2 * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_GRAPH_ADAPTOR_H
18 #define LEMON_GRAPH_ADAPTOR_H
20 ///\ingroup graph_adaptors
22 ///\brief Several graph adaptors.
24 ///This file contains several useful graph adaptor functions.
26 ///\author Marton Makai
28 #include <lemon/invalid.h>
29 #include <lemon/maps.h>
30 #include <lemon/bits/erasable_graph_extender.h>
31 #include <lemon/bits/clearable_graph_extender.h>
32 #include <lemon/bits/extendable_graph_extender.h>
33 #include <lemon/bits/iterable_graph_extender.h>
34 #include <lemon/bits/alteration_notifier.h>
35 #include <lemon/bits/default_map.h>
36 #include <lemon/bits/undir_graph_extender.h>
44 \addtogroup graph_adaptors
49 Base type for the Graph Adaptors
51 \warning Graph adaptors are in even more experimental state than the other
52 parts of the lib. Use them at you own risk.
54 This is the base type for most of LEMON graph adaptors.
55 This class implements a trivial graph adaptor i.e. it only wraps the
56 functions and types of the graph. The purpose of this class is to
57 make easier implementing graph adaptors. E.g. if an adaptor is
58 considered which differs from the wrapped graph only in some of its
59 functions or types, then it can be derived from GraphAdaptor, and only the
60 differences should be implemented.
64 template<typename _Graph>
65 class GraphAdaptorBase {
68 /// \todo Is it needed?
69 typedef Graph BaseGraph;
70 typedef Graph ParentGraph;
74 GraphAdaptorBase() : graph(0) { }
75 void setGraph(Graph& _graph) { graph=&_graph; }
78 GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
80 typedef typename Graph::Node Node;
81 typedef typename Graph::Edge Edge;
83 void first(Node& i) const { graph->first(i); }
84 void first(Edge& i) const { graph->first(i); }
85 void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
86 void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
88 void next(Node& i) const { graph->next(i); }
89 void next(Edge& i) const { graph->next(i); }
90 void nextIn(Edge& i) const { graph->nextIn(i); }
91 void nextOut(Edge& i) const { graph->nextOut(i); }
93 Node source(const Edge& e) const { return graph->source(e); }
94 Node target(const Edge& e) const { return graph->target(e); }
96 int nodeNum() const { return graph->nodeNum(); }
97 int edgeNum() const { return graph->edgeNum(); }
99 Node addNode() const { return Node(graph->addNode()); }
100 Edge addEdge(const Node& source, const Node& target) const {
101 return Edge(graph->addEdge(source, target)); }
103 void erase(const Node& i) const { graph->erase(i); }
104 void erase(const Edge& i) const { graph->erase(i); }
106 void clear() const { graph->clear(); }
108 int id(const Node& v) const { return graph->id(v); }
109 int id(const Edge& e) const { return graph->id(e); }
111 Edge oppositeNode(const Edge& e) const {
112 return Edge(graph->opposite(e));
115 template <typename _Value>
116 class NodeMap : public _Graph::template NodeMap<_Value> {
118 typedef typename _Graph::template NodeMap<_Value> Parent;
119 NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
120 NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
121 : Parent(*gw.graph, value) { }
124 template <typename _Value>
125 class EdgeMap : public _Graph::template EdgeMap<_Value> {
127 typedef typename _Graph::template EdgeMap<_Value> Parent;
128 EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
129 EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
130 : Parent(*gw.graph, value) { }
135 template <typename _Graph>
137 public IterableGraphExtender<GraphAdaptorBase<_Graph> > {
139 typedef _Graph Graph;
140 typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
142 GraphAdaptor() : Parent() { }
145 GraphAdaptor(Graph& _graph) { setGraph(_graph); }
148 template <typename _Graph>
149 class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
151 typedef _Graph Graph;
152 typedef GraphAdaptorBase<_Graph> Parent;
154 RevGraphAdaptorBase() : Parent() { }
156 typedef typename Parent::Node Node;
157 typedef typename Parent::Edge Edge;
159 // using Parent::first;
160 void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
161 void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
163 // using Parent::next;
164 void nextIn(Edge& i) const { Parent::nextOut(i); }
165 void nextOut(Edge& i) const { Parent::nextIn(i); }
167 Node source(const Edge& e) const { return Parent::target(e); }
168 Node target(const Edge& e) const { return Parent::source(e); }
172 /// A graph adaptor which reverses the orientation of the edges.
174 ///\warning Graph adaptors are in even more experimental state than the other
175 ///parts of the lib. Use them at you own risk.
177 /// Let \f$G=(V, A)\f$ be a directed graph and
178 /// suppose that a graph instange \c g of type
179 /// \c ListGraph implements \f$G\f$.
183 /// For each directed edge
184 /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
185 /// reversing its orientation.
186 /// Then RevGraphAdaptor implements the graph structure with node-set
187 /// \f$V\f$ and edge-set
188 /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be
189 /// reversing the orientation of its edges. The following code shows how
190 /// such an instance can be constructed.
192 /// RevGraphAdaptor<ListGraph> gw(g);
194 ///\author Marton Makai
195 template<typename _Graph>
196 class RevGraphAdaptor :
197 public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
199 typedef _Graph Graph;
200 typedef IterableGraphExtender<
201 RevGraphAdaptorBase<_Graph> > Parent;
203 RevGraphAdaptor() { }
205 RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
209 template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
210 class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
212 typedef _Graph Graph;
213 typedef GraphAdaptorBase<_Graph> Parent;
215 NodeFilterMap* node_filter_map;
216 EdgeFilterMap* edge_filter_map;
217 SubGraphAdaptorBase() : Parent(),
218 node_filter_map(0), edge_filter_map(0) { }
220 void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
221 node_filter_map=&_node_filter_map;
223 void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
224 edge_filter_map=&_edge_filter_map;
228 // SubGraphAdaptorBase(Graph& _graph,
229 // NodeFilterMap& _node_filter_map,
230 // EdgeFilterMap& _edge_filter_map) :
232 // node_filter_map(&node_filter_map),
233 // edge_filter_map(&edge_filter_map) { }
235 typedef typename Parent::Node Node;
236 typedef typename Parent::Edge Edge;
238 void first(Node& i) const {
240 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
242 void first(Edge& i) const {
244 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
246 void firstIn(Edge& i, const Node& n) const {
247 Parent::firstIn(i, n);
248 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
250 void firstOut(Edge& i, const Node& n) const {
251 Parent::firstOut(i, n);
252 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
255 void next(Node& i) const {
257 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
259 void next(Edge& i) const {
261 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
263 void nextIn(Edge& i) const {
265 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
267 void nextOut(Edge& i) const {
269 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
272 /// This function hides \c n in the graph, i.e. the iteration
273 /// jumps over it. This is done by simply setting the value of \c n
274 /// to be false in the corresponding node-map.
275 void hide(const Node& n) const { node_filter_map->set(n, false); }
277 /// This function hides \c e in the graph, i.e. the iteration
278 /// jumps over it. This is done by simply setting the value of \c e
279 /// to be false in the corresponding edge-map.
280 void hide(const Edge& e) const { edge_filter_map->set(e, false); }
282 /// The value of \c n is set to be true in the node-map which stores
283 /// hide information. If \c n was hidden previuosly, then it is shown
285 void unHide(const Node& n) const { node_filter_map->set(n, true); }
287 /// The value of \c e is set to be true in the edge-map which stores
288 /// hide information. If \c e was hidden previuosly, then it is shown
290 void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
292 /// Returns true if \c n is hidden.
293 bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
295 /// Returns true if \c n is hidden.
296 bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
298 /// \warning This is a linear time operation and works only if s
299 /// \c Graph::NodeIt is defined.
300 /// \todo assign tags.
301 int nodeNum() const {
304 for (first(n); n!=INVALID; next(n)) ++i;
308 /// \warning This is a linear time operation and works only if
309 /// \c Graph::EdgeIt is defined.
310 /// \todo assign tags.
311 int edgeNum() const {
314 for (first(e); e!=INVALID; next(e)) ++i;
321 /*! \brief A graph adaptor for hiding nodes and edges from a graph.
323 \warning Graph adaptors are in even more experimental state than the other
324 parts of the lib. Use them at you own risk.
326 SubGraphAdaptor shows the graph with filtered node-set and
328 Let \f$G=(V, A)\f$ be a directed graph
329 and suppose that the graph instance \c g of type ListGraph implements
331 Let moreover \f$b_V\f$ and
332 \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set.
333 SubGraphAdaptor<...>::NodeIt iterates
334 on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and
335 SubGraphAdaptor<...>::EdgeIt iterates
336 on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly,
337 SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates
338 only on edges leaving and entering a specific node which have true value.
340 We have to note that this does not mean that an
341 induced subgraph is obtained, the node-iterator cares only the filter
342 on the node-set, and the edge-iterators care only the filter on the
345 typedef ListGraph Graph;
347 typedef Graph::Node Node;
348 typedef Graph::Edge Edge;
349 Node u=g.addNode(); //node of id 0
350 Node v=g.addNode(); //node of id 1
351 Node e=g.addEdge(u, v); //edge of id 0
352 Node f=g.addEdge(v, u); //edge of id 1
353 Graph::NodeMap<bool> nm(g, true);
355 Graph::EdgeMap<bool> em(g, true);
357 typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
359 for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
360 std::cout << ":-)" << std::endl;
361 for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
363 The output of the above code is the following.
369 Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
370 \c Graph::Node that is why \c g.id(n) can be applied.
372 For other examples see also the documentation of NodeSubGraphAdaptor and
377 template<typename _Graph, typename NodeFilterMap,
378 typename EdgeFilterMap>
379 class SubGraphAdaptor :
380 public IterableGraphExtender<
381 SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
383 typedef _Graph Graph;
384 typedef IterableGraphExtender<
385 SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
387 SubGraphAdaptor() { }
389 SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map,
390 EdgeFilterMap& _edge_filter_map) {
392 setNodeFilterMap(_node_filter_map);
393 setEdgeFilterMap(_edge_filter_map);
399 /*! \brief An adaptor for hiding nodes from a graph.
401 \warning Graph adaptors are in even more experimental state than the other
402 parts of the lib. Use them at you own risk.
404 An adaptor for hiding nodes from a graph.
405 This adaptor specializes SubGraphAdaptor in the way that only the node-set
406 can be filtered. Note that this does not mean of considering induced
407 subgraph, the edge-iterators consider the original edge-set.
410 template<typename Graph, typename NodeFilterMap>
411 class NodeSubGraphAdaptor :
412 public SubGraphAdaptor<Graph, NodeFilterMap,
413 ConstMap<typename Graph::Edge,bool> > {
415 typedef SubGraphAdaptor<Graph, NodeFilterMap,
416 ConstMap<typename Graph::Edge,bool> > Parent;
418 ConstMap<typename Graph::Edge, bool> const_true_map;
420 NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) :
421 Parent(), const_true_map(true) {
422 Parent::setGraph(_graph);
423 Parent::setNodeFilterMap(_node_filter_map);
424 Parent::setEdgeFilterMap(const_true_map);
429 /*! \brief An adaptor for hiding edges from a graph.
431 \warning Graph adaptors are in even more experimental state than the other
432 parts of the lib. Use them at you own risk.
434 An adaptor for hiding edges from a graph.
435 This adaptor specializes SubGraphAdaptor in the way that only the edge-set
436 can be filtered. The usefulness of this adaptor is demonstrated in the
437 problem of searching a maximum number of edge-disjoint shortest paths
439 two nodes \c s and \c t. Shortest here means being shortest w.r.t.
440 non-negative edge-lengths. Note that
441 the comprehension of the presented solution
442 need's some elementary knowledge from combinatorial optimization.
444 If a single shortest path is to be
445 searched between \c s and \c t, then this can be done easily by
446 applying the Dijkstra algorithm. What happens, if a maximum number of
447 edge-disjoint shortest paths is to be computed. It can be proved that an
448 edge can be in a shortest path if and only if it is tight with respect to
449 the potential function computed by Dijkstra. Moreover, any path containing
450 only such edges is a shortest one. Thus we have to compute a maximum number
451 of edge-disjoint paths between \c s and \c t in the graph which has edge-set
452 all the tight edges. The computation will be demonstrated on the following
453 graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim.
454 The full source code is available in \ref sub_graph_adaptor_demo.cc.
455 If you are interested in more demo programs, you can use
456 \ref dim_to_dot.cc to generate .dot files from dimacs files.
457 The .dot file of the following figure was generated by
458 the demo program \ref dim_to_dot.cc.
461 digraph lemon_dot_example {
462 node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
463 n0 [ label="0 (s)" ];
469 n6 [ label="6 (t)" ];
470 edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
471 n5 -> n6 [ label="9, length:4" ];
472 n4 -> n6 [ label="8, length:2" ];
473 n3 -> n5 [ label="7, length:1" ];
474 n2 -> n5 [ label="6, length:3" ];
475 n2 -> n6 [ label="5, length:5" ];
476 n2 -> n4 [ label="4, length:2" ];
477 n1 -> n4 [ label="3, length:3" ];
478 n0 -> n3 [ label="2, length:1" ];
479 n0 -> n2 [ label="1, length:2" ];
480 n0 -> n1 [ label="0, length:3" ];
489 readDimacs(std::cin, g, length, s, t);
491 cout << "edges with lengths (of form id, source--length->target): " << endl;
492 for(EdgeIt e(g); e!=INVALID; ++e)
493 cout << g.id(e) << ", " << g.id(g.source(e)) << "--"
494 << length[e] << "->" << g.id(g.target(e)) << endl;
496 cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
498 Next, the potential function is computed with Dijkstra.
500 typedef Dijkstra<Graph, LengthMap> Dijkstra;
501 Dijkstra dijkstra(g, length);
504 Next, we consrtruct a map which filters the edge-set to the tight edges.
506 typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap>
508 TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
510 typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
511 SubGW gw(g, tight_edge_filter);
513 Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed
514 with a max flow algorithm Preflow.
516 ConstMap<Edge, int> const_1_map(1);
517 Graph::EdgeMap<int> flow(g, 0);
519 Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> >
520 preflow(gw, s, t, const_1_map, flow);
525 cout << "maximum number of edge-disjoint shortest path: "
526 << preflow.flowValue() << endl;
527 cout << "edges of the maximum number of edge-disjoint shortest s-t paths: "
529 for(EdgeIt e(g); e!=INVALID; ++e)
531 cout << " " << g.id(g.source(e)) << "--"
532 << length[e] << "->" << g.id(g.target(e)) << endl;
534 The program has the following (expected :-)) output:
536 edges with lengths (of form id, source--length->target):
548 maximum number of edge-disjoint shortest path: 2
549 edges of the maximum number of edge-disjoint shortest s-t paths:
560 template<typename Graph, typename EdgeFilterMap>
561 class EdgeSubGraphAdaptor :
562 public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>,
565 typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>,
566 EdgeFilterMap> Parent;
568 ConstMap<typename Graph::Node, bool> const_true_map;
570 EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) :
571 Parent(), const_true_map(true) {
572 Parent::setGraph(_graph);
573 Parent::setNodeFilterMap(const_true_map);
574 Parent::setEdgeFilterMap(_edge_filter_map);
578 template <typename _Graph>
579 class UndirGraphAdaptorBase :
580 public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
582 typedef _Graph Graph;
583 typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
585 UndirGraphAdaptorBase() : Parent() { }
587 typedef typename Parent::UndirEdge UndirEdge;
588 typedef typename Parent::Edge Edge;
590 /// \bug Why cant an edge say that it is forward or not???
591 /// By this, a pointer to the graph have to be stored
592 /// The implementation
593 template <typename T>
596 const UndirGraphAdaptorBase<_Graph>* g;
597 template <typename TT> friend class EdgeMap;
598 typename _Graph::template EdgeMap<T> forward_map, backward_map;
603 EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g),
604 forward_map(*(g->graph)), backward_map(*(g->graph)) { }
606 EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g),
607 forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
609 void set(Edge e, T a) {
611 forward_map.set(e, a);
613 backward_map.set(e, a);
616 T operator[](Edge e) const {
618 return forward_map[e];
620 return backward_map[e];
624 template <typename T>
626 template <typename TT> friend class UndirEdgeMap;
627 typename _Graph::template EdgeMap<T> map;
630 typedef UndirEdge Key;
632 UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) :
635 UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) :
636 map(*(g.graph), a) { }
638 void set(UndirEdge e, T a) {
642 T operator[](UndirEdge e) const {
649 /// \brief An undirected graph is made from a directed graph by an adaptor
651 /// Undocumented, untested!!!
652 /// If somebody knows nice demo application, let's polulate it.
654 /// \author Marton Makai
655 template<typename _Graph>
656 class UndirGraphAdaptor :
657 public IterableUndirGraphExtender<
658 UndirGraphAdaptorBase<_Graph> > {
660 typedef _Graph Graph;
661 typedef IterableUndirGraphExtender<
662 UndirGraphAdaptorBase<_Graph> > Parent;
664 UndirGraphAdaptor() { }
666 UndirGraphAdaptor(_Graph& _graph) {
672 template <typename _Graph,
673 typename ForwardFilterMap, typename BackwardFilterMap>
674 class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
676 typedef _Graph Graph;
677 typedef GraphAdaptorBase<_Graph> Parent;
679 ForwardFilterMap* forward_filter;
680 BackwardFilterMap* backward_filter;
681 SubBidirGraphAdaptorBase() : Parent(),
682 forward_filter(0), backward_filter(0) { }
684 void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
685 forward_filter=&_forward_filter;
687 void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
688 backward_filter=&_backward_filter;
692 // SubGraphAdaptorBase(Graph& _graph,
693 // NodeFilterMap& _node_filter_map,
694 // EdgeFilterMap& _edge_filter_map) :
696 // node_filter_map(&node_filter_map),
697 // edge_filter_map(&edge_filter_map) { }
699 typedef typename Parent::Node Node;
700 typedef typename _Graph::Edge GraphEdge;
701 template <typename T> class EdgeMap;
702 /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from
703 /// _Graph::Edge. It contains an extra bool flag which is true
704 /// if and only if the
705 /// edge is the backward version of the original edge.
706 class Edge : public _Graph::Edge {
707 friend class SubBidirGraphAdaptorBase<
708 Graph, ForwardFilterMap, BackwardFilterMap>;
709 template<typename T> friend class EdgeMap;
711 bool backward; //true, iff backward
714 /// \todo =false is needed, or causes problems?
715 /// If \c _backward is false, then we get an edge corresponding to the
716 /// original one, otherwise its oppositely directed pair is obtained.
717 Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) :
718 _Graph::Edge(e), backward(_backward) { }
719 Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
720 bool operator==(const Edge& v) const {
721 return (this->backward==v.backward &&
722 static_cast<typename _Graph::Edge>(*this)==
723 static_cast<typename _Graph::Edge>(v));
725 bool operator!=(const Edge& v) const {
726 return (this->backward!=v.backward ||
727 static_cast<typename _Graph::Edge>(*this)!=
728 static_cast<typename _Graph::Edge>(v));
732 void first(Node& i) const {
736 void first(Edge& i) const {
739 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
740 !(*forward_filter)[i]) Parent::next(i);
741 if (*static_cast<GraphEdge*>(&i)==INVALID) {
744 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
745 !(*backward_filter)[i]) Parent::next(i);
749 void firstIn(Edge& i, const Node& n) const {
750 Parent::firstIn(i, n);
752 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
753 !(*forward_filter)[i]) Parent::nextIn(i);
754 if (*static_cast<GraphEdge*>(&i)==INVALID) {
755 Parent::firstOut(i, n);
757 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
758 !(*backward_filter)[i]) Parent::nextOut(i);
762 void firstOut(Edge& i, const Node& n) const {
763 Parent::firstOut(i, n);
765 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
766 !(*forward_filter)[i]) Parent::nextOut(i);
767 if (*static_cast<GraphEdge*>(&i)==INVALID) {
768 Parent::firstIn(i, n);
770 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
771 !(*backward_filter)[i]) Parent::nextIn(i);
775 void next(Node& i) const {
779 void next(Edge& i) const {
782 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
783 !(*forward_filter)[i]) Parent::next(i);
784 if (*static_cast<GraphEdge*>(&i)==INVALID) {
787 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
788 !(*backward_filter)[i]) Parent::next(i);
792 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
793 !(*backward_filter)[i]) Parent::next(i);
797 void nextIn(Edge& i) const {
799 Node n=Parent::target(i);
801 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
802 !(*forward_filter)[i]) Parent::nextIn(i);
803 if (*static_cast<GraphEdge*>(&i)==INVALID) {
804 Parent::firstOut(i, n);
806 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
807 !(*backward_filter)[i]) Parent::nextOut(i);
811 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
812 !(*backward_filter)[i]) Parent::nextOut(i);
816 void nextOut(Edge& i) const {
818 Node n=Parent::source(i);
820 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
821 !(*forward_filter)[i]) Parent::nextOut(i);
822 if (*static_cast<GraphEdge*>(&i)==INVALID) {
823 Parent::firstIn(i, n);
825 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
826 !(*backward_filter)[i]) Parent::nextIn(i);
830 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
831 !(*backward_filter)[i]) Parent::nextIn(i);
835 Node source(Edge e) const {
836 return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
837 Node target(Edge e) const {
838 return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
840 /// Gives back the opposite edge.
841 Edge opposite(const Edge& e) const {
843 f.backward=!f.backward;
847 /// \warning This is a linear time operation and works only if
848 /// \c Graph::EdgeIt is defined.
850 int edgeNum() const {
853 for (first(e); e!=INVALID; next(e)) ++i;
857 bool forward(const Edge& e) const { return !e.backward; }
858 bool backward(const Edge& e) const { return e.backward; }
860 template <typename T>
861 /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two
862 /// _Graph::EdgeMap one for the forward edges and
863 /// one for the backward edges.
865 template <typename TT> friend class EdgeMap;
866 typename _Graph::template EdgeMap<T> forward_map, backward_map;
871 EdgeMap(const SubBidirGraphAdaptorBase<_Graph,
872 ForwardFilterMap, BackwardFilterMap>& g) :
873 forward_map(*(g.graph)), backward_map(*(g.graph)) { }
875 EdgeMap(const SubBidirGraphAdaptorBase<_Graph,
876 ForwardFilterMap, BackwardFilterMap>& g, T a) :
877 forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
879 void set(Edge e, T a) {
881 forward_map.set(e, a);
883 backward_map.set(e, a);
886 // typename _Graph::template EdgeMap<T>::ConstReference
887 // operator[](Edge e) const {
889 // return forward_map[e];
891 // return backward_map[e];
894 // typename _Graph::template EdgeMap<T>::Reference
895 T operator[](Edge e) const {
897 return forward_map[e];
899 return backward_map[e];
903 forward_map.update();
904 backward_map.update();
911 ///\brief An adaptor for composing a subgraph of a
912 /// bidirected graph made from a directed one.
914 /// An adaptor for composing a subgraph of a
915 /// bidirected graph made from a directed one.
917 ///\warning Graph adaptors are in even more experimental state than the other
918 ///parts of the lib. Use them at you own risk.
920 /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge
921 /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
922 /// reversing its orientation. We are given moreover two bool valued
923 /// maps on the edge-set,
924 /// \f$forward\_filter\f$, and \f$backward\_filter\f$.
925 /// SubBidirGraphAdaptor implements the graph structure with node-set
926 /// \f$V\f$ and edge-set
927 /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$.
928 /// The purpose of writing + instead of union is because parallel
929 /// edges can arise. (Similarly, antiparallel edges also can arise).
930 /// In other words, a subgraph of the bidirected graph obtained, which
931 /// is given by orienting the edges of the original graph in both directions.
932 /// As the oppositely directed edges are logically different,
933 /// the maps are able to attach different values for them.
935 /// An example for such a construction is \c RevGraphAdaptor where the
936 /// forward_filter is everywhere false and the backward_filter is
937 /// everywhere true. We note that for sake of efficiency,
938 /// \c RevGraphAdaptor is implemented in a different way.
939 /// But BidirGraphAdaptor is obtained from
940 /// SubBidirGraphAdaptor by considering everywhere true
941 /// valued maps both for forward_filter and backward_filter.
943 /// The most important application of SubBidirGraphAdaptor
944 /// is ResGraphAdaptor, which stands for the residual graph in directed
945 /// flow and circulation problems.
946 /// As adaptors usually, the SubBidirGraphAdaptor implements the
947 /// above mentioned graph structure without its physical storage,
948 /// that is the whole stuff is stored in constant memory.
949 template<typename _Graph,
950 typename ForwardFilterMap, typename BackwardFilterMap>
951 class SubBidirGraphAdaptor :
952 public IterableGraphExtender<
953 SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
955 typedef _Graph Graph;
956 typedef IterableGraphExtender<
957 SubBidirGraphAdaptorBase<
958 _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
960 SubBidirGraphAdaptor() { }
962 SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter,
963 BackwardFilterMap& _backward_filter) {
965 setForwardFilterMap(_forward_filter);
966 setBackwardFilterMap(_backward_filter);
972 ///\brief An adaptor for composing bidirected graph from a directed one.
974 ///\warning Graph adaptors are in even more experimental state than the other
975 ///parts of the lib. Use them at you own risk.
977 /// An adaptor for composing bidirected graph from a directed one.
978 /// A bidirected graph is composed over the directed one without physical
979 /// storage. As the oppositely directed edges are logically different ones
980 /// the maps are able to attach different values for them.
981 template<typename Graph>
982 class BidirGraphAdaptor :
983 public SubBidirGraphAdaptor<
985 ConstMap<typename Graph::Edge, bool>,
986 ConstMap<typename Graph::Edge, bool> > {
988 typedef SubBidirGraphAdaptor<
990 ConstMap<typename Graph::Edge, bool>,
991 ConstMap<typename Graph::Edge, bool> > Parent;
993 ConstMap<typename Graph::Edge, bool> cm;
995 BidirGraphAdaptor() : Parent(), cm(true) {
996 Parent::setForwardFilterMap(cm);
997 Parent::setBackwardFilterMap(cm);
1000 BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) {
1001 Parent::setGraph(_graph);
1002 Parent::setForwardFilterMap(cm);
1003 Parent::setBackwardFilterMap(cm);
1006 int edgeNum() const {
1007 return 2*this->graph->edgeNum();
1009 // KEEP_MAPS(Parent, BidirGraphAdaptor);
1013 template<typename Graph, typename Number,
1014 typename CapacityMap, typename FlowMap>
1015 class ResForwardFilter {
1016 // const Graph* graph;
1017 const CapacityMap* capacity;
1018 const FlowMap* flow;
1020 ResForwardFilter(/*const Graph& _graph, */
1021 const CapacityMap& _capacity, const FlowMap& _flow) :
1022 /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
1023 ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
1024 void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
1025 void setFlow(const FlowMap& _flow) { flow=&_flow; }
1026 bool operator[](const typename Graph::Edge& e) const {
1027 return (Number((*flow)[e]) < Number((*capacity)[e]));
1031 template<typename Graph, typename Number,
1032 typename CapacityMap, typename FlowMap>
1033 class ResBackwardFilter {
1034 const CapacityMap* capacity;
1035 const FlowMap* flow;
1037 ResBackwardFilter(/*const Graph& _graph,*/
1038 const CapacityMap& _capacity, const FlowMap& _flow) :
1039 /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
1040 ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
1041 void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
1042 void setFlow(const FlowMap& _flow) { flow=&_flow; }
1043 bool operator[](const typename Graph::Edge& e) const {
1044 return (Number(0) < Number((*flow)[e]));
1049 /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
1051 An adaptor for composing the residual graph for directed flow and circulation problems.
1052 Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a
1053 number type. Let moreover
1054 \f$f,c:A\to F\f$, be functions on the edge-set.
1055 In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow
1056 and \f$c\f$ for a capacity function.
1057 Suppose that a graph instange \c g of type
1058 \c ListGraph implements \f$G\f$.
1062 Then RevGraphAdaptor implements the graph structure with node-set
1063 \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where
1064 \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and
1065 \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$,
1066 i.e. the so called residual graph.
1067 When we take the union \f$A_{forward}\cup A_{backward}\f$,
1068 multilicities are counted, i.e. if an edge is in both
1069 \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it
1071 The following code shows how
1072 such an instance can be constructed.
1074 typedef ListGraph Graph;
1075 Graph::EdgeMap<int> f(g);
1076 Graph::EdgeMap<int> c(g);
1077 ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
1079 \author Marton Makai
1081 template<typename Graph, typename Number,
1082 typename CapacityMap, typename FlowMap>
1083 class ResGraphAdaptor :
1084 public SubBidirGraphAdaptor<
1086 ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,
1087 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
1089 typedef SubBidirGraphAdaptor<
1091 ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,
1092 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
1094 const CapacityMap* capacity;
1096 ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
1097 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
1098 ResGraphAdaptor() : Parent(),
1099 capacity(0), flow(0) { }
1100 void setCapacityMap(const CapacityMap& _capacity) {
1101 capacity=&_capacity;
1102 forward_filter.setCapacity(_capacity);
1103 backward_filter.setCapacity(_capacity);
1105 void setFlowMap(FlowMap& _flow) {
1107 forward_filter.setFlow(_flow);
1108 backward_filter.setFlow(_flow);
1111 ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity,
1113 Parent(), capacity(&_capacity), flow(&_flow),
1114 forward_filter(/*_graph,*/ _capacity, _flow),
1115 backward_filter(/*_graph,*/ _capacity, _flow) {
1116 Parent::setGraph(_graph);
1117 Parent::setForwardFilterMap(forward_filter);
1118 Parent::setBackwardFilterMap(backward_filter);
1121 typedef typename Parent::Edge Edge;
1123 void augment(const Edge& e, Number a) const {
1124 if (Parent::forward(e))
1125 flow->set(e, (*flow)[e]+a);
1127 flow->set(e, (*flow)[e]-a);
1130 /// \brief Residual capacity map.
1132 /// In generic residual graphs the residual capacity can be obtained
1136 const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
1138 typedef Number Value;
1140 ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>&
1141 _res_graph) : res_graph(&_res_graph) { }
1142 Number operator[](const Edge& e) const {
1143 if (res_graph->forward(e))
1144 return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e];
1146 return (*(res_graph->flow))[e];
1150 // KEEP_MAPS(Parent, ResGraphAdaptor);
1155 template <typename _Graph, typename FirstOutEdgesMap>
1156 class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
1158 typedef _Graph Graph;
1159 typedef GraphAdaptorBase<_Graph> Parent;
1161 FirstOutEdgesMap* first_out_edges;
1162 ErasingFirstGraphAdaptorBase() : Parent(),
1163 first_out_edges(0) { }
1165 void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
1166 first_out_edges=&_first_out_edges;
1171 typedef typename Parent::Node Node;
1172 typedef typename Parent::Edge Edge;
1174 void firstOut(Edge& i, const Node& n) const {
1175 i=(*first_out_edges)[n];
1178 void erase(const Edge& e) const {
1182 first_out_edges->set(n, f);
1187 /// For blocking flows.
1189 ///\warning Graph adaptors are in even more experimental state than the other
1190 ///parts of the lib. Use them at you own risk.
1192 /// This graph adaptor is used for on-the-fly
1193 /// Dinits blocking flow computations.
1194 /// For each node, an out-edge is stored which is used when the
1196 /// OutEdgeIt& first(OutEdgeIt&, const Node&)
1200 /// \author Marton Makai
1201 template <typename _Graph, typename FirstOutEdgesMap>
1202 class ErasingFirstGraphAdaptor :
1203 public IterableGraphExtender<
1204 ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
1206 typedef _Graph Graph;
1207 typedef IterableGraphExtender<
1208 ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
1209 ErasingFirstGraphAdaptor(Graph& _graph,
1210 FirstOutEdgesMap& _first_out_edges) {
1212 setFirstOutEdgesMap(_first_out_edges);
1217 template <typename _Graph>
1218 class NewEdgeSetAdaptorBase {
1221 typedef _Graph Graph;
1222 typedef typename Graph::Node Node;
1223 typedef typename Graph::NodeIt NodeIt;
1228 int first_out, first_in;
1229 NodeT() : first_out(-1), first_in(-1) {}
1232 class NodesImpl : protected Graph::template NodeMap<NodeT> {
1234 typedef typename Graph::template NodeMap<NodeT> Parent;
1235 typedef NewEdgeSetAdaptorBase<Graph> Adaptor;
1241 NodesImpl(Adaptor& _adaptor, const Graph& _graph)
1242 : Parent(_graph), adaptor(_adaptor) {}
1244 virtual ~NodesImpl() {}
1246 virtual void build() {
1250 virtual void clear() {
1255 virtual void add(const Node& node) {
1260 virtual void erase(const Node& node) {
1261 adaptor._erase(node);
1262 Parent::erase(node);
1265 NodeT& operator[](const Node& node) {
1266 return Parent::operator[](node);
1269 const NodeT& operator[](const Node& node) const {
1270 return Parent::operator[](node);
1278 Node source, target;
1279 int next_out, next_in;
1280 int prev_out, prev_in;
1281 EdgeT() : prev_out(-1), prev_in(-1) {}
1284 std::vector<EdgeT> edges;
1287 int first_free_edge;
1289 virtual void _clear() = 0;
1290 virtual void _add(const Node& node) = 0;
1291 virtual void _erase(const Node& node) = 0;
1295 void initalize(const Graph& _graph, NodesImpl& _nodes) {
1303 friend class NewEdgeSetAdaptorBase<Graph>;
1305 Edge(int _id) : id(_id) {}
1309 Edge(Invalid) : id(-1) {}
1310 bool operator==(const Edge& edge) const { return id == edge.id; }
1311 bool operator!=(const Edge& edge) const { return id != edge.id; }
1312 bool operator<(const Edge& edge) const { return id < edge.id; }
1315 NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {}
1316 virtual ~NewEdgeSetAdaptorBase() {}
1318 Edge addEdge(const Node& source, const Node& target) {
1320 if (first_free_edge == -1) {
1322 edges.push_back(EdgeT());
1324 n = first_free_edge;
1325 first_free_edge = edges[first_free_edge].next_in;
1327 edges[n].next_in = (*nodes)[target].first_in;
1328 (*nodes)[target].first_in = n;
1329 edges[n].next_out = (*nodes)[source].first_out;
1330 (*nodes)[source].first_out = n;
1331 edges[n].source = source;
1332 edges[n].target = target;
1336 void erase(const Edge& edge) {
1338 if (edges[n].prev_in != -1) {
1339 edges[edges[n].prev_in].next_in = edges[n].next_in;
1341 (*nodes)[edges[n].target].first_in = edges[n].next_in;
1343 if (edges[n].next_in != -1) {
1344 edges[edges[n].next_in].prev_in = edges[n].prev_in;
1347 if (edges[n].prev_out != -1) {
1348 edges[edges[n].prev_out].next_out = edges[n].next_out;
1350 (*nodes)[edges[n].source].first_out = edges[n].next_out;
1352 if (edges[n].next_out != -1) {
1353 edges[edges[n].next_out].prev_out = edges[n].prev_out;
1358 void first(Node& node) const {
1362 void next(Node& node) const {
1366 void first(Edge& edge) const {
1368 for (first(node); node != INVALID && (*nodes)[node].first_in == -1;
1370 edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
1373 void next(Edge& edge) const {
1374 if (edges[edge.id].next_in != -1) {
1375 edge.id = edges[edge.id].next_in;
1377 Node node = edges[edge.id].target;
1378 for (next(node); node != INVALID && (*nodes)[node].first_in == -1;
1380 edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
1384 void firstOut(Edge& edge, const Node& node) const {
1385 edge.id = (*nodes)[node].first_out;
1388 void nextOut(Edge& edge) const {
1389 edge.id = edges[edge.id].next_out;
1392 void firstIn(Edge& edge, const Node& node) const {
1393 edge.id = (*nodes)[node].first_in;
1396 void nextIn(Edge& edge) const {
1397 edge.id = edges[edge.id].next_in;
1400 int id(const Node& node) const { return graph->id(node); }
1401 int id(const Edge& edge) const { return edge.id; }
1403 Node fromId(int id, Node) const { return graph->fromId(id, Node()); }
1404 Edge fromId(int id, Edge) const { return Edge(id); }
1406 int maxId(Node) const { return graph->maxId(Node()); };
1407 int maxId(Edge) const { return edges.size() - 1; }
1409 Node source(const Edge& edge) const { return edges[edge.id].source;}
1410 Node target(const Edge& edge) const { return edges[edge.id].target;}
1415 /// \brief Graph adaptor using a node set of another graph and an
1418 /// This structure can be used to establish another graph over a node set
1419 /// of an existing one. The node iterator will go through the nodes of the
1422 /// \param _Graph The type of the graph which shares its node set with
1423 /// this class. Its interface must conform to the \ref skeleton::StaticGraph
1424 /// "StaticGraph" concept.
1426 /// In the edge extension and removing it conforms to the
1427 /// \ref skeleton::ExtendableGraph "ExtendableGraph" concept.
1428 template <typename _Graph>
1429 class NewEdgeSetAdaptor :
1430 public ErasableGraphExtender<
1431 ClearableGraphExtender<
1432 ExtendableGraphExtender<
1433 DefaultMappableGraphExtender<
1434 IterableGraphExtender<
1435 AlterableGraphExtender<
1436 NewEdgeSetAdaptorBase<_Graph> > > > > > > {
1440 typedef ErasableGraphExtender<
1441 ClearableGraphExtender<
1442 ExtendableGraphExtender<
1443 DefaultMappableGraphExtender<
1444 IterableGraphExtender<
1445 AlterableGraphExtender<
1446 NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent;
1449 typedef typename Parent::Node Node;
1450 typedef typename Parent::Edge Edge;
1454 virtual void _clear() {
1455 Parent::edges.clear();
1456 Parent::first_edge = -1;
1457 Parent::first_free_edge = -1;
1458 Parent::getNotifier(Edge()).clear();
1459 Parent::getNotifier(Node()).clear();
1462 virtual void _add(const Node& node) {
1463 Parent::getNotifier(Node()).add(node);
1466 virtual void _erase(const Node& node) {
1468 Parent::firstOut(edge, node);
1469 while (edge != INVALID) {
1470 Parent::erase(edge);
1471 Parent::firstOut(edge, node);
1474 Parent::firstIn(edge, node);
1475 while (edge != INVALID) {
1476 Parent::erase(edge);
1477 Parent::firstIn(edge, node);
1480 Parent::getNotifier(Node()).erase(node);
1484 typedef typename Parent::NodesImpl NodesImpl;
1490 /// \brief Constructor of the adaptor.
1492 /// Constructor of the adaptor.
1493 NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
1494 Parent::initalize(_graph, nodes);
1498 Parent::getNotifier(Edge()).clear();
1500 Parent::edges.clear();
1501 Parent::first_edge = -1;
1502 Parent::first_free_edge = -1;
1507 /// \brief Graph adaptor using a node set of another graph and an
1508 /// own undir edge set.
1510 /// This structure can be used to establish another undirected graph over
1511 /// a node set of an existing one. The node iterator will go through the
1512 /// nodes of the original graph.
1514 /// \param _Graph The type of the graph which shares its node set with
1515 /// this class. Its interface must conform to the \ref skeleton::StaticGraph
1516 /// "StaticGraph" concept.
1518 /// In the edge extension and removing it conforms to the
1519 /// \ref skeleton::ExtendableGraph "ExtendableGraph" concept.
1520 template <typename _Graph>
1521 class NewUndirEdgeSetAdaptor :
1522 public ErasableUndirGraphExtender<
1523 ClearableUndirGraphExtender<
1524 ExtendableUndirGraphExtender<
1525 MappableUndirGraphExtender<
1526 IterableUndirGraphExtender<
1527 AlterableUndirGraphExtender<
1529 NewEdgeSetAdaptorBase<_Graph> > > > > > > > {
1533 typedef ErasableUndirGraphExtender<
1534 ClearableUndirGraphExtender<
1535 ExtendableUndirGraphExtender<
1536 MappableUndirGraphExtender<
1537 IterableUndirGraphExtender<
1538 AlterableUndirGraphExtender<
1540 NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent;
1543 typedef typename Parent::Node Node;
1544 typedef typename Parent::Edge Edge;
1545 typedef typename Parent::UndirEdge UndirEdge;
1549 virtual void _clear() {
1550 Parent::edges.clear();
1551 Parent::first_edge = -1;
1552 Parent::first_free_edge = -1;
1553 Parent::getNotifier(Edge()).clear();
1554 Parent::getNotifier(Node()).clear();
1557 virtual void _add(const Node& node) {
1558 Parent::getNotifier(Node()).add(node);
1561 virtual void _erase(const Node& node) {
1563 Parent::firstOut(edge, node);
1564 while (edge != INVALID) {
1565 Parent::erase(edge);
1566 Parent::firstOut(edge, node);
1569 Parent::firstIn(edge, node);
1570 while (edge != INVALID) {
1571 Parent::erase(edge);
1572 Parent::firstIn(edge, node);
1575 Parent::getNotifier(Node()).erase(node);
1578 typedef typename Parent::NodesImpl NodesImpl;
1585 /// \brief Constructor of the adaptor.
1587 /// Constructor of the adaptor.
1588 NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
1589 Parent::initalize(_graph, nodes);
1593 Parent::getNotifier(Edge()).clear();
1594 Parent::getNotifier(UndirEdge()).clear();
1596 Parent::edges.clear();
1597 Parent::first_edge = -1;
1598 Parent::first_free_edge = -1;
1607 #endif //LEMON_GRAPH_ADAPTOR_H