dist)[it]].push_front(it);
   377             }
   378 	    if (_highest_active < (*_dist)[it]) {
   379 	      _highest_active = (*_dist)[it];		    
   380             }
   381 	  }
   382 	}
   383       }
   384 
   385       for (ResOutEdgeIt e(res_graph, old_target); e!=INVALID; ++e){
   386 	if (!(*_source_set)[res_graph.target(e)]) {
   387           Value delta = res_graph.rescap(e);
   388           if (!_tolerance.positive(delta)) continue;
   389           res_graph.augment(e, delta);
   390           (*_excess)[res_graph.source(e)] -= delta;
   391           Node a = res_graph.target(e);
   392           if (!_tolerance.positive((*_excess)[a]) && 
   393               (*_wake)[a] && a != _target) {
   394             _active_nodes[(*_dist)[a]].push_front(a);
   395             if (_highest_active < (*_dist)[a]) {
   396               _highest_active = (*_dist)[a];
   397             }
   398           }
   399           (*_excess)[a] += delta;
   400 	}
   401       }
   402       
   403       return true;
   404     }
   405     
   406     Node findActiveNode() {
   407       while (_highest_active > 0 && _active_nodes[_highest_active].empty()){ 
   408 	--_highest_active;
   409       }
   410       if( _highest_active > 0) {
   411        	Node n = _active_nodes[_highest_active].front();
   412 	_active_nodes[_highest_active].pop_front();
   413 	return n;
   414       } else {
   415 	return INVALID;
   416       }
   417     }
   418 
   419     template <typename ResGraph, typename EdgeMap>
   420     typename ResGraph::Edge findAdmissibleEdge(const Node& n, 
   421                                                ResGraph& res_graph, 
   422                                                EdgeMap& current_edge) {
   423       typedef typename ResGraph::Edge ResEdge;
   424       ResEdge e = current_edge[n];
   425       while (e != INVALID && 
   426              ((*_dist)[n] <= (*_dist)[res_graph.target(e)] || 
   427               !(*_wake)[res_graph.target(e)])) {
   428 	res_graph.nextOut(e);
   429       }
   430       if (e != INVALID) {
   431 	current_edge[n] = e;	
   432 	return e;
   433       } else {
   434 	return INVALID;
   435       }
   436     }
   437 
   438     Value cutValue(bool out) {
   439       Value value = 0;
   440       if (out) {
   441         for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) {
   442           for (InEdgeIt e(*_graph, it); e != INVALID; ++e) {
   443             if (!(*_wake)[_graph->source(e)]){
   444               value += (*_capacity)[e];
   445             }	
   446           }
   447         }
   448       } else {
   449         for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) {
   450           for (OutEdgeIt e(*_graph, it); e != INVALID; ++e) {
   451             if (!(*_wake)[_graph->target(e)]){
   452               value += (*_capacity)[e];
   453             }	
   454           }
   455         }
   456       }
   457       return value;
   458     }
   459 
   460 
   461   public:
   462 
   463     /// \name Execution control
   464     /// The simplest way to execute the algorithm is to use
   465     /// one of the member functions called \c run(...).
   466     /// \n
   467     /// If you need more control on the execution,
   468     /// first you must call \ref init(), then the \ref calculateIn() or
   469     /// \ref calculateIn() functions.
   470 
   471     /// @{
   472 
   473     /// \brief Initializes the internal data structures.
   474     ///
   475     /// Initializes the internal data structures. It creates
   476     /// the maps, residual graph adaptors and some bucket structures
   477     /// for the algorithm. 
   478     void init() {
   479       init(NodeIt(*_graph));
   480     }
   481 
   482     /// \brief Initializes the internal data structures.
   483     ///
   484     /// Initializes the internal data structures. It creates
   485     /// the maps, residual graph adaptor and some bucket structures
   486     /// for the algorithm. Node \c source  is used as the push-relabel
   487     /// algorithm's source.
   488     void init(const Node& source) {
   489       _source = source;
   490       _node_num = countNodes(*_graph);
   491 
   492       _dormant.resize(_node_num);
   493       _level_size.resize(_node_num, 0);
   494       _active_nodes.resize(_node_num);
   495 
   496       if (!_preflow) {
   497         _preflow = new FlowMap(*_graph);
   498       }
   499       if (!_wake) {
   500         _wake = new WakeMap(*_graph);
   501       }
   502       if (!_dist) {
   503         _dist = new DistMap(*_graph);
   504       }
   505       if (!_excess) {
   506         _excess = new ExcessMap(*_graph);
   507       }
   508       if (!_source_set) {
   509         _source_set = new SourceSetMap(*_graph);
   510       }
   511       if (!_out_res_graph) {
   512         _out_res_graph = new OutResGraph(*_graph, *_capacity, *_preflow);
   513       }
   514       if (!_out_current_edge) {
   515         _out_current_edge = new OutCurrentEdgeMap(*_graph);
   516       }
   517       if (!_rev_graph) {
   518         _rev_graph = new RevGraph(*_graph);
   519       }
   520       if (!_in_res_graph) {
   521         _in_res_graph = new InResGraph(*_rev_graph, *_capacity, *_preflow);
   522       }
   523       if (!_in_current_edge) {
   524         _in_current_edge = new InCurrentEdgeMap(*_graph);
   525       }
   526       if (!_min_cut_map) {
   527         _min_cut_map = new MinCutMap(*_graph);
   528       }
   529 
   530       _min_cut = std::numeric_limits<Value>::max();
   531     }
   532 
   533 
   534     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   535     /// source-side.
   536     ///
   537     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   538     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
   539     /// \f$ and minimal out-degree).
   540     void calculateOut() {
   541       for (NodeIt it(*_graph); it != INVALID; ++it) {
   542         if (it != _source) {
   543           calculateOut(it);
   544           return;
   545         }
   546       }
   547     }
   548 
   549     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   550     /// source-side.
   551     ///
   552     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   553     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X
   554     /// \f$ and minimal out-degree). The \c target is the initial target
   555     /// for the push-relabel algorithm.
   556     void calculateOut(const Node& target) {
   557       findMinCut(target, true, *_out_res_graph, *_out_current_edge);
   558     }
   559 
   560     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   561     /// sink-side.
   562     ///
   563     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   564     /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X
   565     /// \f$ and minimal out-degree).
   566     void calculateIn() {
   567       for (NodeIt it(*_graph); it != INVALID; ++it) {
   568         if (it != _source) {
   569           calculateIn(it);
   570           return;
   571         }
   572       }
   573     }
   574 
   575     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   576     /// sink-side.
   577     ///
   578     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   579     /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin
   580     /// X \f$ and minimal out-degree).  The \c target is the initial
   581     /// target for the push-relabel algorithm.
   582     void calculateIn(const Node& target) {
   583       findMinCut(target, false, *_in_res_graph, *_in_current_edge);
   584     }
   585 
   586     /// \brief Runs the algorithm.
   587     ///
   588     /// Runs the algorithm. It finds nodes \c source and \c target
   589     /// arbitrarily and then calls \ref init(), \ref calculateOut()
   590     /// and \ref calculateIn().
   591     void run() {
   592       init();
   593       for (NodeIt it(*_graph); it != INVALID; ++it) {
   594         if (it != _source) {
   595           calculateOut(it);
   596           calculateIn(it);
   597           return;
   598         }
   599       }
   600     }
   601 
   602     /// \brief Runs the algorithm.
   603     ///
   604     /// Runs the algorithm. It uses the given \c source node, finds a
   605     /// proper \c target and then calls the \ref init(), \ref
   606     /// calculateOut() and \ref calculateIn().
   607     void run(const Node& s) {
   608       init(s);
   609       for (NodeIt it(*_graph); it != INVALID; ++it) {
   610         if (it != _source) {
   611           calculateOut(it);
   612           calculateIn(it);
   613           return;
   614         }
   615       }
   616     }
   617 
   618     /// \brief Runs the algorithm.
   619     ///
   620     /// Runs the algorithm. It just calls the \ref init() and then
   621     /// \ref calculateOut() and \ref calculateIn().
   622     void run(const Node& s, const Node& t) {
   623       init(s); 
   624       calculateOut(t);
   625       calculateIn(t);
   626     }
   627 
   628     /// @}
   629     
   630     /// \name Query Functions The result of the %HaoOrlin algorithm
   631     /// can be obtained using these functions.
   632     /// \n
   633     /// Before the use of these functions, either \ref run(), \ref
   634     /// calculateOut() or \ref calculateIn() must be called.
   635     
   636     /// @{
   637 
   638     /// \brief Returns the value of the minimum value cut.
   639     /// 
   640     /// Returns the value of the minimum value cut.
   641     Value minCut() const {
   642       return _min_cut;
   643     }
   644 
   645 
   646     /// \brief Returns a minimum cut.
   647     ///
   648     /// Sets \c nodeMap to the characteristic vector of a minimum
   649     /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
   650     /// with minimal out-degree (i.e. \c nodeMap will be true exactly
   651     /// for the nodes of \f$ X \f$.  \pre nodeMap should be a
   652     /// bool-valued node-map.
   653     template <typename NodeMap>
   654     Value minCut(NodeMap& nodeMap) const {
   655       for (NodeIt it(*_graph); it != INVALID; ++it) {
   656 	nodeMap.set(it, (*_min_cut_map)[it]);
   657       }
   658       return minCut();
   659     }
   660 
   661     /// @}
   662     
   663   }; //class HaoOrlin 
   664 
   665 
   666 } //namespace lemon
   667 
   668 #endif //LEMON_HAO_ORLIN_H