lemon/concept/bpugraph.h
author alpar
Thu, 02 Feb 2006 08:52:20 +0000
changeset 1941 9fe177e0437d
parent 1911 c925a077cf73
child 1946 17eb3eaad9f8
permissions -rw-r--r--
The version tag of the trunk is svn-head
     1 /* -*- C++ -*-
     2  *
     3  * lemon/concept/ugraph_component.h - Part of LEMON, a generic
     4  * C++ optimization library
     5  *
     6  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi
     7  * Kutatocsoport (Egervary Research Group on Combinatorial Optimization,
     8  * EGRES).
     9  *
    10  * Permission to use, modify and distribute this software is granted
    11  * provided that this copyright notice appears in all copies. For
    12  * precise terms see the accompanying LICENSE file.
    13  *
    14  * This software is provided "AS IS" with no warranty of any kind,
    15  * express or implied, and with no claim as to its suitability for any
    16  * purpose.
    17  *
    18  */
    19 
    20 /// \ingroup graph_concepts
    21 /// \file
    22 /// \brief Undirected bipartite graphs and components of.
    23 
    24 
    25 #ifndef LEMON_CONCEPT_BPUGRAPH_H
    26 #define LEMON_CONCEPT_BPUGRAPH_H
    27 
    28 #include <lemon/concept/graph_component.h>
    29 
    30 #include <lemon/concept/graph.h>
    31 #include <lemon/concept/ugraph.h>
    32 
    33 #include <lemon/utility.h>
    34 
    35 namespace lemon {
    36   namespace concept {
    37 
    38     /// \addtogroup graph_concepts
    39     /// @{
    40 
    41 
    42     /// \brief Class describing the concept of Bipartite Undirected Graphs.
    43     ///
    44     /// This class describes the common interface of all 
    45     /// Undirected Bipartite Graphs.
    46     ///
    47     /// As all concept describing classes it provides only interface
    48     /// without any sensible implementation. So any algorithm for
    49     /// bipartite undirected graph should compile with this class, but it 
    50     /// will not run properly, of course.
    51     ///
    52     /// In LEMON bipartite undirected graphs also fulfill the concept of 
    53     /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). 
    54     ///
    55     /// You can assume that all undirected bipartite graph can be handled
    56     /// as an undirected graph and consequently as a static graph.
    57     ///
    58     /// The bipartite graph stores two types of nodes which are named
    59     /// ANode and BNode. The graph type contains two types ANode and BNode
    60     /// which are inherited from Node type. Moreover they have
    61     /// constructor which converts Node to either ANode or BNode when it is
    62     /// possible. Therefor everywhere the Node type can be used instead of
    63     /// ANode and BNode. So the usage of the ANode and BNode is suggested.  
    64     ///
    65     /// The iteration on the partition can be done with the ANodeIt and 
    66     /// BNodeIt classes. The node map can be used to map values to the nodes
    67     /// and similarly we can use to map values for just the ANodes and
    68     /// BNodes the ANodeMap and BNodeMap template classes.
    69 
    70     class BpUGraph {
    71     public:
    72       /// \todo undocumented
    73       ///
    74       typedef True UTag;
    75 
    76       /// \brief The base type of node iterators, 
    77       /// or in other words, the trivial node iterator.
    78       ///
    79       /// This is the base type of each node iterator,
    80       /// thus each kind of node iterator converts to this.
    81       /// More precisely each kind of node iterator should be inherited 
    82       /// from the trivial node iterator. The Node class represents
    83       /// both of two types of nodes. 
    84       class Node {
    85       public:
    86         /// Default constructor
    87 
    88         /// @warning The default constructor sets the iterator
    89         /// to an undefined value.
    90         Node() { }
    91         /// Copy constructor.
    92 
    93         /// Copy constructor.
    94         ///
    95         Node(const Node&) { }
    96 
    97         /// Invalid constructor \& conversion.
    98 
    99         /// This constructor initializes the iterator to be invalid.
   100         /// \sa Invalid for more details.
   101         Node(Invalid) { }
   102         /// Equality operator
   103 
   104         /// Two iterators are equal if and only if they point to the
   105         /// same object or both are invalid.
   106         bool operator==(Node) const { return true; }
   107 
   108         /// Inequality operator
   109         
   110         /// \sa operator==(Node n)
   111         ///
   112         bool operator!=(Node) const { return true; }
   113 
   114 	/// Artificial ordering operator.
   115 	
   116 	/// To allow the use of graph descriptors as key type in std::map or
   117 	/// similar associative container we require this.
   118 	///
   119 	/// \note This operator only have to define some strict ordering of
   120 	/// the items; this order has nothing to do with the iteration
   121 	/// ordering of the items.
   122 	///
   123 	/// \bug This is a technical requirement. Do we really need this?
   124 	bool operator<(Node) const { return false; }
   125 
   126       };
   127 
   128       /// \brief The base type of anode iterators, 
   129       /// or in other words, the trivial anode iterator.
   130       ///
   131       /// This is the base type of each anode iterator,
   132       /// thus each kind of anode iterator converts to this.
   133       /// More precisely each kind of node iterator should be inherited 
   134       /// from the trivial anode iterator. The ANode class should be used
   135       /// only in special cases. Usually the Node type should be used insted
   136       /// of it. 
   137       class ANode {
   138       public:
   139         /// Default constructor
   140 
   141         /// @warning The default constructor sets the iterator
   142         /// to an undefined value.
   143         ANode() { }
   144         /// Copy constructor.
   145 
   146         /// Copy constructor.
   147         ///
   148         ANode(const ANode&) { }
   149 
   150         /// Construct the same node as ANode.
   151 
   152         /// Construct the same node as ANode. It may throws assertion
   153         /// when the given node is from the BNode set.
   154         ANode(const Node&) { }
   155 
   156         /// Invalid constructor \& conversion.
   157 
   158         /// This constructor initializes the iterator to be invalid.
   159         /// \sa Invalid for more details.
   160         ANode(Invalid) { }
   161         /// Equality operator
   162 
   163         /// Two iterators are equal if and only if they point to the
   164         /// same object or both are invalid.
   165         bool operator==(ANode) const { return true; }
   166 
   167         /// Inequality operator
   168         
   169         /// \sa operator==(ANode n)
   170         ///
   171         bool operator!=(ANode) const { return true; }
   172 
   173 	/// Artificial ordering operator.
   174 	
   175 	/// To allow the use of graph descriptors as key type in std::map or
   176 	/// similar associative container we require this.
   177 	///
   178 	/// \note This operator only have to define some strict ordering of
   179 	/// the items; this order has nothing to do with the iteration
   180 	/// ordering of the items.
   181 	bool operator<(ANode) const { return false; }
   182 
   183       };
   184 
   185       /// \brief The base type of bnode iterators, 
   186       /// or in other words, the trivial bnode iterator.
   187       ///
   188       /// This is the base type of each anode iterator,
   189       /// thus each kind of anode iterator converts to this.
   190       /// More precisely each kind of node iterator should be inherited 
   191       /// from the trivial anode iterator. The BNode class should be used
   192       /// only in special cases. Usually the Node type should be used insted
   193       /// of it. 
   194       class BNode {
   195       public:
   196         /// Default constructor
   197 
   198         /// @warning The default constructor sets the iterator
   199         /// to an undefined value.
   200         BNode() { }
   201         /// Copy constructor.
   202 
   203         /// Copy constructor.
   204         ///
   205         BNode(const BNode&) { }
   206 
   207         /// Construct the same node as BNode.
   208 
   209         /// Construct the same node as BNode. It may throws assertion
   210         /// when the given node is from the ANode set.
   211         BNode(const Node&) { }
   212 
   213         /// Invalid constructor \& conversion.
   214 
   215         /// This constructor initializes the iterator to be invalid.
   216         /// \sa Invalid for more details.
   217         BNode(Invalid) { }
   218         /// Equality operator
   219 
   220         /// Two iterators are equal if and only if they point to the
   221         /// same object or both are invalid.
   222         bool operator==(BNode) const { return true; }
   223 
   224         /// Inequality operator
   225         
   226         /// \sa operator==(BNode n)
   227         ///
   228         bool operator!=(BNode) const { return true; }
   229 
   230 	/// Artificial ordering operator.
   231 	
   232 	/// To allow the use of graph descriptors as key type in std::map or
   233 	/// similar associative container we require this.
   234 	///
   235 	/// \note This operator only have to define some strict ordering of
   236 	/// the items; this order has nothing to do with the iteration
   237 	/// ordering of the items.
   238 	bool operator<(BNode) const { return false; }
   239 
   240       };
   241     
   242       /// This iterator goes through each node.
   243 
   244       /// This iterator goes through each node.
   245       /// Its usage is quite simple, for example you can count the number
   246       /// of nodes in graph \c g of type \c Graph like this:
   247       /// \code
   248       /// int count=0;
   249       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   250       /// \endcode
   251       class NodeIt : public Node {
   252       public:
   253         /// Default constructor
   254 
   255         /// @warning The default constructor sets the iterator
   256         /// to an undefined value.
   257         NodeIt() { }
   258         /// Copy constructor.
   259         
   260         /// Copy constructor.
   261         ///
   262         NodeIt(const NodeIt& n) : Node(n) { }
   263         /// Invalid constructor \& conversion.
   264 
   265         /// Initialize the iterator to be invalid.
   266         /// \sa Invalid for more details.
   267         NodeIt(Invalid) { }
   268         /// Sets the iterator to the first node.
   269 
   270         /// Sets the iterator to the first node of \c g.
   271         ///
   272         NodeIt(const BpUGraph&) { }
   273         /// Node -> NodeIt conversion.
   274 
   275         /// Sets the iterator to the node of \c the graph pointed by 
   276 	/// the trivial iterator.
   277         /// This feature necessitates that each time we 
   278         /// iterate the edge-set, the iteration order is the same.
   279         NodeIt(const BpUGraph&, const Node&) { }
   280         /// Next node.
   281 
   282         /// Assign the iterator to the next node.
   283         ///
   284         NodeIt& operator++() { return *this; }
   285       };
   286 
   287       /// This iterator goes through each ANode.
   288 
   289       /// This iterator goes through each ANode.
   290       /// Its usage is quite simple, for example you can count the number
   291       /// of nodes in graph \c g of type \c Graph like this:
   292       /// \code
   293       /// int count=0;
   294       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   295       /// \endcode
   296       class ANodeIt : public ANode {
   297       public:
   298         /// Default constructor
   299 
   300         /// @warning The default constructor sets the iterator
   301         /// to an undefined value.
   302         ANodeIt() { }
   303         /// Copy constructor.
   304         
   305         /// Copy constructor.
   306         ///
   307         ANodeIt(const ANodeIt& n) : Node(n) { }
   308         /// Invalid constructor \& conversion.
   309 
   310         /// Initialize the iterator to be invalid.
   311         /// \sa Invalid for more details.
   312         ANodeIt(Invalid) { }
   313         /// Sets the iterator to the first node.
   314 
   315         /// Sets the iterator to the first node of \c g.
   316         ///
   317         ANodeIt(const BpUGraph&) { }
   318         /// Node -> ANodeIt conversion.
   319 
   320         /// Sets the iterator to the node of \c the graph pointed by 
   321 	/// the trivial iterator.
   322         /// This feature necessitates that each time we 
   323         /// iterate the edge-set, the iteration order is the same.
   324         ANodeIt(const BpUGraph&, const Node&) { }
   325         /// Next node.
   326 
   327         /// Assign the iterator to the next node.
   328         ///
   329         ANodeIt& operator++() { return *this; }
   330       };
   331 
   332       /// This iterator goes through each BNode.
   333 
   334       /// This iterator goes through each BNode.
   335       /// Its usage is quite simple, for example you can count the number
   336       /// of nodes in graph \c g of type \c Graph like this:
   337       /// \code
   338       /// int count=0;
   339       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   340       /// \endcode
   341       class BNodeIt : public BNode {
   342       public:
   343         /// Default constructor
   344 
   345         /// @warning The default constructor sets the iterator
   346         /// to an undefined value.
   347         BNodeIt() { }
   348         /// Copy constructor.
   349         
   350         /// Copy constructor.
   351         ///
   352         BNodeIt(const BNodeIt& n) : Node(n) { }
   353         /// Invalid constructor \& conversion.
   354 
   355         /// Initialize the iterator to be invalid.
   356         /// \sa Invalid for more details.
   357         BNodeIt(Invalid) { }
   358         /// Sets the iterator to the first node.
   359 
   360         /// Sets the iterator to the first node of \c g.
   361         ///
   362         BNodeIt(const BpUGraph&) { }
   363         /// Node -> BNodeIt conversion.
   364 
   365         /// Sets the iterator to the node of \c the graph pointed by 
   366 	/// the trivial iterator.
   367         /// This feature necessitates that each time we 
   368         /// iterate the edge-set, the iteration order is the same.
   369         BNodeIt(const BpUGraph&, const Node&) { }
   370         /// Next node.
   371 
   372         /// Assign the iterator to the next node.
   373         ///
   374         BNodeIt& operator++() { return *this; }
   375       };
   376     
   377     
   378       /// The base type of the undirected edge iterators.
   379 
   380       /// The base type of the undirected edge iterators.
   381       ///
   382       class UEdge {
   383       public:
   384         /// Default constructor
   385 
   386         /// @warning The default constructor sets the iterator
   387         /// to an undefined value.
   388         UEdge() { }
   389         /// Copy constructor.
   390 
   391         /// Copy constructor.
   392         ///
   393         UEdge(const UEdge&) { }
   394         /// Initialize the iterator to be invalid.
   395 
   396         /// Initialize the iterator to be invalid.
   397         ///
   398         UEdge(Invalid) { }
   399         /// Equality operator
   400 
   401         /// Two iterators are equal if and only if they point to the
   402         /// same object or both are invalid.
   403         bool operator==(UEdge) const { return true; }
   404         /// Inequality operator
   405 
   406         /// \sa operator==(UEdge n)
   407         ///
   408         bool operator!=(UEdge) const { return true; }
   409 
   410 	/// Artificial ordering operator.
   411 	
   412 	/// To allow the use of graph descriptors as key type in std::map or
   413 	/// similar associative container we require this.
   414 	///
   415 	/// \note This operator only have to define some strict ordering of
   416 	/// the items; this order has nothing to do with the iteration
   417 	/// ordering of the items.
   418 	///
   419 	/// \bug This is a technical requirement. Do we really need this?
   420 	bool operator<(UEdge) const { return false; }
   421       };
   422 
   423       /// This iterator goes through each undirected edge.
   424 
   425       /// This iterator goes through each undirected edge of a graph.
   426       /// Its usage is quite simple, for example you can count the number
   427       /// of undirected edges in a graph \c g of type \c Graph as follows:
   428       /// \code
   429       /// int count=0;
   430       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   431       /// \endcode
   432       class UEdgeIt : public UEdge {
   433       public:
   434         /// Default constructor
   435 
   436         /// @warning The default constructor sets the iterator
   437         /// to an undefined value.
   438         UEdgeIt() { }
   439         /// Copy constructor.
   440 
   441         /// Copy constructor.
   442         ///
   443         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   444         /// Initialize the iterator to be invalid.
   445 
   446         /// Initialize the iterator to be invalid.
   447         ///
   448         UEdgeIt(Invalid) { }
   449         /// This constructor sets the iterator to the first undirected edge.
   450     
   451         /// This constructor sets the iterator to the first undirected edge.
   452         UEdgeIt(const BpUGraph&) { }
   453         /// UEdge -> UEdgeIt conversion
   454 
   455         /// Sets the iterator to the value of the trivial iterator.
   456         /// This feature necessitates that each time we
   457         /// iterate the undirected edge-set, the iteration order is the 
   458 	/// same.
   459         UEdgeIt(const BpUGraph&, const UEdge&) { } 
   460         /// Next undirected edge
   461         
   462         /// Assign the iterator to the next undirected edge.
   463         UEdgeIt& operator++() { return *this; }
   464       };
   465 
   466       /// \brief This iterator goes trough the incident undirected 
   467       /// edges of a node.
   468       ///
   469       /// This iterator goes trough the incident undirected edges
   470       /// of a certain node
   471       /// of a graph.
   472       /// Its usage is quite simple, for example you can compute the
   473       /// degree (i.e. count the number
   474       /// of incident edges of a node \c n
   475       /// in graph \c g of type \c Graph as follows.
   476       /// \code
   477       /// int count=0;
   478       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   479       /// \endcode
   480       class IncEdgeIt : public UEdge {
   481       public:
   482         /// Default constructor
   483 
   484         /// @warning The default constructor sets the iterator
   485         /// to an undefined value.
   486         IncEdgeIt() { }
   487         /// Copy constructor.
   488 
   489         /// Copy constructor.
   490         ///
   491         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   492         /// Initialize the iterator to be invalid.
   493 
   494         /// Initialize the iterator to be invalid.
   495         ///
   496         IncEdgeIt(Invalid) { }
   497         /// This constructor sets the iterator to first incident edge.
   498     
   499         /// This constructor set the iterator to the first incident edge of
   500         /// the node.
   501         IncEdgeIt(const BpUGraph&, const Node&) { }
   502         /// UEdge -> IncEdgeIt conversion
   503 
   504         /// Sets the iterator to the value of the trivial iterator \c e.
   505         /// This feature necessitates that each time we 
   506         /// iterate the edge-set, the iteration order is the same.
   507         IncEdgeIt(const BpUGraph&, const UEdge&) { }
   508         /// Next incident edge
   509 
   510         /// Assign the iterator to the next incident edge
   511 	/// of the corresponding node.
   512         IncEdgeIt& operator++() { return *this; }
   513       };
   514 
   515       /// The directed edge type.
   516 
   517       /// The directed edge type. It can be converted to the
   518       /// undirected edge.
   519       class Edge : public UEdge {
   520       public:
   521         /// Default constructor
   522 
   523         /// @warning The default constructor sets the iterator
   524         /// to an undefined value.
   525         Edge() { }
   526         /// Copy constructor.
   527 
   528         /// Copy constructor.
   529         ///
   530         Edge(const Edge& e) : UEdge(e) { }
   531         /// Initialize the iterator to be invalid.
   532 
   533         /// Initialize the iterator to be invalid.
   534         ///
   535         Edge(Invalid) { }
   536         /// Equality operator
   537 
   538         /// Two iterators are equal if and only if they point to the
   539         /// same object or both are invalid.
   540         bool operator==(Edge) const { return true; }
   541         /// Inequality operator
   542 
   543         /// \sa operator==(Edge n)
   544         ///
   545         bool operator!=(Edge) const { return true; }
   546 
   547 	/// Artificial ordering operator.
   548 	
   549 	/// To allow the use of graph descriptors as key type in std::map or
   550 	/// similar associative container we require this.
   551 	///
   552 	/// \note This operator only have to define some strict ordering of
   553 	/// the items; this order has nothing to do with the iteration
   554 	/// ordering of the items.
   555 	///
   556 	/// \bug This is a technical requirement. Do we really need this?
   557 	bool operator<(Edge) const { return false; }
   558 	
   559       }; 
   560       /// This iterator goes through each directed edge.
   561 
   562       /// This iterator goes through each edge of a graph.
   563       /// Its usage is quite simple, for example you can count the number
   564       /// of edges in a graph \c g of type \c Graph as follows:
   565       /// \code
   566       /// int count=0;
   567       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   568       /// \endcode
   569       class EdgeIt : public Edge {
   570       public:
   571         /// Default constructor
   572 
   573         /// @warning The default constructor sets the iterator
   574         /// to an undefined value.
   575         EdgeIt() { }
   576         /// Copy constructor.
   577 
   578         /// Copy constructor.
   579         ///
   580         EdgeIt(const EdgeIt& e) : Edge(e) { }
   581         /// Initialize the iterator to be invalid.
   582 
   583         /// Initialize the iterator to be invalid.
   584         ///
   585         EdgeIt(Invalid) { }
   586         /// This constructor sets the iterator to the first edge.
   587     
   588         /// This constructor sets the iterator to the first edge of \c g.
   589         ///@param g the graph
   590         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   591         /// Edge -> EdgeIt conversion
   592 
   593         /// Sets the iterator to the value of the trivial iterator \c e.
   594         /// This feature necessitates that each time we 
   595         /// iterate the edge-set, the iteration order is the same.
   596         EdgeIt(const BpUGraph&, const Edge&) { } 
   597         ///Next edge
   598         
   599         /// Assign the iterator to the next edge.
   600         EdgeIt& operator++() { return *this; }
   601       };
   602    
   603       /// This iterator goes trough the outgoing directed edges of a node.
   604 
   605       /// This iterator goes trough the \e outgoing edges of a certain node
   606       /// of a graph.
   607       /// Its usage is quite simple, for example you can count the number
   608       /// of outgoing edges of a node \c n
   609       /// in graph \c g of type \c Graph as follows.
   610       /// \code
   611       /// int count=0;
   612       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   613       /// \endcode
   614     
   615       class OutEdgeIt : public Edge {
   616       public:
   617         /// Default constructor
   618 
   619         /// @warning The default constructor sets the iterator
   620         /// to an undefined value.
   621         OutEdgeIt() { }
   622         /// Copy constructor.
   623 
   624         /// Copy constructor.
   625         ///
   626         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   627         /// Initialize the iterator to be invalid.
   628 
   629         /// Initialize the iterator to be invalid.
   630         ///
   631         OutEdgeIt(Invalid) { }
   632         /// This constructor sets the iterator to the first outgoing edge.
   633     
   634         /// This constructor sets the iterator to the first outgoing edge of
   635         /// the node.
   636         ///@param n the node
   637         ///@param g the graph
   638         OutEdgeIt(const BpUGraph& n, const Node& g) {
   639 	  ignore_unused_variable_warning(n);
   640 	  ignore_unused_variable_warning(g);
   641 	}
   642         /// Edge -> OutEdgeIt conversion
   643 
   644         /// Sets the iterator to the value of the trivial iterator.
   645 	/// This feature necessitates that each time we 
   646         /// iterate the edge-set, the iteration order is the same.
   647         OutEdgeIt(const BpUGraph&, const Edge&) { }
   648         ///Next outgoing edge
   649         
   650         /// Assign the iterator to the next 
   651         /// outgoing edge of the corresponding node.
   652         OutEdgeIt& operator++() { return *this; }
   653       };
   654 
   655       /// This iterator goes trough the incoming directed edges of a node.
   656 
   657       /// This iterator goes trough the \e incoming edges of a certain node
   658       /// of a graph.
   659       /// Its usage is quite simple, for example you can count the number
   660       /// of outgoing edges of a node \c n
   661       /// in graph \c g of type \c Graph as follows.
   662       /// \code
   663       /// int count=0;
   664       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   665       /// \endcode
   666 
   667       class InEdgeIt : public Edge {
   668       public:
   669         /// Default constructor
   670 
   671         /// @warning The default constructor sets the iterator
   672         /// to an undefined value.
   673         InEdgeIt() { }
   674         /// Copy constructor.
   675 
   676         /// Copy constructor.
   677         ///
   678         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   679         /// Initialize the iterator to be invalid.
   680 
   681         /// Initialize the iterator to be invalid.
   682         ///
   683         InEdgeIt(Invalid) { }
   684         /// This constructor sets the iterator to first incoming edge.
   685     
   686         /// This constructor set the iterator to the first incoming edge of
   687         /// the node.
   688         ///@param n the node
   689         ///@param g the graph
   690         InEdgeIt(const BpUGraph& g, const Node& n) { 
   691 	  ignore_unused_variable_warning(n);
   692 	  ignore_unused_variable_warning(g);
   693 	}
   694         /// Edge -> InEdgeIt conversion
   695 
   696         /// Sets the iterator to the value of the trivial iterator \c e.
   697         /// This feature necessitates that each time we 
   698         /// iterate the edge-set, the iteration order is the same.
   699         InEdgeIt(const BpUGraph&, const Edge&) { }
   700         /// Next incoming edge
   701 
   702         /// Assign the iterator to the next inedge of the corresponding node.
   703         ///
   704         InEdgeIt& operator++() { return *this; }
   705       };
   706 
   707       /// \brief Read write map of the nodes to type \c T.
   708       /// 
   709       /// ReadWrite map of the nodes to type \c T.
   710       /// \sa Reference
   711       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   712       /// needs some extra attention!
   713       /// \todo Wrong documentation
   714       template<class T> 
   715       class NodeMap : public ReadWriteMap< Node, T >
   716       {
   717       public:
   718 
   719         ///\e
   720         NodeMap(const BpUGraph&) { }
   721         ///\e
   722         NodeMap(const BpUGraph&, T) { }
   723 
   724         ///Copy constructor
   725         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   726         ///Assignment operator
   727         NodeMap& operator=(const NodeMap&) { return *this; }
   728         // \todo fix this concept
   729       };
   730 
   731       /// \brief Read write map of the ANodes to type \c T.
   732       /// 
   733       /// ReadWrite map of the ANodes to type \c T.
   734       /// \sa Reference
   735       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   736       /// needs some extra attention!
   737       /// \todo Wrong documentation
   738       template<class T> 
   739       class ANodeMap : public ReadWriteMap< Node, T >
   740       {
   741       public:
   742 
   743         ///\e
   744         ANodeMap(const BpUGraph&) { }
   745         ///\e
   746         ANodeMap(const BpUGraph&, T) { }
   747 
   748         ///Copy constructor
   749         ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   750         ///Assignment operator
   751         ANodeMap& operator=(const NodeMap&) { return *this; }
   752         // \todo fix this concept
   753       };
   754 
   755       /// \brief Read write map of the BNodes to type \c T.
   756       /// 
   757       /// ReadWrite map of the BNodes to type \c T.
   758       /// \sa Reference
   759       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   760       /// needs some extra attention!
   761       /// \todo Wrong documentation
   762       template<class T> 
   763       class BNodeMap : public ReadWriteMap< Node, T >
   764       {
   765       public:
   766 
   767         ///\e
   768         BNodeMap(const BpUGraph&) { }
   769         ///\e
   770         BNodeMap(const BpUGraph&, T) { }
   771 
   772         ///Copy constructor
   773         BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   774         ///Assignment operator
   775         BNodeMap& operator=(const NodeMap&) { return *this; }
   776         // \todo fix this concept
   777       };
   778 
   779       /// \brief Read write map of the directed edges to type \c T.
   780       ///
   781       /// Reference map of the directed edges to type \c T.
   782       /// \sa Reference
   783       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   784       /// needs some extra attention!
   785       /// \todo Wrong documentation
   786       template<class T> 
   787       class EdgeMap : public ReadWriteMap<Edge,T>
   788       {
   789       public:
   790 
   791         ///\e
   792         EdgeMap(const BpUGraph&) { }
   793         ///\e
   794         EdgeMap(const BpUGraph&, T) { }
   795         ///Copy constructor
   796         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   797         ///Assignment operator
   798         EdgeMap& operator=(const EdgeMap&) { return *this; }
   799         // \todo fix this concept    
   800       };
   801 
   802       /// Read write map of the undirected edges to type \c T.
   803 
   804       /// Reference map of the edges to type \c T.
   805       /// \sa Reference
   806       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   807       /// needs some extra attention!
   808       /// \todo Wrong documentation
   809       template<class T> 
   810       class UEdgeMap : public ReadWriteMap<UEdge,T>
   811       {
   812       public:
   813 
   814         ///\e
   815         UEdgeMap(const BpUGraph&) { }
   816         ///\e
   817         UEdgeMap(const BpUGraph&, T) { }
   818         ///Copy constructor
   819         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   820         ///Assignment operator
   821         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   822         // \todo fix this concept    
   823       };
   824 
   825       /// \brief Direct the given undirected edge.
   826       ///
   827       /// Direct the given undirected edge. The returned edge source
   828       /// will be the given edge.
   829       Edge direct(const UEdge&, const Node&) const {
   830 	return INVALID;
   831       }
   832 
   833       /// \brief Direct the given undirected edge.
   834       ///
   835       /// Direct the given undirected edge. The returned edge source
   836       /// will be the source of the undirected edge if the given bool
   837       /// is true.
   838       Edge direct(const UEdge&, bool) const {
   839 	return INVALID;
   840       }
   841 
   842       /// \brief Returns true when the given node is an ANode.
   843       ///
   844       /// Returns true when the given node is an ANode.
   845       bool aNode(Node) const { return true;}
   846 
   847       /// \brief Returns true when the given node is an BNode.
   848       ///
   849       /// Returns true when the given node is an BNode.
   850       bool bNode(Node) const { return true;}
   851 
   852       /// \brief Returns the edge's end node which is in the ANode set.
   853       ///
   854       /// Returns the edge's end node which is in the ANode set.
   855       Node aNode(UEdge) const { return INVALID;}
   856 
   857       /// \brief Returns the edge's end node which is in the BNode set.
   858       ///
   859       /// Returns the edge's end node which is in the BNode set.
   860       Node bNode(UEdge) const { return INVALID;}
   861 
   862       /// \brief Returns true if the edge has default orientation.
   863       ///
   864       /// Returns whether the given directed edge is same orientation as
   865       /// the corresponding undirected edge.
   866       bool direction(Edge) const { return true; }
   867 
   868       /// \brief Returns the opposite directed edge.
   869       ///
   870       /// Returns the opposite directed edge.
   871       Edge oppositeEdge(Edge) const { return INVALID; }
   872 
   873       /// \brief Opposite node on an edge
   874       ///
   875       /// \return the opposite of the given Node on the given Edge
   876       Node oppositeNode(Node, UEdge) const { return INVALID; }
   877 
   878       /// \brief First node of the undirected edge.
   879       ///
   880       /// \return the first node of the given UEdge.
   881       ///
   882       /// Naturally uectected edges don't have direction and thus
   883       /// don't have source and target node. But we use these two methods
   884       /// to query the two endnodes of the edge. The direction of the edge
   885       /// which arises this way is called the inherent direction of the
   886       /// undirected edge, and is used to define the "default" direction
   887       /// of the directed versions of the edges.
   888       /// \sa direction
   889       Node source(UEdge) const { return INVALID; }
   890 
   891       /// \brief Second node of the undirected edge.
   892       Node target(UEdge) const { return INVALID; }
   893 
   894       /// \brief Source node of the directed edge.
   895       Node source(Edge) const { return INVALID; }
   896 
   897       /// \brief Target node of the directed edge.
   898       Node target(Edge) const { return INVALID; }
   899 
   900       /// \brief Base node of the iterator
   901       ///
   902       /// Returns the base node (the source in this case) of the iterator
   903       Node baseNode(OutEdgeIt e) const {
   904 	return source(e);
   905       }
   906 
   907       /// \brief Running node of the iterator
   908       ///
   909       /// Returns the running node (the target in this case) of the
   910       /// iterator
   911       Node runningNode(OutEdgeIt e) const {
   912 	return target(e);
   913       }
   914 
   915       /// \brief Base node of the iterator
   916       ///
   917       /// Returns the base node (the target in this case) of the iterator
   918       Node baseNode(InEdgeIt e) const {
   919 	return target(e);
   920       }
   921       /// \brief Running node of the iterator
   922       ///
   923       /// Returns the running node (the source in this case) of the
   924       /// iterator
   925       Node runningNode(InEdgeIt e) const {
   926 	return source(e);
   927       }
   928 
   929       /// \brief Base node of the iterator
   930       ///
   931       /// Returns the base node of the iterator
   932       Node baseNode(IncEdgeIt) const {
   933 	return INVALID;
   934       }
   935       
   936       /// \brief Running node of the iterator
   937       ///
   938       /// Returns the running node of the iterator
   939       Node runningNode(IncEdgeIt) const {
   940 	return INVALID;
   941       }
   942 
   943       template <typename Graph>
   944       struct Constraints {
   945 	void constraints() {
   946 	}
   947       };
   948 
   949     };
   950 
   951     /// \brief An empty non-static undirected graph class.
   952     ///    
   953     /// This class provides everything that \ref BpUGraph does.
   954     /// Additionally it enables building graphs from scratch.
   955     class ExtendableBpUGraph : public BpUGraph {
   956     public:
   957       
   958       /// \brief Add a new ANode to the graph.
   959       ///
   960       /// Add a new ANode to the graph.
   961       /// \return the new node.
   962       Node addANode();
   963 
   964       /// \brief Add a new ANode to the graph.
   965       ///
   966       /// Add a new ANode to the graph.
   967       /// \return the new node.
   968       Node addBNode();
   969 
   970       /// \brief Add a new undirected edge to the graph.
   971       ///
   972       /// Add a new undirected edge to the graph. One of the nodes
   973       /// should be ANode and the other should be BNode.
   974       /// \pre The nodes are not in the same nodeset.
   975       /// \return the new edge.
   976       UEdge addEdge(const Node& from, const Node& to);
   977 
   978       /// \brief Resets the graph.
   979       ///
   980       /// This function deletes all undirected edges and nodes of the graph.
   981       /// It also frees the memory allocated to store them.
   982       void clear() { }
   983 
   984       template <typename Graph>
   985       struct Constraints {
   986 	void constraints() {}
   987       };
   988 
   989     };
   990 
   991     /// \brief An empty erasable undirected graph class.
   992     ///
   993     /// This class is an extension of \ref ExtendableBpUGraph. It makes it
   994     /// possible to erase undirected edges or nodes.
   995     class ErasableBpUGraph : public ExtendableBpUGraph {
   996     public:
   997 
   998       /// \brief Deletes a node.
   999       ///
  1000       /// Deletes a node.
  1001       ///
  1002       void erase(Node) { }
  1003       /// \brief Deletes an undirected edge.
  1004       ///
  1005       /// Deletes an undirected edge.
  1006       ///
  1007       void erase(UEdge) { }
  1008 
  1009       template <typename Graph>
  1010       struct Constraints {
  1011 	void constraints() {}
  1012       };
  1013 
  1014     };
  1015 
  1016     /// @}
  1017 
  1018   }
  1019 
  1020 }
  1021 
  1022 #endif