lemon/full_graph.h
author alpar
Fri, 03 Feb 2006 16:40:16 +0000
changeset 1956 a055123339d5
parent 1910 f95eea8c34b0
child 1979 c2992fd74dad
permissions -rw-r--r--
Unified copyright notices
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_FULL_GRAPH_H
    20 #define LEMON_FULL_GRAPH_H
    21 
    22 #include <cmath>
    23 
    24 
    25 #include <lemon/bits/iterable_graph_extender.h>
    26 #include <lemon/bits/alteration_notifier.h>
    27 #include <lemon/bits/static_map.h>
    28 #include <lemon/bits/graph_extender.h>
    29 
    30 #include <lemon/invalid.h>
    31 #include <lemon/utility.h>
    32 
    33 
    34 ///\ingroup graphs
    35 ///\file
    36 ///\brief FullGraph and FullUGraph classes.
    37 
    38 
    39 namespace lemon {
    40 
    41   class FullGraphBase {
    42     int _nodeNum;
    43     int _edgeNum;
    44   public:
    45 
    46     typedef FullGraphBase Graph;
    47 
    48     class Node;
    49     class Edge;
    50 
    51   public:
    52 
    53     FullGraphBase() {}
    54 
    55 
    56     ///Creates a full graph with \c n nodes.
    57     void construct(int n) { _nodeNum = n; _edgeNum = n * n; }
    58     ///
    59     //    FullGraphBase(const FullGraphBase &_g)
    60     //      : _nodeNum(_g.nodeNum()), _edgeNum(_nodeNum*_nodeNum) { }
    61     
    62     typedef True NodeNumTag;
    63     typedef True EdgeNumTag;
    64 
    65     ///Number of nodes.
    66     int nodeNum() const { return _nodeNum; }
    67     ///Number of edges.
    68     int edgeNum() const { return _edgeNum; }
    69 
    70     /// Maximum node ID.
    71     
    72     /// Maximum node ID.
    73     ///\sa id(Node)
    74     int maxNodeId() const { return _nodeNum-1; }
    75     /// Maximum edge ID.
    76     
    77     /// Maximum edge ID.
    78     ///\sa id(Edge)
    79     int maxEdgeId() const { return _edgeNum-1; }
    80 
    81     Node source(Edge e) const { return e.id % _nodeNum; }
    82     Node target(Edge e) const { return e.id / _nodeNum; }
    83 
    84 
    85     /// Node ID.
    86     
    87     /// The ID of a valid Node is a nonnegative integer not greater than
    88     /// \ref maxNodeId(). The range of the ID's is not surely continuous
    89     /// and the greatest node ID can be actually less then \ref maxNodeId().
    90     ///
    91     /// The ID of the \ref INVALID node is -1.
    92     ///\return The ID of the node \c v. 
    93 
    94     static int id(Node v) { return v.id; }
    95     /// Edge ID.
    96     
    97     /// The ID of a valid Edge is a nonnegative integer not greater than
    98     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
    99     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   100     ///
   101     /// The ID of the \ref INVALID edge is -1.
   102     ///\return The ID of the edge \c e. 
   103     static int id(Edge e) { return e.id; }
   104 
   105     static Node nodeFromId(int id) { return Node(id);}
   106     
   107     static Edge edgeFromId(int id) { return Edge(id);}
   108 
   109     typedef True FindEdgeTag;
   110 
   111     /// Finds an edge between two nodes.
   112     
   113     /// Finds an edge from node \c u to node \c v.
   114     ///
   115     /// If \c prev is \ref INVALID (this is the default value), then
   116     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   117     /// the next edge from \c u to \c v after \c prev.
   118     /// \return The found edge or INVALID if there is no such an edge.
   119     Edge findEdge(Node u,Node v, Edge prev = INVALID) const {
   120       return prev.id == -1 ? Edge(*this, u.id, v.id) : INVALID;
   121     }
   122     
   123       
   124     class Node {
   125       friend class FullGraphBase;
   126 
   127     protected:
   128       int id;
   129       Node(int _id) : id(_id) {}
   130     public:
   131       Node() {}
   132       Node (Invalid) : id(-1) {}
   133       bool operator==(const Node node) const {return id == node.id;}
   134       bool operator!=(const Node node) const {return id != node.id;}
   135       bool operator<(const Node node) const {return id < node.id;}
   136     };
   137     
   138 
   139 
   140     class Edge {
   141       friend class FullGraphBase;
   142       
   143     protected:
   144       int id;  // _nodeNum * target + source;
   145 
   146       Edge(int _id) : id(_id) {}
   147 
   148       Edge(const FullGraphBase& _graph, int source, int target) 
   149 	: id(_graph._nodeNum * target+source) {}
   150     public:
   151       Edge() { }
   152       Edge (Invalid) { id = -1; }
   153       bool operator==(const Edge edge) const {return id == edge.id;}
   154       bool operator!=(const Edge edge) const {return id != edge.id;}
   155       bool operator<(const Edge edge) const {return id < edge.id;}
   156     };
   157 
   158     void first(Node& node) const {
   159       node.id = _nodeNum-1;
   160     }
   161 
   162     static void next(Node& node) {
   163       --node.id;
   164     }
   165 
   166     void first(Edge& edge) const {
   167       edge.id = _edgeNum-1;
   168     }
   169 
   170     static void next(Edge& edge) {
   171       --edge.id;
   172     }
   173 
   174     void firstOut(Edge& edge, const Node& node) const {
   175       edge.id = _edgeNum + node.id - _nodeNum;
   176     }
   177 
   178     void nextOut(Edge& edge) const {
   179       edge.id -= _nodeNum;
   180       if (edge.id < 0) edge.id = -1;
   181     }
   182 
   183     void firstIn(Edge& edge, const Node& node) const {
   184       edge.id = node.id * _nodeNum;
   185     }
   186     
   187     void nextIn(Edge& edge) const {
   188       ++edge.id;
   189       if (edge.id % _nodeNum == 0) edge.id = -1;
   190     }
   191 
   192   };
   193 
   194   typedef StaticMappableGraphExtender<
   195     IterableGraphExtender<
   196     AlterableGraphExtender<
   197     GraphExtender<FullGraphBase> > > > ExtendedFullGraphBase;
   198 
   199   /// \ingroup graphs
   200   ///
   201   /// \brief A full graph class.
   202   ///
   203   /// This is a simple and fast directed full graph implementation.
   204   /// It is completely static, so you can neither add nor delete either
   205   /// edges or nodes.
   206   /// Thus it conforms to
   207   /// the \ref concept::StaticGraph "StaticGraph" concept
   208   /// \sa concept::StaticGraph.
   209   ///
   210   /// \author Alpar Juttner
   211   class FullGraph : public ExtendedFullGraphBase {
   212   public:
   213 
   214     FullGraph(int n) { construct(n); }
   215   };
   216 
   217 
   218   class FullUGraphBase {
   219     int _nodeNum;
   220     int _edgeNum;
   221   public:
   222 
   223     typedef FullUGraphBase Graph;
   224 
   225     class Node;
   226     class Edge;
   227 
   228   public:
   229 
   230     FullUGraphBase() {}
   231 
   232 
   233     ///Creates a full graph with \c n nodes.
   234     void construct(int n) { _nodeNum = n; _edgeNum = n * (n - 1) / 2; }
   235     ///
   236     //    FullGraphBase(const FullGraphBase &_g)
   237     //      : _nodeNum(_g.nodeNum()), _edgeNum(_nodeNum*_nodeNum) { }
   238     
   239     typedef True NodeNumTag;
   240     typedef True EdgeNumTag;
   241 
   242     ///Number of nodes.
   243     int nodeNum() const { return _nodeNum; }
   244     ///Number of edges.
   245     int edgeNum() const { return _edgeNum; }
   246 
   247     /// Maximum node ID.
   248     
   249     /// Maximum node ID.
   250     ///\sa id(Node)
   251     int maxNodeId() const { return _nodeNum-1; }
   252     /// Maximum edge ID.
   253     
   254     /// Maximum edge ID.
   255     ///\sa id(Edge)
   256     int maxEdgeId() const { return _edgeNum-1; }
   257 
   258     Node source(Edge e) const { 
   259       /// \todo we may do it faster
   260       return Node(((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2);
   261     }
   262 
   263     Node target(Edge e) const { 
   264       int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
   265       return Node(e.id - (source) * (source - 1) / 2);
   266     }
   267 
   268 
   269     /// Node ID.
   270     
   271     /// The ID of a valid Node is a nonnegative integer not greater than
   272     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   273     /// and the greatest node ID can be actually less then \ref maxNodeId().
   274     ///
   275     /// The ID of the \ref INVALID node is -1.
   276     ///\return The ID of the node \c v. 
   277 
   278     static int id(Node v) { return v.id; }
   279     /// Edge ID.
   280     
   281     /// The ID of a valid Edge is a nonnegative integer not greater than
   282     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   283     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   284     ///
   285     /// The ID of the \ref INVALID edge is -1.
   286     ///\return The ID of the edge \c e. 
   287     static int id(Edge e) { return e.id; }
   288 
   289     /// Finds an edge between two nodes.
   290     
   291     /// Finds an edge from node \c u to node \c v.
   292     ///
   293     /// If \c prev is \ref INVALID (this is the default value), then
   294     /// It finds the first edge from \c u to \c v. Otherwise it looks for
   295     /// the next edge from \c u to \c v after \c prev.
   296     /// \return The found edge or INVALID if there is no such an edge.
   297     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
   298       if (prev.id != -1 || u.id <= v.id) return -1;
   299       return Edge(u.id * (u.id - 1) / 2 + v.id);
   300     }
   301 
   302     typedef True FindEdgeTag;
   303     
   304       
   305     class Node {
   306       friend class FullUGraphBase;
   307 
   308     protected:
   309       int id;
   310       Node(int _id) { id = _id;}
   311     public:
   312       Node() {}
   313       Node (Invalid) { id = -1; }
   314       bool operator==(const Node node) const {return id == node.id;}
   315       bool operator!=(const Node node) const {return id != node.id;}
   316       bool operator<(const Node node) const {return id < node.id;}
   317     };
   318     
   319 
   320 
   321     class Edge {
   322       friend class FullUGraphBase;
   323       
   324     protected:
   325       int id;  // _nodeNum * target + source;
   326 
   327       Edge(int _id) : id(_id) {}
   328 
   329     public:
   330       Edge() { }
   331       Edge (Invalid) { id = -1; }
   332       bool operator==(const Edge edge) const {return id == edge.id;}
   333       bool operator!=(const Edge edge) const {return id != edge.id;}
   334       bool operator<(const Edge edge) const {return id < edge.id;}
   335     };
   336 
   337     void first(Node& node) const {
   338       node.id = _nodeNum - 1;
   339     }
   340 
   341     static void next(Node& node) {
   342       --node.id;
   343     }
   344 
   345     void first(Edge& edge) const {
   346       edge.id = _edgeNum - 1;
   347     }
   348 
   349     static void next(Edge& edge) {
   350       --edge.id;
   351     }
   352 
   353     void firstOut(Edge& edge, const Node& node) const {      
   354       int src = node.id;
   355       int trg = 0;
   356       edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   357     }
   358 
   359     /// \todo with specialized iterators we can make faster iterating
   360     void nextOut(Edge& edge) const {
   361       int src = source(edge).id;
   362       int trg = target(edge).id;
   363       ++trg;
   364       edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
   365     }
   366 
   367     void firstIn(Edge& edge, const Node& node) const {
   368       int src = node.id + 1;
   369       int trg = node.id;
   370       edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   371     }
   372     
   373     void nextIn(Edge& edge) const {
   374       int src = source(edge).id;
   375       int trg = target(edge).id;
   376       ++src;
   377       edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
   378     }
   379 
   380   };
   381 
   382   typedef StaticMappableUGraphExtender<
   383     IterableUGraphExtender<
   384     AlterableUGraphExtender<
   385     UGraphExtender<FullUGraphBase> > > > ExtendedFullUGraphBase;
   386 
   387   /// \ingroup graphs
   388   ///
   389   /// \brief An undirected full graph class.
   390   ///
   391   /// This is a simple and fast undirected full graph implementation.
   392   /// It is completely static, so you can neither add nor delete either
   393   /// edges or nodes.
   394   ///
   395   /// The main difference beetween the \e FullGraph and \e FullUGraph class
   396   /// is that this class conforms to the undirected graph concept and
   397   /// it does not contain the loop edges.
   398   ///
   399   /// \sa FullGraph
   400   ///
   401   /// \author Balazs Dezso
   402   class FullUGraph : public ExtendedFullUGraphBase {
   403   public:
   404     FullUGraph(int n) { construct(n); }
   405   };
   406 
   407 
   408   class FullBpUGraphBase {
   409   protected:
   410 
   411     int _aNodeNum;
   412     int _bNodeNum;
   413 
   414     int _edgeNum;
   415 
   416   public:
   417 
   418     class NodeSetError : public LogicError {
   419       virtual const char* exceptionName() const { 
   420 	return "lemon::FullBpUGraph::NodeSetError";
   421       }
   422     };
   423   
   424     class Node {
   425       friend class FullBpUGraphBase;
   426     protected:
   427       int id;
   428 
   429       Node(int _id) : id(_id) {}
   430     public:
   431       Node() {}
   432       Node(Invalid) { id = -1; }
   433       bool operator==(const Node i) const {return id==i.id;}
   434       bool operator!=(const Node i) const {return id!=i.id;}
   435       bool operator<(const Node i) const {return id<i.id;}
   436     };
   437 
   438     class Edge {
   439       friend class FullBpUGraphBase;
   440     protected:
   441       int id;
   442 
   443       Edge(int _id) { id = _id;}
   444     public:
   445       Edge() {}
   446       Edge (Invalid) { id = -1; }
   447       bool operator==(const Edge i) const {return id==i.id;}
   448       bool operator!=(const Edge i) const {return id!=i.id;}
   449       bool operator<(const Edge i) const {return id<i.id;}
   450     };
   451 
   452     void construct(int aNodeNum, int bNodeNum) {
   453       _aNodeNum = aNodeNum;
   454       _bNodeNum = bNodeNum;
   455       _edgeNum = aNodeNum * bNodeNum;
   456     }
   457 
   458     void firstANode(Node& node) const {
   459       node.id = 2 * _aNodeNum - 2;
   460       if (node.id < 0) node.id = -1; 
   461     }
   462     void nextANode(Node& node) const {
   463       node.id -= 2;
   464       if (node.id < 0) node.id = -1; 
   465     }
   466 
   467     void firstBNode(Node& node) const {
   468       node.id = 2 * _bNodeNum - 1;
   469     }
   470     void nextBNode(Node& node) const {
   471       node.id -= 2;
   472     }
   473 
   474     void first(Node& node) const {
   475       if (_aNodeNum > 0) {
   476 	node.id = 2 * _aNodeNum - 2;
   477       } else {
   478 	node.id = 2 * _bNodeNum - 1;
   479       }
   480     }
   481     void next(Node& node) const {
   482       node.id -= 2;
   483       if (node.id == -2) {
   484 	node.id = 2 * _bNodeNum - 1;
   485       }
   486     }
   487   
   488     void first(Edge& edge) const {
   489       edge.id = _edgeNum - 1;
   490     }
   491     void next(Edge& edge) const {
   492       --edge.id;
   493     }
   494 
   495     void firstOut(Edge& edge, const Node& node) const {
   496       LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
   497       edge.id = (node.id >> 1) * _bNodeNum;
   498     }
   499     void nextOut(Edge& edge) const {
   500       ++(edge.id);
   501       if (edge.id % _bNodeNum == 0) edge.id = -1;
   502     }
   503 
   504     void firstIn(Edge& edge, const Node& node) const {
   505       LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
   506       edge.id = (node.id >> 1);
   507     }
   508     void nextIn(Edge& edge) const {
   509       edge.id += _bNodeNum;
   510       if (edge.id >= _edgeNum) edge.id = -1;
   511     }
   512 
   513     static int id(const Node& node) {
   514       return node.id;
   515     }
   516     static Node nodeFromId(int id) {
   517       return Node(id);
   518     }
   519     int maxNodeId() const {
   520       return _aNodeNum > _bNodeNum ? 
   521 	_aNodeNum * 2 - 2 : _bNodeNum * 2 - 1;
   522     }
   523   
   524     static int id(const Edge& edge) {
   525       return edge.id;
   526     }
   527     static Edge edgeFromId(int id) {
   528       return Edge(id);
   529     }
   530     int maxEdgeId() const {
   531       return _edgeNum - 1;
   532     }
   533   
   534     static int aNodeId(const Node& node) {
   535       return node.id >> 1;
   536     }
   537     static Node fromANodeId(int id, Node) {
   538       return Node(id << 1);
   539     }
   540     int maxANodeId() const {
   541       return _aNodeNum;
   542     }
   543 
   544     static int bNodeId(const Node& node) {
   545       return node.id >> 1;
   546     }
   547     static Node fromBNodeId(int id) {
   548       return Node((id << 1) + 1);
   549     }
   550     int maxBNodeId() const {
   551       return _bNodeNum;
   552     }
   553 
   554     Node aNode(const Edge& edge) const {
   555       return Node((edge.id / _bNodeNum) << 1);
   556     }
   557     Node bNode(const Edge& edge) const {
   558       return Node(((edge.id % _bNodeNum) << 1) + 1);
   559     }
   560 
   561     static bool aNode(const Node& node) {
   562       return (node.id & 1) == 0;
   563     }
   564 
   565     static bool bNode(const Node& node) {
   566       return (node.id & 1) == 1;
   567     }
   568 
   569     static Node aNode(int index) {
   570       return Node(index << 1);
   571     }
   572 
   573     static Node bNode(int index) {
   574       return Node((index << 1) + 1);
   575     }
   576 
   577   };
   578 
   579 
   580   typedef StaticMappableBpUGraphExtender<
   581     IterableBpUGraphExtender<
   582     AlterableBpUGraphExtender<
   583     BpUGraphExtender <
   584     FullBpUGraphBase> > > >
   585   ExtendedFullBpUGraphBase;
   586 
   587 
   588   /// \ingroup graphs
   589   ///
   590   /// \brief An undirected full bipartite graph class.
   591   ///
   592   /// This is a simple and fast bipartite undirected full graph implementation.
   593   /// It is completely static, so you can neither add nor delete either
   594   /// edges or nodes.
   595   ///
   596   /// \sa FullGraph
   597   ///
   598   /// \author Balazs Dezso
   599   class FullBpUGraph : 
   600     public ExtendedFullBpUGraphBase {
   601   public:
   602     typedef ExtendedFullBpUGraphBase Parent;
   603     FullBpUGraph(int aNodeNum, int bNodeNum) {
   604       Parent::construct(aNodeNum, bNodeNum);
   605     }
   606   };
   607 
   608 } //namespace lemon
   609 
   610 
   611 #endif //LEMON_FULL_GRAPH_H