lemon/graph_adaptor.h
author deba
Fri, 29 Sep 2006 11:23:54 +0000
changeset 2222 a24939ee343c
parent 2111 ea1fa1bc3f6d
child 2251 37fa5f83251e
permissions -rw-r--r--
findEdge extension also for the BpUGraphs
proper handling of loop edges in the UGraph::findUEdge
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_ADAPTOR_H
    20 #define LEMON_GRAPH_ADAPTOR_H
    21 
    22 ///\ingroup graph_adaptors
    23 ///\file
    24 ///\brief Several graph adaptors.
    25 ///
    26 ///This file contains several useful graph adaptor functions.
    27 ///
    28 ///\author Marton Makai and Balazs Dezso
    29 
    30 #include <lemon/bits/invalid.h>
    31 #include <lemon/bits/variant.h>
    32 #include <lemon/maps.h>
    33 
    34 #include <lemon/bits/base_extender.h>
    35 #include <lemon/bits/graph_adaptor_extender.h>
    36 #include <lemon/bits/graph_extender.h>
    37 
    38 #include <lemon/tolerance.h>
    39 
    40 #include <algorithm>
    41 
    42 namespace lemon {
    43 
    44   ///\brief Base type for the Graph Adaptors
    45   ///
    46   ///Base type for the Graph Adaptors
    47   ///
    48   ///This is the base type for most of LEMON graph adaptors. 
    49   ///This class implements a trivial graph adaptor i.e. it only wraps the 
    50   ///functions and types of the graph. The purpose of this class is to 
    51   ///make easier implementing graph adaptors. E.g. if an adaptor is 
    52   ///considered which differs from the wrapped graph only in some of its 
    53   ///functions or types, then it can be derived from GraphAdaptor,
    54   ///and only the 
    55   ///differences should be implemented.
    56   ///
    57   ///author Marton Makai 
    58   template<typename _Graph>
    59   class GraphAdaptorBase {
    60   public:
    61     typedef _Graph Graph;
    62     typedef GraphAdaptorBase Adaptor;
    63     typedef Graph ParentGraph;
    64 
    65   protected:
    66     Graph* graph;
    67     GraphAdaptorBase() : graph(0) { }
    68     void setGraph(Graph& _graph) { graph=&_graph; }
    69 
    70   public:
    71     GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
    72 
    73     typedef typename Graph::Node Node;
    74     typedef typename Graph::Edge Edge;
    75    
    76     void first(Node& i) const { graph->first(i); }
    77     void first(Edge& i) const { graph->first(i); }
    78     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    79     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    80 
    81     void next(Node& i) const { graph->next(i); }
    82     void next(Edge& i) const { graph->next(i); }
    83     void nextIn(Edge& i) const { graph->nextIn(i); }
    84     void nextOut(Edge& i) const { graph->nextOut(i); }
    85 
    86     Node source(const Edge& e) const { return graph->source(e); }
    87     Node target(const Edge& e) const { return graph->target(e); }
    88 
    89     typedef NodeNumTagIndicator<Graph> NodeNumTag;
    90     int nodeNum() const { return graph->nodeNum(); }
    91     
    92     typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
    93     int edgeNum() const { return graph->edgeNum(); }
    94 
    95     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
    96     Edge findEdge(const Node& source, const Node& target, 
    97 		  const Edge& prev = INVALID) {
    98       return graph->findEdge(source, target, prev);
    99     }
   100   
   101     Node addNode() const { 
   102       return Node(graph->addNode()); 
   103     }
   104 
   105     Edge addEdge(const Node& source, const Node& target) const { 
   106       return Edge(graph->addEdge(source, target)); 
   107     }
   108 
   109     void erase(const Node& i) const { graph->erase(i); }
   110     void erase(const Edge& i) const { graph->erase(i); }
   111   
   112     void clear() const { graph->clear(); }
   113     
   114     int id(const Node& v) const { return graph->id(v); }
   115     int id(const Edge& e) const { return graph->id(e); }
   116 
   117     Node fromNodeId(int id) const {
   118       return graph->fromNodeId(id);
   119     }
   120 
   121     Edge fromEdgeId(int id) const {
   122       return graph->fromEdgeId(id);
   123     }
   124 
   125     int maxNodeId() const {
   126       return graph->maxNodeId();
   127     }
   128 
   129     int maxEdgeId() const {
   130       return graph->maxEdgeId();
   131     }
   132 
   133     typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
   134 
   135     NodeNotifier& getNotifier(Node) const {
   136       return graph->getNotifier(Node());
   137     } 
   138 
   139     typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
   140 
   141     EdgeNotifier& getNotifier(Edge) const {
   142       return graph->getNotifier(Edge());
   143     } 
   144     
   145     template <typename _Value>
   146     class NodeMap : public Graph::template NodeMap<_Value> {
   147     public:
   148 
   149       typedef typename Graph::template NodeMap<_Value> Parent;
   150 
   151       explicit NodeMap(const Adaptor& ga) 
   152 	: Parent(*ga.graph) {}
   153 
   154       NodeMap(const Adaptor& ga, const _Value& value)
   155 	: Parent(*ga.graph, value) { }
   156 
   157       NodeMap& operator=(const NodeMap& cmap) {
   158         return operator=<NodeMap>(cmap);
   159       }
   160 
   161       template <typename CMap>
   162       NodeMap& operator=(const CMap& cmap) {
   163         Parent::operator=(cmap);
   164         return *this;
   165       }
   166       
   167     };
   168 
   169     template <typename _Value>
   170     class EdgeMap : public Graph::template EdgeMap<_Value> {
   171     public:
   172       
   173       typedef typename Graph::template EdgeMap<_Value> Parent;
   174       
   175       explicit EdgeMap(const Adaptor& ga) 
   176 	: Parent(*ga.graph) {}
   177 
   178       EdgeMap(const Adaptor& ga, const _Value& value)
   179 	: Parent(*ga.graph, value) {}
   180 
   181       EdgeMap& operator=(const EdgeMap& cmap) {
   182         return operator=<EdgeMap>(cmap);
   183       }
   184 
   185       template <typename CMap>
   186       EdgeMap& operator=(const CMap& cmap) {
   187         Parent::operator=(cmap);
   188         return *this;
   189       }
   190 
   191     };
   192 
   193   };
   194 
   195   ///\ingroup graph_adaptors
   196   ///
   197   ///\brief Trivial Graph Adaptor
   198   /// 
   199   /// This class is an adaptor which does not change the adapted graph.
   200   /// It can be used only to test the graph adaptors.
   201   template <typename _Graph>
   202   class GraphAdaptor :
   203     public GraphAdaptorExtender<GraphAdaptorBase<_Graph> > { 
   204   public:
   205     typedef _Graph Graph;
   206     typedef GraphAdaptorExtender<GraphAdaptorBase<_Graph> > Parent;
   207   protected:
   208     GraphAdaptor() : Parent() { }
   209 
   210   public:
   211     explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
   212   };
   213 
   214   /// \brief Just gives back a graph adaptor
   215   ///
   216   /// Just gives back a graph adaptor which 
   217   /// should be provide original graph
   218   template<typename Graph>
   219   GraphAdaptor<const Graph>
   220   graphAdaptor(const Graph& graph) {
   221     return GraphAdaptor<const Graph>(graph);
   222   }
   223 
   224 
   225   template <typename _Graph>
   226   class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   227   public:
   228     typedef _Graph Graph;
   229     typedef GraphAdaptorBase<_Graph> Parent;
   230   protected:
   231     RevGraphAdaptorBase() : Parent() { }
   232   public:
   233     typedef typename Parent::Node Node;
   234     typedef typename Parent::Edge Edge;
   235 
   236     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   237     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   238 
   239     void nextIn(Edge& i) const { Parent::nextOut(i); }
   240     void nextOut(Edge& i) const { Parent::nextIn(i); }
   241 
   242     Node source(const Edge& e) const { return Parent::target(e); }
   243     Node target(const Edge& e) const { return Parent::source(e); }
   244 
   245     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   246     Edge findEdge(const Node& source, const Node& target, 
   247 		  const Edge& prev = INVALID) {
   248       return Parent::findEdge(target, source, prev);
   249     }
   250 
   251   };
   252     
   253 
   254   ///\ingroup graph_adaptors
   255   ///
   256   ///\brief A graph adaptor which reverses the orientation of the edges.
   257   ///
   258   /// If \c g is defined as
   259   ///\code
   260   /// ListGraph g;
   261   ///\endcode
   262   /// then
   263   ///\code
   264   /// RevGraphAdaptor<ListGraph> ga(g);
   265   ///\endcode
   266   /// implements the graph obtained from \c g by 
   267   /// reversing the orientation of its edges.
   268   ///
   269   /// A good example of using RevGraphAdaptor is to decide that the
   270   /// directed graph is wheter strongly connected or not. If from one
   271   /// node each node is reachable and from each node is reachable this
   272   /// node then and just then the graph is strongly connected. Instead of
   273   /// this condition we use a little bit different. From one node each node
   274   /// ahould be reachable in the graph and in the reversed graph. Now this
   275   /// condition can be checked with the Dfs algorithm class and the
   276   /// RevGraphAdaptor algorithm class.
   277   ///
   278   /// And look at the code:
   279   ///
   280   ///\code
   281   /// bool stronglyConnected(const Graph& graph) {
   282   ///   if (NodeIt(graph) == INVALID) return true;
   283   ///   Dfs<Graph> dfs(graph);
   284   ///   dfs.run(NodeIt(graph));
   285   ///   for (NodeIt it(graph); it != INVALID; ++it) {
   286   ///     if (!dfs.reached(it)) {
   287   ///       return false;
   288   ///     }
   289   ///   }
   290   ///   typedef RevGraphAdaptor<const Graph> RGraph;
   291   ///   RGraph rgraph(graph);
   292   ///   DfsVisit<RGraph> rdfs(rgraph);
   293   ///   rdfs.run(NodeIt(graph));
   294   ///   for (NodeIt it(graph); it != INVALID; ++it) {
   295   ///     if (!rdfs.reached(it)) {
   296   ///       return false;
   297   ///     }
   298   ///   }
   299   ///   return true;
   300   /// }
   301   ///\endcode
   302   template<typename _Graph>
   303   class RevGraphAdaptor : 
   304     public GraphAdaptorExtender<RevGraphAdaptorBase<_Graph> > {
   305   public:
   306     typedef _Graph Graph;
   307     typedef GraphAdaptorExtender<
   308       RevGraphAdaptorBase<_Graph> > Parent;
   309   protected:
   310     RevGraphAdaptor() { }
   311   public:
   312     explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
   313   };
   314 
   315   /// \brief Just gives back a reverse graph adaptor
   316   ///
   317   /// Just gives back a reverse graph adaptor
   318   template<typename Graph>
   319   RevGraphAdaptor<const Graph>
   320   revGraphAdaptor(const Graph& graph) {
   321     return RevGraphAdaptor<const Graph>(graph);
   322   }
   323 
   324   template <typename _Graph, typename NodeFilterMap, 
   325 	    typename EdgeFilterMap, bool checked = true>
   326   class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   327   public:
   328     typedef _Graph Graph;
   329     typedef SubGraphAdaptorBase Adaptor;
   330     typedef GraphAdaptorBase<_Graph> Parent;
   331   protected:
   332     NodeFilterMap* node_filter_map;
   333     EdgeFilterMap* edge_filter_map;
   334     SubGraphAdaptorBase() : Parent(), 
   335 			    node_filter_map(0), edge_filter_map(0) { }
   336 
   337     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   338       node_filter_map=&_node_filter_map;
   339     }
   340     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   341       edge_filter_map=&_edge_filter_map;
   342     }
   343 
   344   public:
   345 
   346     typedef typename Parent::Node Node;
   347     typedef typename Parent::Edge Edge;
   348 
   349     void first(Node& i) const { 
   350       Parent::first(i); 
   351       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   352     }
   353 
   354     void first(Edge& i) const { 
   355       Parent::first(i); 
   356       while (i!=INVALID && (!(*edge_filter_map)[i] 
   357 	     || !(*node_filter_map)[Parent::source(i)]
   358 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   359     }
   360 
   361     void firstIn(Edge& i, const Node& n) const { 
   362       Parent::firstIn(i, n); 
   363       while (i!=INVALID && (!(*edge_filter_map)[i] 
   364 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   365     }
   366 
   367     void firstOut(Edge& i, const Node& n) const { 
   368       Parent::firstOut(i, n); 
   369       while (i!=INVALID && (!(*edge_filter_map)[i] 
   370 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   371     }
   372 
   373     void next(Node& i) const { 
   374       Parent::next(i); 
   375       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   376     }
   377 
   378     void next(Edge& i) const { 
   379       Parent::next(i); 
   380       while (i!=INVALID && (!(*edge_filter_map)[i] 
   381 	     || !(*node_filter_map)[Parent::source(i)]
   382 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   383     }
   384 
   385     void nextIn(Edge& i) const { 
   386       Parent::nextIn(i); 
   387       while (i!=INVALID && (!(*edge_filter_map)[i] 
   388 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   389     }
   390 
   391     void nextOut(Edge& i) const { 
   392       Parent::nextOut(i); 
   393       while (i!=INVALID && (!(*edge_filter_map)[i] 
   394 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   395     }
   396 
   397     ///\e
   398 
   399     /// This function hides \c n in the graph, i.e. the iteration 
   400     /// jumps over it. This is done by simply setting the value of \c n  
   401     /// to be false in the corresponding node-map.
   402     void hide(const Node& n) const { node_filter_map->set(n, false); }
   403 
   404     ///\e
   405 
   406     /// This function hides \c e in the graph, i.e. the iteration 
   407     /// jumps over it. This is done by simply setting the value of \c e  
   408     /// to be false in the corresponding edge-map.
   409     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   410 
   411     ///\e
   412 
   413     /// The value of \c n is set to be true in the node-map which stores 
   414     /// hide information. If \c n was hidden previuosly, then it is shown 
   415     /// again
   416      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   417 
   418     ///\e
   419 
   420     /// The value of \c e is set to be true in the edge-map which stores 
   421     /// hide information. If \c e was hidden previuosly, then it is shown 
   422     /// again
   423     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   424 
   425     /// Returns true if \c n is hidden.
   426     
   427     ///\e
   428     ///
   429     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   430 
   431     /// Returns true if \c n is hidden.
   432     
   433     ///\e
   434     ///
   435     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   436 
   437     typedef False NodeNumTag;
   438     typedef False EdgeNumTag;
   439 
   440     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   441     Edge findEdge(const Node& source, const Node& target, 
   442 		  const Edge& prev = INVALID) {
   443       if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
   444         return INVALID;
   445       }
   446       Edge edge = Parent::findEdge(source, target, prev);
   447       while (edge != INVALID && !(*edge_filter_map)[edge]) {
   448         edge = Parent::findEdge(source, target, edge);
   449       }
   450       return edge;
   451     }
   452 
   453     template <typename _Value>
   454     class NodeMap 
   455       : public SubMapExtender<Adaptor, 
   456                               typename Parent::template NodeMap<_Value> > 
   457     {
   458     public:
   459       typedef Adaptor Graph;
   460       typedef SubMapExtender<Adaptor, typename Parent::
   461                              template NodeMap<_Value> > Parent;
   462     
   463       NodeMap(const Graph& graph) 
   464 	: Parent(graph) {}
   465       NodeMap(const Graph& graph, const _Value& value) 
   466 	: Parent(graph, value) {}
   467     
   468       NodeMap& operator=(const NodeMap& cmap) {
   469 	return operator=<NodeMap>(cmap);
   470       }
   471     
   472       template <typename CMap>
   473       NodeMap& operator=(const CMap& cmap) {
   474         Parent::operator=(cmap);
   475 	return *this;
   476       }
   477     };
   478 
   479     template <typename _Value>
   480     class EdgeMap 
   481       : public SubMapExtender<Adaptor, 
   482                               typename Parent::template EdgeMap<_Value> > 
   483     {
   484     public:
   485       typedef Adaptor Graph;
   486       typedef SubMapExtender<Adaptor, typename Parent::
   487                              template EdgeMap<_Value> > Parent;
   488     
   489       EdgeMap(const Graph& graph) 
   490 	: Parent(graph) {}
   491       EdgeMap(const Graph& graph, const _Value& value) 
   492 	: Parent(graph, value) {}
   493     
   494       EdgeMap& operator=(const EdgeMap& cmap) {
   495 	return operator=<EdgeMap>(cmap);
   496       }
   497     
   498       template <typename CMap>
   499       EdgeMap& operator=(const CMap& cmap) {
   500         Parent::operator=(cmap);
   501 	return *this;
   502       }
   503     };
   504 
   505   };
   506 
   507   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   508   class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
   509     : public GraphAdaptorBase<_Graph> {
   510   public:
   511     typedef _Graph Graph;
   512     typedef SubGraphAdaptorBase Adaptor;
   513     typedef GraphAdaptorBase<_Graph> Parent;
   514   protected:
   515     NodeFilterMap* node_filter_map;
   516     EdgeFilterMap* edge_filter_map;
   517     SubGraphAdaptorBase() : Parent(), 
   518 			    node_filter_map(0), edge_filter_map(0) { }
   519 
   520     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   521       node_filter_map=&_node_filter_map;
   522     }
   523     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   524       edge_filter_map=&_edge_filter_map;
   525     }
   526 
   527   public:
   528 
   529     typedef typename Parent::Node Node;
   530     typedef typename Parent::Edge Edge;
   531 
   532     void first(Node& i) const { 
   533       Parent::first(i); 
   534       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   535     }
   536 
   537     void first(Edge& i) const { 
   538       Parent::first(i); 
   539       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   540     }
   541 
   542     void firstIn(Edge& i, const Node& n) const { 
   543       Parent::firstIn(i, n); 
   544       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   545     }
   546 
   547     void firstOut(Edge& i, const Node& n) const { 
   548       Parent::firstOut(i, n); 
   549       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   550     }
   551 
   552     void next(Node& i) const { 
   553       Parent::next(i); 
   554       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   555     }
   556     void next(Edge& i) const { 
   557       Parent::next(i); 
   558       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   559     }
   560     void nextIn(Edge& i) const { 
   561       Parent::nextIn(i); 
   562       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   563     }
   564 
   565     void nextOut(Edge& i) const { 
   566       Parent::nextOut(i); 
   567       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   568     }
   569 
   570     ///\e
   571 
   572     /// This function hides \c n in the graph, i.e. the iteration 
   573     /// jumps over it. This is done by simply setting the value of \c n  
   574     /// to be false in the corresponding node-map.
   575     void hide(const Node& n) const { node_filter_map->set(n, false); }
   576 
   577     ///\e
   578 
   579     /// This function hides \c e in the graph, i.e. the iteration 
   580     /// jumps over it. This is done by simply setting the value of \c e  
   581     /// to be false in the corresponding edge-map.
   582     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   583 
   584     ///\e
   585 
   586     /// The value of \c n is set to be true in the node-map which stores 
   587     /// hide information. If \c n was hidden previuosly, then it is shown 
   588     /// again
   589      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   590 
   591     ///\e
   592 
   593     /// The value of \c e is set to be true in the edge-map which stores 
   594     /// hide information. If \c e was hidden previuosly, then it is shown 
   595     /// again
   596     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   597 
   598     /// Returns true if \c n is hidden.
   599     
   600     ///\e
   601     ///
   602     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   603 
   604     /// Returns true if \c n is hidden.
   605     
   606     ///\e
   607     ///
   608     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   609 
   610     typedef False NodeNumTag;
   611     typedef False EdgeNumTag;
   612 
   613     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   614     Edge findEdge(const Node& source, const Node& target, 
   615 		  const Edge& prev = INVALID) {
   616       if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
   617         return INVALID;
   618       }
   619       Edge edge = Parent::findEdge(source, target, prev);
   620       while (edge != INVALID && !(*edge_filter_map)[edge]) {
   621         edge = Parent::findEdge(source, target, edge);
   622       }
   623       return edge;
   624     }
   625 
   626     template <typename _Value>
   627     class NodeMap 
   628       : public SubMapExtender<Adaptor, 
   629                               typename Parent::template NodeMap<_Value> > 
   630     {
   631     public:
   632       typedef Adaptor Graph;
   633       typedef SubMapExtender<Adaptor, typename Parent::
   634                              template NodeMap<_Value> > Parent;
   635     
   636       NodeMap(const Graph& graph) 
   637 	: Parent(graph) {}
   638       NodeMap(const Graph& graph, const _Value& value) 
   639 	: Parent(graph, value) {}
   640     
   641       NodeMap& operator=(const NodeMap& cmap) {
   642 	return operator=<NodeMap>(cmap);
   643       }
   644     
   645       template <typename CMap>
   646       NodeMap& operator=(const CMap& cmap) {
   647         Parent::operator=(cmap);
   648 	return *this;
   649       }
   650     };
   651 
   652     template <typename _Value>
   653     class EdgeMap 
   654       : public SubMapExtender<Adaptor, 
   655                               typename Parent::template EdgeMap<_Value> > 
   656     {
   657     public:
   658       typedef Adaptor Graph;
   659       typedef SubMapExtender<Adaptor, typename Parent::
   660                              template EdgeMap<_Value> > Parent;
   661     
   662       EdgeMap(const Graph& graph) 
   663 	: Parent(graph) {}
   664       EdgeMap(const Graph& graph, const _Value& value) 
   665 	: Parent(graph, value) {}
   666     
   667       EdgeMap& operator=(const EdgeMap& cmap) {
   668 	return operator=<EdgeMap>(cmap);
   669       }
   670     
   671       template <typename CMap>
   672       EdgeMap& operator=(const CMap& cmap) {
   673         Parent::operator=(cmap);
   674 	return *this;
   675       }
   676     };
   677 
   678   };
   679 
   680   /// \ingroup graph_adaptors
   681   ///
   682   /// \brief A graph adaptor for hiding nodes and edges from a graph.
   683   /// 
   684   /// SubGraphAdaptor shows the graph with filtered node-set and 
   685   /// edge-set. If the \c checked parameter is true then it filters the edgeset
   686   /// to do not get invalid edges without source or target.
   687   /// Let \f$ G=(V, A) \f$ be a directed graph
   688   /// and suppose that the graph instance \c g of type ListGraph
   689   /// implements \f$ G \f$.
   690   /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp.
   691   /// on the node-set and edge-set.
   692   /// SubGraphAdaptor<...>::NodeIt iterates 
   693   /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and 
   694   /// SubGraphAdaptor<...>::EdgeIt iterates 
   695   /// on the edge-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly, 
   696   /// SubGraphAdaptor<...>::OutEdgeIt and
   697   /// SubGraphAdaptor<...>::InEdgeIt iterates 
   698   /// only on edges leaving and entering a specific node which have true value.
   699   /// 
   700   /// If the \c checked template parameter is false then we have to note that 
   701   /// the node-iterator cares only the filter on the node-set, and the 
   702   /// edge-iterator cares only the filter on the edge-set.
   703   /// This way the edge-map
   704   /// should filter all edges which's source or target is filtered by the 
   705   /// node-filter.
   706   ///\code
   707   /// typedef ListGraph Graph;
   708   /// Graph g;
   709   /// typedef Graph::Node Node;
   710   /// typedef Graph::Edge Edge;
   711   /// Node u=g.addNode(); //node of id 0
   712   /// Node v=g.addNode(); //node of id 1
   713   /// Node e=g.addEdge(u, v); //edge of id 0
   714   /// Node f=g.addEdge(v, u); //edge of id 1
   715   /// Graph::NodeMap<bool> nm(g, true);
   716   /// nm.set(u, false);
   717   /// Graph::EdgeMap<bool> em(g, true);
   718   /// em.set(e, false);
   719   /// typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGA;
   720   /// SubGA ga(g, nm, em);
   721   /// for (SubGA::NodeIt n(ga); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   722   /// std::cout << ":-)" << std::endl;
   723   /// for (SubGA::EdgeIt e(ga); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   724   ///\endcode
   725   /// The output of the above code is the following.
   726   ///\code
   727   /// 1
   728   /// :-)
   729   /// 1
   730   ///\endcode
   731   /// Note that \c n is of type \c SubGA::NodeIt, but it can be converted to
   732   /// \c Graph::Node that is why \c g.id(n) can be applied.
   733   /// 
   734   /// For other examples see also the documentation of NodeSubGraphAdaptor and 
   735   /// EdgeSubGraphAdaptor.
   736   /// 
   737   /// \author Marton Makai
   738 
   739   template<typename _Graph, typename NodeFilterMap, 
   740 	   typename EdgeFilterMap, bool checked = true>
   741   class SubGraphAdaptor : 
   742     public GraphAdaptorExtender<
   743     SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
   744   public:
   745     typedef _Graph Graph;
   746     typedef GraphAdaptorExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap, 
   747                                                       EdgeFilterMap, checked> >
   748     Parent;
   749 
   750   protected:
   751     SubGraphAdaptor() { }
   752   public:
   753 
   754     SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   755 		    EdgeFilterMap& _edge_filter_map) { 
   756       setGraph(_graph);
   757       setNodeFilterMap(_node_filter_map);
   758       setEdgeFilterMap(_edge_filter_map);
   759     }
   760 
   761   };
   762 
   763   /// \brief Just gives back a sub graph adaptor
   764   ///
   765   /// Just gives back a sub graph adaptor
   766   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   767   SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
   768   subGraphAdaptor(const Graph& graph, 
   769                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   770     return SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
   771       (graph, nfm, efm);
   772   }
   773 
   774   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   775   SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
   776   subGraphAdaptor(const Graph& graph, 
   777                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   778     return SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
   779       (graph, nfm, efm);
   780   }
   781 
   782   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   783   SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
   784   subGraphAdaptor(const Graph& graph, 
   785                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   786     return SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
   787       (graph, nfm, efm);
   788   }
   789 
   790   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   791   SubGraphAdaptor<const Graph, const NodeFilterMap, const EdgeFilterMap>
   792   subGraphAdaptor(const Graph& graph, 
   793                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   794     return SubGraphAdaptor<const Graph, const NodeFilterMap, 
   795       const EdgeFilterMap>(graph, nfm, efm);
   796   }
   797 
   798 
   799 
   800   ///\ingroup graph_adaptors
   801   ///
   802   ///\brief An adaptor for hiding nodes from a graph.
   803   ///
   804   ///An adaptor for hiding nodes from a graph.
   805   ///This adaptor specializes SubGraphAdaptor in the way that only
   806   ///the node-set 
   807   ///can be filtered. In usual case the checked parameter is true, we get the
   808   ///induced subgraph. But if the checked parameter is false then we can only
   809   ///filter only isolated nodes.
   810   ///\author Marton Makai
   811   template<typename Graph, typename NodeFilterMap, bool checked = true>
   812   class NodeSubGraphAdaptor : 
   813     public SubGraphAdaptor<Graph, NodeFilterMap, 
   814 			   ConstMap<typename Graph::Edge,bool>, checked> {
   815   public:
   816 
   817     typedef SubGraphAdaptor<Graph, NodeFilterMap, 
   818 			    ConstMap<typename Graph::Edge,bool>, checked > 
   819     Parent;
   820 
   821   protected:
   822     ConstMap<typename Graph::Edge, bool> const_true_map;
   823 
   824     NodeSubGraphAdaptor() : const_true_map(true) {
   825       Parent::setEdgeFilterMap(const_true_map);
   826     }
   827 
   828   public:
   829 
   830     NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   831       Parent(), const_true_map(true) { 
   832       Parent::setGraph(_graph);
   833       Parent::setNodeFilterMap(_node_filter_map);
   834       Parent::setEdgeFilterMap(const_true_map);
   835     }
   836 
   837   };
   838 
   839 
   840   /// \brief Just gives back a node sub graph adaptor
   841   ///
   842   /// Just gives back a node sub graph adaptor
   843   template<typename Graph, typename NodeFilterMap>
   844   NodeSubGraphAdaptor<const Graph, NodeFilterMap>
   845   nodeSubGraphAdaptor(const Graph& graph, NodeFilterMap& nfm) {
   846     return NodeSubGraphAdaptor<const Graph, NodeFilterMap>(graph, nfm);
   847   }
   848 
   849   template<typename Graph, typename NodeFilterMap>
   850   NodeSubGraphAdaptor<const Graph, const NodeFilterMap>
   851   nodeSubGraphAdaptor(const Graph& graph, const NodeFilterMap& nfm) {
   852     return NodeSubGraphAdaptor<const Graph, const NodeFilterMap>(graph, nfm);
   853   }
   854 
   855   ///\ingroup graph_adaptors
   856   ///
   857   ///\brief An adaptor for hiding edges from a graph.
   858   ///
   859   ///An adaptor for hiding edges from a graph.
   860   ///This adaptor specializes SubGraphAdaptor in the way that
   861   ///only the edge-set 
   862   ///can be filtered. The usefulness of this adaptor is demonstrated in the 
   863   ///problem of searching a maximum number of edge-disjoint shortest paths 
   864   ///between 
   865   ///two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   866   ///non-negative edge-lengths. Note that 
   867   ///the comprehension of the presented solution 
   868   ///need's some elementary knowledge from combinatorial optimization. 
   869   ///
   870   ///If a single shortest path is to be 
   871   ///searched between \c s and \c t, then this can be done easily by 
   872   ///applying the Dijkstra algorithm. What happens, if a maximum number of 
   873   ///edge-disjoint shortest paths is to be computed. It can be proved that an 
   874   ///edge can be in a shortest path if and only
   875   ///if it is tight with respect to 
   876   ///the potential function computed by Dijkstra.
   877   ///Moreover, any path containing 
   878   ///only such edges is a shortest one.
   879   ///Thus we have to compute a maximum number 
   880   ///of edge-disjoint paths between \c s and \c t in
   881   ///the graph which has edge-set 
   882   ///all the tight edges. The computation will be demonstrated
   883   ///on the following 
   884   ///graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   885   ///The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   886   ///If you are interested in more demo programs, you can use 
   887   ///\ref dim_to_dot.cc to generate .dot files from dimacs files. 
   888   ///The .dot file of the following figure was generated by  
   889   ///the demo program \ref dim_to_dot.cc.
   890   ///
   891   ///\dot
   892   ///digraph lemon_dot_example {
   893   ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   894   ///n0 [ label="0 (s)" ];
   895   ///n1 [ label="1" ];
   896   ///n2 [ label="2" ];
   897   ///n3 [ label="3" ];
   898   ///n4 [ label="4" ];
   899   ///n5 [ label="5" ];
   900   ///n6 [ label="6 (t)" ];
   901   ///edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   902   ///n5 ->  n6 [ label="9, length:4" ];
   903   ///n4 ->  n6 [ label="8, length:2" ];
   904   ///n3 ->  n5 [ label="7, length:1" ];
   905   ///n2 ->  n5 [ label="6, length:3" ];
   906   ///n2 ->  n6 [ label="5, length:5" ];
   907   ///n2 ->  n4 [ label="4, length:2" ];
   908   ///n1 ->  n4 [ label="3, length:3" ];
   909   ///n0 ->  n3 [ label="2, length:1" ];
   910   ///n0 ->  n2 [ label="1, length:2" ];
   911   ///n0 ->  n1 [ label="0, length:3" ];
   912   ///}
   913   ///\enddot
   914   ///
   915   ///\code
   916   ///Graph g;
   917   ///Node s, t;
   918   ///LengthMap length(g);
   919   ///
   920   ///readDimacs(std::cin, g, length, s, t);
   921   ///
   922   ///cout << "edges with lengths (of form id, source--length->target): " << endl;
   923   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   924   ///  cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   925   ///       << length[e] << "->" << g.id(g.target(e)) << endl;
   926   ///
   927   ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   928   ///\endcode
   929   ///Next, the potential function is computed with Dijkstra.
   930   ///\code
   931   ///typedef Dijkstra<Graph, LengthMap> Dijkstra;
   932   ///Dijkstra dijkstra(g, length);
   933   ///dijkstra.run(s);
   934   ///\endcode
   935   ///Next, we consrtruct a map which filters the edge-set to the tight edges.
   936   ///\code
   937   ///typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   938   ///  TightEdgeFilter;
   939   ///TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   940   ///
   941   ///typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGA;
   942   ///SubGA ga(g, tight_edge_filter);
   943   ///\endcode
   944   ///Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   945   ///with a max flow algorithm Preflow.
   946   ///\code
   947   ///ConstMap<Edge, int> const_1_map(1);
   948   ///Graph::EdgeMap<int> flow(g, 0);
   949   ///
   950   ///Preflow<SubGA, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   951   ///  preflow(ga, s, t, const_1_map, flow);
   952   ///preflow.run();
   953   ///\endcode
   954   ///Last, the output is:
   955   ///\code  
   956   ///cout << "maximum number of edge-disjoint shortest path: " 
   957   ///     << preflow.flowValue() << endl;
   958   ///cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   959   ///     << endl;
   960   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   961   ///  if (flow[e])
   962   ///    cout << " " << g.id(g.source(e)) << "--"
   963   ///         << length[e] << "->" << g.id(g.target(e)) << endl;
   964   ///\endcode
   965   ///The program has the following (expected :-)) output:
   966   ///\code
   967   ///edges with lengths (of form id, source--length->target):
   968   /// 9, 5--4->6
   969   /// 8, 4--2->6
   970   /// 7, 3--1->5
   971   /// 6, 2--3->5
   972   /// 5, 2--5->6
   973   /// 4, 2--2->4
   974   /// 3, 1--3->4
   975   /// 2, 0--1->3
   976   /// 1, 0--2->2
   977   /// 0, 0--3->1
   978   ///s: 0 t: 6
   979   ///maximum number of edge-disjoint shortest path: 2
   980   ///edges of the maximum number of edge-disjoint shortest s-t paths:
   981   /// 9, 5--4->6
   982   /// 8, 4--2->6
   983   /// 7, 3--1->5
   984   /// 4, 2--2->4
   985   /// 2, 0--1->3
   986   /// 1, 0--2->2
   987   ///\endcode
   988   ///
   989   ///\author Marton Makai
   990   template<typename Graph, typename EdgeFilterMap>
   991   class EdgeSubGraphAdaptor : 
   992     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   993 			   EdgeFilterMap, false> {
   994   public:
   995     typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   996 			    EdgeFilterMap, false> Parent;
   997   protected:
   998     ConstMap<typename Graph::Node, bool> const_true_map;
   999 
  1000     EdgeSubGraphAdaptor() : const_true_map(true) {
  1001       Parent::setNodeFilterMap(const_true_map);
  1002     }
  1003 
  1004   public:
  1005 
  1006     EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
  1007       Parent(), const_true_map(true) { 
  1008       Parent::setGraph(_graph);
  1009       Parent::setNodeFilterMap(const_true_map);
  1010       Parent::setEdgeFilterMap(_edge_filter_map);
  1011     }
  1012 
  1013   };
  1014 
  1015   /// \brief Just gives back an edge sub graph adaptor
  1016   ///
  1017   /// Just gives back an edge sub graph adaptor
  1018   template<typename Graph, typename EdgeFilterMap>
  1019   EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>
  1020   edgeSubGraphAdaptor(const Graph& graph, EdgeFilterMap& efm) {
  1021     return EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>(graph, efm);
  1022   }
  1023 
  1024   template<typename Graph, typename EdgeFilterMap>
  1025   EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>
  1026   edgeSubGraphAdaptor(const Graph& graph, const EdgeFilterMap& efm) {
  1027     return EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>(graph, efm);
  1028   }
  1029 
  1030   template <typename _Graph>
  1031   class UndirGraphAdaptorBase : 
  1032     public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
  1033   public:
  1034     typedef _Graph Graph;
  1035     typedef UndirGraphAdaptorBase Adaptor;
  1036     typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
  1037 
  1038   protected:
  1039 
  1040     UndirGraphAdaptorBase() : Parent() {}
  1041 
  1042   public:
  1043 
  1044     typedef typename Parent::UEdge UEdge;
  1045     typedef typename Parent::Edge Edge;
  1046 
  1047   private:
  1048     
  1049     template <typename _Value>
  1050     class EdgeMapBase {
  1051     private:
  1052       
  1053       typedef typename _Graph::template EdgeMap<_Value> MapImpl;
  1054       
  1055     public:
  1056 
  1057       typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
  1058 
  1059       typedef _Value Value;
  1060       typedef Edge Key;
  1061       
  1062       EdgeMapBase(const Adaptor& adaptor) :
  1063 	forward_map(*adaptor.graph), backward_map(*adaptor.graph) {}
  1064 
  1065       EdgeMapBase(const Adaptor& adaptor, const Value& v) 
  1066         : forward_map(*adaptor.graph, v), backward_map(*adaptor.graph, v) {}
  1067       
  1068       void set(const Edge& e, const Value& a) { 
  1069 	if (Parent::direction(e)) {
  1070 	  forward_map.set(e, a); 
  1071         } else { 
  1072 	  backward_map.set(e, a);
  1073         } 
  1074       }
  1075 
  1076       typename MapTraits<MapImpl>::ConstReturnValue operator[](Edge e) const { 
  1077 	if (Parent::direction(e)) {
  1078 	  return forward_map[e]; 
  1079 	} else { 
  1080 	  return backward_map[e]; 
  1081         }
  1082       }
  1083 
  1084       typename MapTraits<MapImpl>::ReturnValue operator[](Edge e) { 
  1085 	if (Parent::direction(e)) {
  1086 	  return forward_map[e]; 
  1087 	} else { 
  1088 	  return backward_map[e]; 
  1089         }
  1090       }
  1091 
  1092     protected:
  1093 
  1094       MapImpl forward_map, backward_map; 
  1095 
  1096     };
  1097 
  1098   public:
  1099 
  1100     template <typename _Value>
  1101     class EdgeMap 
  1102       : public SubMapExtender<Adaptor, EdgeMapBase<_Value> > 
  1103     {
  1104     public:
  1105       typedef Adaptor Graph;
  1106       typedef SubMapExtender<Adaptor, EdgeMapBase<_Value> > Parent;
  1107     
  1108       EdgeMap(const Graph& graph) 
  1109 	: Parent(graph) {}
  1110       EdgeMap(const Graph& graph, const _Value& value) 
  1111 	: Parent(graph, value) {}
  1112     
  1113       EdgeMap& operator=(const EdgeMap& cmap) {
  1114 	return operator=<EdgeMap>(cmap);
  1115       }
  1116     
  1117       template <typename CMap>
  1118       EdgeMap& operator=(const CMap& cmap) {
  1119         Parent::operator=(cmap);
  1120 	return *this;
  1121       }
  1122     };
  1123         
  1124     template <typename _Value>
  1125     class UEdgeMap : public Graph::template EdgeMap<_Value> {
  1126     public:
  1127       
  1128       typedef typename Graph::template EdgeMap<_Value> Parent;
  1129       
  1130       explicit UEdgeMap(const Adaptor& ga) 
  1131 	: Parent(*ga.graph) {}
  1132 
  1133       UEdgeMap(const Adaptor& ga, const _Value& value)
  1134 	: Parent(*ga.graph, value) {}
  1135 
  1136       UEdgeMap& operator=(const UEdgeMap& cmap) {
  1137         return operator=<UEdgeMap>(cmap);
  1138       }
  1139 
  1140       template <typename CMap>
  1141       UEdgeMap& operator=(const CMap& cmap) {
  1142         Parent::operator=(cmap);
  1143         return *this;
  1144       }
  1145 
  1146     };
  1147       
  1148   };
  1149 
  1150   template <typename _Graph, typename Enable = void>
  1151   class AlterableUndirGraphAdaptor 
  1152     : public UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > {
  1153   public:
  1154     typedef UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > Parent;
  1155     
  1156   protected:
  1157 
  1158     AlterableUndirGraphAdaptor() : Parent() {}
  1159 
  1160   public:
  1161 
  1162     typedef typename Parent::EdgeNotifier UEdgeNotifier;
  1163     typedef InvalidType EdgeNotifier;
  1164 
  1165   };
  1166 
  1167   template <typename _Graph>
  1168   class AlterableUndirGraphAdaptor<
  1169     _Graph, 
  1170     typename enable_if<typename _Graph::EdgeNotifier::Notifier>::type > 
  1171     : public UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > {
  1172   public:
  1173 
  1174     typedef UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > Parent;
  1175     typedef _Graph Graph;
  1176     typedef typename _Graph::Edge GraphEdge;
  1177     
  1178   protected:
  1179 
  1180     AlterableUndirGraphAdaptor() 
  1181       : Parent(), edge_notifier(*this), edge_notifier_proxy(*this) {}
  1182 
  1183     void setGraph(_Graph& graph) {
  1184       Parent::setGraph(graph);
  1185       edge_notifier_proxy.setNotifier(graph.getNotifier(GraphEdge()));
  1186     }
  1187 
  1188   public:
  1189 
  1190     ~AlterableUndirGraphAdaptor() {
  1191       edge_notifier.clear();
  1192     }
  1193 
  1194     typedef typename Parent::UEdge UEdge;
  1195     typedef typename Parent::Edge Edge;
  1196 
  1197     typedef typename Parent::EdgeNotifier UEdgeNotifier;
  1198 
  1199     using Parent::getNotifier;
  1200 
  1201     typedef AlterationNotifier<AlterableUndirGraphAdaptor, 
  1202                                Edge> EdgeNotifier;
  1203     EdgeNotifier& getNotifier(Edge) const { return edge_notifier; }
  1204 
  1205   protected:
  1206 
  1207     class NotifierProxy : public Graph::EdgeNotifier::ObserverBase {
  1208     public:
  1209 
  1210       typedef typename Graph::EdgeNotifier::ObserverBase Parent;
  1211       typedef AlterableUndirGraphAdaptor AdaptorBase;
  1212       
  1213       NotifierProxy(const AdaptorBase& _adaptor)
  1214         : Parent(), adaptor(&_adaptor) {
  1215       }
  1216 
  1217       virtual ~NotifierProxy() {
  1218         if (Parent::attached()) {
  1219           Parent::detach();
  1220         }
  1221       }
  1222 
  1223       void setNotifier(typename Graph::EdgeNotifier& notifier) {
  1224         Parent::attach(notifier);
  1225       }
  1226 
  1227       
  1228     protected:
  1229 
  1230       virtual void add(const GraphEdge& ge) {
  1231         std::vector<Edge> edges;
  1232         edges.push_back(AdaptorBase::Parent::direct(ge, true));
  1233         edges.push_back(AdaptorBase::Parent::direct(ge, false));
  1234         adaptor->getNotifier(Edge()).add(edges);
  1235       }
  1236       virtual void add(const std::vector<GraphEdge>& ge) {
  1237         std::vector<Edge> edges;
  1238         for (int i = 0; i < (int)ge.size(); ++i) { 
  1239           edges.push_back(AdaptorBase::Parent::direct(ge[i], true));
  1240           edges.push_back(AdaptorBase::Parent::direct(ge[i], false));
  1241         }
  1242         adaptor->getNotifier(Edge()).add(edges);
  1243       }
  1244       virtual void erase(const GraphEdge& ge) {
  1245         std::vector<Edge> edges;
  1246         edges.push_back(AdaptorBase::Parent::direct(ge, true));
  1247         edges.push_back(AdaptorBase::Parent::direct(ge, false));
  1248         adaptor->getNotifier(Edge()).erase(edges);
  1249       }
  1250       virtual void erase(const std::vector<GraphEdge>& ge) {
  1251         std::vector<Edge> edges;
  1252         for (int i = 0; i < (int)ge.size(); ++i) { 
  1253           edges.push_back(AdaptorBase::Parent::direct(ge[i], true));
  1254           edges.push_back(AdaptorBase::Parent::direct(ge[i], false));
  1255         }
  1256         adaptor->getNotifier(Edge()).erase(edges);
  1257       }
  1258       virtual void build() {
  1259         adaptor->getNotifier(Edge()).build();
  1260       }
  1261       virtual void clear() {
  1262         adaptor->getNotifier(Edge()).clear();
  1263       }
  1264 
  1265       const AdaptorBase* adaptor;
  1266     };
  1267 
  1268 
  1269     mutable EdgeNotifier edge_notifier;
  1270     NotifierProxy edge_notifier_proxy;
  1271 
  1272   };
  1273 
  1274 
  1275   ///\ingroup graph_adaptors
  1276   ///
  1277   /// \brief An undirected graph is made from a directed graph by an adaptor
  1278   ///
  1279   /// Undocumented, untested!!!
  1280   /// If somebody knows nice demo application, let's polulate it.
  1281   /// 
  1282   /// \author Marton Makai
  1283   template<typename _Graph>
  1284   class UndirGraphAdaptor : public AlterableUndirGraphAdaptor<_Graph> {
  1285   public:
  1286     typedef _Graph Graph;
  1287     typedef AlterableUndirGraphAdaptor<_Graph> Parent;
  1288   protected:
  1289     UndirGraphAdaptor() { }
  1290   public:
  1291     UndirGraphAdaptor(_Graph& _graph) { 
  1292       setGraph(_graph);
  1293     }
  1294 
  1295     template <typename _ForwardMap, typename _BackwardMap>
  1296     class CombinedEdgeMap {
  1297     public:
  1298       
  1299       typedef _ForwardMap ForwardMap;
  1300       typedef _BackwardMap BackwardMap;
  1301 
  1302       typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
  1303 
  1304       typedef typename ForwardMap::Value Value;
  1305       typedef typename Parent::Edge Key;
  1306       
  1307       CombinedEdgeMap() : forward_map(0), backward_map(0) {}
  1308 
  1309       CombinedEdgeMap(ForwardMap& _forward_map, BackwardMap& _backward_map) 
  1310         : forward_map(&_forward_map), backward_map(&_backward_map) {}
  1311       
  1312       void set(const Key& e, const Value& a) { 
  1313 	if (Parent::direction(e)) {
  1314 	  forward_map->set(e, a); 
  1315         } else { 
  1316 	  backward_map->set(e, a);
  1317         } 
  1318       }
  1319 
  1320       typename MapTraits<ForwardMap>::ConstReturnValue 
  1321       operator[](const Key& e) const { 
  1322 	if (Parent::direction(e)) {
  1323 	  return (*forward_map)[e]; 
  1324 	} else { 
  1325 	  return (*backward_map)[e]; 
  1326         }
  1327       }
  1328 
  1329       typename MapTraits<ForwardMap>::ReturnValue 
  1330       operator[](const Key& e) { 
  1331 	if (Parent::direction(e)) {
  1332 	  return (*forward_map)[e]; 
  1333 	} else { 
  1334 	  return (*backward_map)[e]; 
  1335         }
  1336       }
  1337 
  1338       void setForwardMap(ForwardMap& _forward_map) {
  1339         forward_map = &_forward_map;
  1340       }
  1341 
  1342       void setBackwardMap(BackwardMap& _backward_map) {
  1343         backward_map = &_backward_map;
  1344       }
  1345 
  1346     protected:
  1347 
  1348       ForwardMap* forward_map;
  1349       BackwardMap* backward_map; 
  1350 
  1351     };
  1352 
  1353   };
  1354 
  1355   /// \brief Just gives back an undir graph adaptor
  1356   ///
  1357   /// Just gives back an undir graph adaptor
  1358   template<typename Graph>
  1359   UndirGraphAdaptor<const Graph>
  1360   undirGraphAdaptor(const Graph& graph) {
  1361     return UndirGraphAdaptor<const Graph>(graph);
  1362   }
  1363 
  1364   template<typename Graph, typename Number,  
  1365            typename CapacityMap, typename FlowMap, 
  1366            typename Tolerance = Tolerance<Number> >
  1367   class ResForwardFilter {
  1368     const CapacityMap* capacity;
  1369     const FlowMap* flow;
  1370     Tolerance tolerance;
  1371   public:
  1372     typedef typename Graph::Edge Key;
  1373     typedef bool Value;
  1374 
  1375     ResForwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
  1376                      const Tolerance& _tolerance = Tolerance()) 
  1377       : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
  1378 
  1379     ResForwardFilter(const Tolerance& _tolerance) 
  1380       : capacity(0), flow(0), tolerance(_tolerance)  { }
  1381 
  1382     void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
  1383     void setFlow(const FlowMap& _flow) { flow = &_flow; }
  1384 
  1385     bool operator[](const typename Graph::Edge& e) const {
  1386       return tolerance.less((*flow)[e], (*capacity)[e]);
  1387     }
  1388   };
  1389 
  1390   template<typename Graph, typename Number,
  1391 	   typename CapacityMap, typename FlowMap,
  1392            typename Tolerance = Tolerance<Number> >
  1393   class ResBackwardFilter {
  1394     const CapacityMap* capacity;
  1395     const FlowMap* flow;
  1396     Tolerance tolerance;
  1397   public:
  1398     typedef typename Graph::Edge Key;
  1399     typedef bool Value;
  1400 
  1401     ResBackwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
  1402                       const Tolerance& _tolerance = Tolerance())
  1403       : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
  1404     ResBackwardFilter(const Tolerance& _tolerance = Tolerance())
  1405       : capacity(0), flow(0), tolerance(_tolerance) { }
  1406     void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
  1407     void setFlow(const FlowMap& _flow) { flow = &_flow; }
  1408     bool operator[](const typename Graph::Edge& e) const {
  1409       return tolerance.less(0, Number((*flow)[e]));
  1410     }
  1411   };
  1412 
  1413   
  1414   ///\ingroup graph_adaptors
  1415   ///
  1416   ///\brief An adaptor for composing the residual
  1417   ///graph for directed flow and circulation problems.
  1418   ///
  1419   ///An adaptor for composing the residual graph for directed flow and
  1420   ///circulation problems.  Let \f$ G=(V, A) \f$ be a directed graph
  1421   ///and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$,
  1422   ///be functions on the edge-set.
  1423   ///
  1424   ///In the appications of ResGraphAdaptor, \f$ f \f$ usually stands
  1425   ///for a flow and \f$ c \f$ for a capacity function.  Suppose that a
  1426   ///graph instange \c g of type \c ListGraph implements \f$ G \f$.
  1427   ///
  1428   ///\code 
  1429   ///  ListGraph g;
  1430   ///\endcode 
  1431   ///
  1432   ///Then RevGraphAdaptor implements the graph structure with node-set
  1433   /// \f$ V \f$ and edge-set \f$ A_{forward}\cup A_{backward} \f$,
  1434   ///where \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and 
  1435   /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, i.e. the so called
  1436   ///residual graph.  When we take the union 
  1437   /// \f$ A_{forward}\cup A_{backward} \f$, multilicities are counted, i.e. 
  1438   ///if an edge is in both \f$ A_{forward} \f$ and \f$ A_{backward} \f$, 
  1439   ///then in the adaptor it appears twice. The following code shows how 
  1440   ///such an instance can be constructed.
  1441   ///
  1442   ///\code 
  1443   ///  typedef ListGraph Graph; 
  1444   ///  Graph::EdgeMap<int> f(g);
  1445   ///  Graph::EdgeMap<int> c(g); 
  1446   ///  ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > ga(g); 
  1447   ///\endcode
  1448   ///\author Marton Makai
  1449   ///
  1450   template<typename Graph, typename Number, 
  1451 	   typename CapacityMap, typename FlowMap,
  1452            typename Tolerance = Tolerance<Number> >
  1453   class ResGraphAdaptor : 
  1454     public EdgeSubGraphAdaptor< 
  1455     UndirGraphAdaptor<const Graph>, 
  1456     typename UndirGraphAdaptor<const Graph>::template CombinedEdgeMap<
  1457     ResForwardFilter<const Graph, Number, CapacityMap, FlowMap>,  
  1458     ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap> > > {
  1459   public:
  1460 
  1461     typedef UndirGraphAdaptor<const Graph> UGraph;
  1462 
  1463     typedef ResForwardFilter<const Graph, Number, CapacityMap, FlowMap> 
  1464     ForwardFilter;
  1465 
  1466     typedef ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap> 
  1467     BackwardFilter;
  1468 
  1469     typedef typename UGraph::
  1470     template CombinedEdgeMap<ForwardFilter, BackwardFilter>
  1471     EdgeFilter;
  1472 
  1473     typedef EdgeSubGraphAdaptor<UGraph, EdgeFilter> Parent;
  1474 
  1475   protected:
  1476 
  1477     const CapacityMap* capacity;
  1478     FlowMap* flow;
  1479 
  1480     UGraph ugraph;
  1481     ForwardFilter forward_filter;
  1482     BackwardFilter backward_filter;
  1483     EdgeFilter edge_filter;
  1484 
  1485     void setCapacityMap(const CapacityMap& _capacity) {
  1486       capacity=&_capacity;
  1487       forward_filter.setCapacity(_capacity);
  1488       backward_filter.setCapacity(_capacity);
  1489     }
  1490 
  1491     void setFlowMap(FlowMap& _flow) {
  1492       flow=&_flow;
  1493       forward_filter.setFlow(_flow);
  1494       backward_filter.setFlow(_flow);
  1495     }
  1496 
  1497   public:
  1498 
  1499     /// \brief Constructor of the residual graph.
  1500     ///
  1501     /// Constructor of the residual graph. The parameters are the graph type,
  1502     /// the flow map, the capacity map and a tolerance object.
  1503     ResGraphAdaptor(const Graph& _graph, const CapacityMap& _capacity, 
  1504                     FlowMap& _flow, const Tolerance& _tolerance = Tolerance()) 
  1505       : Parent(), capacity(&_capacity), flow(&_flow), ugraph(_graph),
  1506         forward_filter(_capacity, _flow, _tolerance), 
  1507         backward_filter(_capacity, _flow, _tolerance),
  1508         edge_filter(forward_filter, backward_filter)
  1509     {
  1510       Parent::setGraph(ugraph);
  1511       Parent::setEdgeFilterMap(edge_filter);
  1512     }
  1513 
  1514     typedef typename Parent::Edge Edge;
  1515 
  1516     /// \brief Gives back the residual capacity of the edge.
  1517     ///
  1518     /// Gives back the residual capacity of the edge.
  1519     Number rescap(const Edge& edge) const {
  1520       if (UGraph::direction(edge)) {
  1521         return (*capacity)[edge]-(*flow)[edge]; 
  1522       } else {
  1523         return (*flow)[edge];
  1524       }
  1525     } 
  1526 
  1527     /// \brief Augment on the given edge in the residual graph.
  1528     ///
  1529     /// Augment on the given edge in the residual graph. It increase
  1530     /// or decrease the flow on the original edge depend on the direction
  1531     /// of the residual edge.
  1532     void augment(const Edge& e, Number a) const {
  1533       if (UGraph::direction(e)) {
  1534         flow->set(e, (*flow)[e] + a);
  1535       } else {  
  1536         flow->set(e, (*flow)[e] - a);
  1537       }
  1538     }
  1539 
  1540     /// \brief Returns the direction of the edge.
  1541     ///
  1542     /// Returns true when the edge is same oriented as the original edge.
  1543     static bool forward(const Edge& e) {
  1544       return UGraph::direction(e);
  1545     }
  1546 
  1547     /// \brief Returns the direction of the edge.
  1548     ///
  1549     /// Returns true when the edge is opposite oriented as the original edge.
  1550     static bool backward(const Edge& e) {
  1551       return !UGraph::direction(e);
  1552     }
  1553 
  1554     /// \brief Gives back the forward oriented residual edge.
  1555     ///
  1556     /// Gives back the forward oriented residual edge.
  1557     static Edge forward(const typename Graph::Edge& e) {
  1558       return UGraph::direct(e, true);
  1559     }
  1560 
  1561     /// \brief Gives back the backward oriented residual edge.
  1562     ///
  1563     /// Gives back the backward oriented residual edge.
  1564     static Edge backward(const typename Graph::Edge& e) {
  1565       return UGraph::direct(e, false);
  1566     }
  1567 
  1568     /// \brief Residual capacity map.
  1569     ///
  1570     /// In generic residual graphs the residual capacity can be obtained 
  1571     /// as a map. 
  1572     class ResCap {
  1573     protected:
  1574       const ResGraphAdaptor* res_graph;
  1575     public:
  1576       typedef Number Value;
  1577       typedef Edge Key;
  1578       ResCap(const ResGraphAdaptor& _res_graph) 
  1579         : res_graph(&_res_graph) {}
  1580       
  1581       Number operator[](const Edge& e) const {
  1582         return res_graph->rescap(e);
  1583       }
  1584       
  1585     };
  1586 
  1587   };
  1588 
  1589 
  1590 
  1591   template <typename _Graph, typename FirstOutEdgesMap>
  1592   class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
  1593   public:
  1594     typedef _Graph Graph;
  1595     typedef GraphAdaptorBase<_Graph> Parent;
  1596   protected:
  1597     FirstOutEdgesMap* first_out_edges;
  1598     ErasingFirstGraphAdaptorBase() : Parent(), 
  1599 				     first_out_edges(0) { }
  1600 
  1601     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1602       first_out_edges=&_first_out_edges;
  1603     }
  1604 
  1605   public:
  1606 
  1607     typedef typename Parent::Node Node;
  1608     typedef typename Parent::Edge Edge;
  1609 
  1610     void firstOut(Edge& i, const Node& n) const { 
  1611       i=(*first_out_edges)[n];
  1612     }
  1613 
  1614     void erase(const Edge& e) const {
  1615       Node n=source(e);
  1616       Edge f=e;
  1617       Parent::nextOut(f);
  1618       first_out_edges->set(n, f);
  1619     }    
  1620   };
  1621 
  1622 
  1623   ///\ingroup graph_adaptors
  1624   ///
  1625   ///\brief For blocking flows.
  1626   ///
  1627   ///This graph adaptor is used for on-the-fly 
  1628   ///Dinits blocking flow computations.
  1629   ///For each node, an out-edge is stored which is used when the 
  1630   ///\code
  1631   ///OutEdgeIt& first(OutEdgeIt&, const Node&)
  1632   ///\endcode
  1633   ///is called. 
  1634   ///
  1635   ///\author Marton Makai
  1636   ///
  1637   template <typename _Graph, typename FirstOutEdgesMap>
  1638   class ErasingFirstGraphAdaptor : 
  1639     public GraphAdaptorExtender<
  1640     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1641   public:
  1642     typedef _Graph Graph;
  1643     typedef GraphAdaptorExtender<
  1644       ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
  1645     ErasingFirstGraphAdaptor(Graph& _graph, 
  1646 			     FirstOutEdgesMap& _first_out_edges) { 
  1647       setGraph(_graph);
  1648       setFirstOutEdgesMap(_first_out_edges);
  1649     } 
  1650 
  1651   };
  1652 
  1653   /// \brief Base class for split graph adaptor
  1654   ///
  1655   /// Base class of split graph adaptor. In most case you do not need to
  1656   /// use it directly but the documented member functions of this class can 
  1657   /// be used with the SplitGraphAdaptor class.
  1658   /// \sa SplitGraphAdaptor
  1659   template <typename _Graph>
  1660   class SplitGraphAdaptorBase 
  1661     : public GraphAdaptorBase<const _Graph> {
  1662   public:
  1663 
  1664     typedef _Graph Graph;
  1665 
  1666     typedef GraphAdaptorBase<const _Graph> Parent;
  1667 
  1668     typedef typename Graph::Node GraphNode;
  1669     typedef typename Graph::Edge GraphEdge;
  1670 
  1671     class Node;
  1672     class Edge;
  1673 
  1674     template <typename T> class NodeMap;
  1675     template <typename T> class EdgeMap;
  1676     
  1677 
  1678     class Node : public GraphNode {
  1679       friend class SplitGraphAdaptorBase;
  1680       template <typename T> friend class NodeMap;
  1681     private:
  1682 
  1683       bool in_node;
  1684       Node(GraphNode _node, bool _in_node)
  1685 	: GraphNode(_node), in_node(_in_node) {}
  1686       
  1687     public:
  1688 
  1689       Node() {}
  1690       Node(Invalid) : GraphNode(INVALID), in_node(true) {}
  1691 
  1692       bool operator==(const Node& node) const {
  1693 	return GraphNode::operator==(node) && in_node == node.in_node;
  1694       }
  1695       
  1696       bool operator!=(const Node& node) const {
  1697 	return !(*this == node);
  1698       }
  1699       
  1700       bool operator<(const Node& node) const {
  1701 	return GraphNode::operator<(node) || 
  1702 	  (GraphNode::operator==(node) && in_node < node.in_node);
  1703       }
  1704     };
  1705 
  1706     class Edge {
  1707       friend class SplitGraphAdaptorBase;
  1708       template <typename T> friend class EdgeMap;
  1709     private:
  1710       typedef BiVariant<GraphEdge, GraphNode> EdgeImpl;
  1711 
  1712       explicit Edge(const GraphEdge& edge) : item(edge) {}
  1713       explicit Edge(const GraphNode& node) : item(node) {}
  1714       
  1715       EdgeImpl item;
  1716 
  1717     public:
  1718       Edge() {}
  1719       Edge(Invalid) : item(GraphEdge(INVALID)) {}
  1720 
  1721       bool operator==(const Edge& edge) const {
  1722         if (item.firstState()) {
  1723           if (edge.item.firstState()) {
  1724             return item.first() == edge.item.first();
  1725           }
  1726         } else {
  1727           if (edge.item.secondState()) {
  1728             return item.second() == edge.item.second();
  1729           }
  1730         }
  1731         return false;
  1732       }
  1733       
  1734       bool operator!=(const Edge& edge) const {
  1735 	return !(*this == edge);
  1736       }
  1737       
  1738       bool operator<(const Edge& edge) const {
  1739         if (item.firstState()) {
  1740           if (edge.item.firstState()) {
  1741             return item.first() < edge.item.first();
  1742           }
  1743           return false;
  1744         } else {
  1745           if (edge.item.secondState()) {
  1746             return item.second() < edge.item.second();
  1747           }
  1748           return true;
  1749         }
  1750       }
  1751 
  1752       operator GraphEdge() const { return item.first(); }
  1753       operator GraphNode() const { return item.second(); }
  1754 
  1755     };
  1756 
  1757     void first(Node& node) const {
  1758       Parent::first(node);
  1759       node.in_node = true;
  1760     }
  1761 
  1762     void next(Node& node) const {
  1763       if (node.in_node) {
  1764 	node.in_node = false;
  1765       } else {
  1766 	node.in_node = true;
  1767 	Parent::next(node);
  1768       }
  1769     }
  1770 
  1771     void first(Edge& edge) const {
  1772       edge.item.setSecond();
  1773       Parent::first(edge.item.second());
  1774       if (edge.item.second() == INVALID) {
  1775         edge.item.setFirst();
  1776 	Parent::first(edge.item.first());
  1777       }
  1778     }
  1779 
  1780     void next(Edge& edge) const {
  1781       if (edge.item.secondState()) {
  1782 	Parent::next(edge.item.second());
  1783         if (edge.item.second() == INVALID) {
  1784           edge.item.setFirst();
  1785           Parent::first(edge.item.first());
  1786         }
  1787       } else {
  1788 	Parent::next(edge.item.first());
  1789       }      
  1790     }
  1791 
  1792     void firstOut(Edge& edge, const Node& node) const {
  1793       if (node.in_node) {
  1794         edge.item.setSecond(node);
  1795       } else {
  1796         edge.item.setFirst();
  1797 	Parent::firstOut(edge.item.first(), node);
  1798       }
  1799     }
  1800 
  1801     void nextOut(Edge& edge) const {
  1802       if (!edge.item.firstState()) {
  1803 	edge.item.setFirst(INVALID);
  1804       } else {
  1805 	Parent::nextOut(edge.item.first());
  1806       }      
  1807     }
  1808 
  1809     void firstIn(Edge& edge, const Node& node) const {
  1810       if (!node.in_node) {
  1811         edge.item.setSecond(node);        
  1812       } else {
  1813         edge.item.setFirst();
  1814 	Parent::firstIn(edge.item.first(), node);
  1815       }
  1816     }
  1817 
  1818     void nextIn(Edge& edge) const {
  1819       if (!edge.item.firstState()) {
  1820 	edge.item.setFirst(INVALID);
  1821       } else {
  1822 	Parent::nextIn(edge.item.first());
  1823       }
  1824     }
  1825 
  1826     Node source(const Edge& edge) const {
  1827       if (edge.item.firstState()) {
  1828 	return Node(Parent::source(edge.item.first()), false);
  1829       } else {
  1830 	return Node(edge.item.second(), true);
  1831       }
  1832     }
  1833 
  1834     Node target(const Edge& edge) const {
  1835       if (edge.item.firstState()) {
  1836 	return Node(Parent::target(edge.item.first()), true);
  1837       } else {
  1838 	return Node(edge.item.second(), false);
  1839       }
  1840     }
  1841 
  1842     int id(const Node& node) const {
  1843       return (Parent::id(node) << 1) | (node.in_node ? 0 : 1);
  1844     }
  1845     Node nodeFromId(int id) const {
  1846       return Node(Parent::nodeFromId(id >> 1), (id & 1) == 0);
  1847     }
  1848     int maxNodeId() const {
  1849       return 2 * Parent::maxNodeId() + 1;
  1850     }
  1851 
  1852     int id(const Edge& edge) const {
  1853       if (edge.item.firstState()) {
  1854         return Parent::id(edge.item.first()) << 1;
  1855       } else {
  1856         return (Parent::id(edge.item.second()) << 1) | 1;
  1857       }
  1858     }
  1859     Edge edgeFromId(int id) const {
  1860       if ((id & 1) == 0) {
  1861         return Edge(Parent::edgeFromId(id >> 1));
  1862       } else {
  1863         return Edge(Parent::nodeFromId(id >> 1));
  1864       }
  1865     }
  1866     int maxEdgeId() const {
  1867       return std::max(Parent::maxNodeId() << 1, 
  1868                       (Parent::maxEdgeId() << 1) | 1);
  1869     }
  1870 
  1871     /// \brief Returns true when the node is in-node.
  1872     ///
  1873     /// Returns true when the node is in-node.
  1874     static bool inNode(const Node& node) {
  1875       return node.in_node;
  1876     }
  1877 
  1878     /// \brief Returns true when the node is out-node.
  1879     ///
  1880     /// Returns true when the node is out-node.
  1881     static bool outNode(const Node& node) {
  1882       return !node.in_node;
  1883     }
  1884 
  1885     /// \brief Returns true when the edge is edge in the original graph.
  1886     ///
  1887     /// Returns true when the edge is edge in the original graph.
  1888     static bool origEdge(const Edge& edge) {
  1889       return edge.item.firstState();
  1890     }
  1891 
  1892     /// \brief Returns true when the edge binds an in-node and an out-node.
  1893     ///
  1894     /// Returns true when the edge binds an in-node and an out-node.
  1895     static bool bindEdge(const Edge& edge) {
  1896       return edge.item.secondState();
  1897     }
  1898 
  1899     /// \brief Gives back the in-node created from the \c node.
  1900     ///
  1901     /// Gives back the in-node created from the \c node.
  1902     static Node inNode(const GraphNode& node) {
  1903       return Node(node, true);
  1904     }
  1905 
  1906     /// \brief Gives back the out-node created from the \c node.
  1907     ///
  1908     /// Gives back the out-node created from the \c node.
  1909     static Node outNode(const GraphNode& node) {
  1910       return Node(node, false);
  1911     }
  1912 
  1913     /// \brief Gives back the edge binds the two part of the node.
  1914     /// 
  1915     /// Gives back the edge binds the two part of the node.
  1916     static Edge edge(const GraphNode& node) {
  1917       return Edge(node);
  1918     }
  1919 
  1920     /// \brief Gives back the edge of the original edge.
  1921     /// 
  1922     /// Gives back the edge of the original edge.
  1923     static Edge edge(const GraphEdge& edge) {
  1924       return Edge(edge);
  1925     }
  1926 
  1927     typedef True NodeNumTag;
  1928 
  1929     int nodeNum() const {
  1930       return  2 * countNodes(*Parent::graph);
  1931     }
  1932 
  1933     typedef True EdgeNumTag;
  1934     
  1935     int edgeNum() const {
  1936       return countEdges(*Parent::graph) + countNodes(*Parent::graph);
  1937     }
  1938 
  1939     typedef True FindEdgeTag;
  1940 
  1941     Edge findEdge(const Node& source, const Node& target, 
  1942 		  const Edge& prev = INVALID) const {
  1943       if (inNode(source)) {
  1944         if (outNode(target)) {
  1945           if ((GraphNode&)source == (GraphNode&)target && prev == INVALID) {
  1946             return Edge(source);
  1947           }
  1948         }
  1949       } else {
  1950         if (inNode(target)) {
  1951           return Edge(findEdge(*Parent::graph, source, target, prev));
  1952         }
  1953       }
  1954       return INVALID;
  1955     }
  1956     
  1957     template <typename T>
  1958     class NodeMap : public MapBase<Node, T> {
  1959       typedef typename Parent::template NodeMap<T> NodeImpl;
  1960     public:
  1961       NodeMap(const SplitGraphAdaptorBase& _graph) 
  1962 	: inNodeMap(_graph), outNodeMap(_graph) {}
  1963       NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1964 	: inNodeMap(_graph, t), outNodeMap(_graph, t) {}
  1965       
  1966       void set(const Node& key, const T& val) {
  1967 	if (SplitGraphAdaptorBase::inNode(key)) { inNodeMap.set(key, val); }
  1968 	else {outNodeMap.set(key, val); }
  1969       }
  1970       
  1971       typename MapTraits<NodeImpl>::ReturnValue 
  1972       operator[](const Node& key) {
  1973 	if (SplitGraphAdaptorBase::inNode(key)) { return inNodeMap[key]; }
  1974 	else { return outNodeMap[key]; }
  1975       }
  1976 
  1977       typename MapTraits<NodeImpl>::ConstReturnValue
  1978       operator[](const Node& key) const {
  1979 	if (SplitGraphAdaptorBase::inNode(key)) { return inNodeMap[key]; }
  1980 	else { return outNodeMap[key]; }
  1981       }
  1982 
  1983     private:
  1984       NodeImpl inNodeMap, outNodeMap;
  1985     };
  1986 
  1987     template <typename T>
  1988     class EdgeMap : public MapBase<Edge, T> {
  1989       typedef typename Parent::template EdgeMap<T> EdgeMapImpl;
  1990       typedef typename Parent::template NodeMap<T> NodeMapImpl;
  1991     public:
  1992 
  1993       EdgeMap(const SplitGraphAdaptorBase& _graph) 
  1994 	: edge_map(_graph), node_map(_graph) {}
  1995       EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1996 	: edge_map(_graph, t), node_map(_graph, t) {}
  1997       
  1998       void set(const Edge& key, const T& val) {
  1999 	if (SplitGraphAdaptorBase::origEdge(key)) { 
  2000           edge_map.set(key.item.first(), val); 
  2001         } else {
  2002           node_map.set(key.item.second(), val); 
  2003         }
  2004       }
  2005       
  2006       typename MapTraits<EdgeMapImpl>::ReturnValue
  2007       operator[](const Edge& key) {
  2008 	if (SplitGraphAdaptorBase::origEdge(key)) { 
  2009           return edge_map[key.item.first()];
  2010         } else {
  2011           return node_map[key.item.second()];
  2012         }
  2013       }
  2014 
  2015       typename MapTraits<EdgeMapImpl>::ConstReturnValue
  2016       operator[](const Edge& key) const {
  2017 	if (SplitGraphAdaptorBase::origEdge(key)) { 
  2018           return edge_map[key.item.first()];
  2019         } else {
  2020           return node_map[key.item.second()];
  2021         }
  2022       }
  2023 
  2024     private:
  2025       typename Parent::template EdgeMap<T> edge_map;
  2026       typename Parent::template NodeMap<T> node_map;
  2027     };
  2028 
  2029 
  2030   };
  2031 
  2032   template <typename _Graph, typename NodeEnable = void, 
  2033             typename EdgeEnable = void>
  2034   class AlterableSplitGraphAdaptor 
  2035     : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
  2036   public:
  2037 
  2038     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  2039     typedef _Graph Graph;
  2040 
  2041     typedef typename Graph::Node GraphNode;
  2042     typedef typename Graph::Node GraphEdge;
  2043 
  2044   protected:
  2045 
  2046     AlterableSplitGraphAdaptor() : Parent() {}
  2047 
  2048   public:
  2049     
  2050     typedef InvalidType NodeNotifier;
  2051     typedef InvalidType EdgeNotifier;
  2052 
  2053   };
  2054 
  2055   template <typename _Graph, typename EdgeEnable>
  2056   class AlterableSplitGraphAdaptor<
  2057     _Graph,
  2058     typename enable_if<typename _Graph::NodeNotifier::Notifier>::type,
  2059     EdgeEnable> 
  2060       : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
  2061   public:
  2062 
  2063     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  2064     typedef _Graph Graph;
  2065 
  2066     typedef typename Graph::Node GraphNode;
  2067     typedef typename Graph::Edge GraphEdge;
  2068 
  2069     typedef typename Parent::Node Node;
  2070     typedef typename Parent::Edge Edge;
  2071  
  2072   protected:
  2073 
  2074     AlterableSplitGraphAdaptor() 
  2075       : Parent(), node_notifier(*this), node_notifier_proxy(*this) {}
  2076 
  2077     void setGraph(_Graph& graph) {
  2078       Parent::setGraph(graph);
  2079       node_notifier_proxy.setNotifier(graph.getNotifier(GraphNode()));
  2080     }
  2081 
  2082   public:
  2083 
  2084     ~AlterableSplitGraphAdaptor() {
  2085       node_notifier.clear();
  2086     }
  2087 
  2088     typedef AlterationNotifier<AlterableSplitGraphAdaptor, Node> NodeNotifier;
  2089     typedef InvalidType EdgeNotifier;
  2090 
  2091     NodeNotifier& getNotifier(Node) const { return node_notifier; }
  2092 
  2093   protected:
  2094 
  2095     class NodeNotifierProxy : public Graph::NodeNotifier::ObserverBase {
  2096     public:
  2097 
  2098       typedef typename Graph::NodeNotifier::ObserverBase Parent;
  2099       typedef AlterableSplitGraphAdaptor AdaptorBase;
  2100       
  2101       NodeNotifierProxy(const AdaptorBase& _adaptor)
  2102         : Parent(), adaptor(&_adaptor) {
  2103       }
  2104 
  2105       virtual ~NodeNotifierProxy() {
  2106         if (Parent::attached()) {
  2107           Parent::detach();
  2108         }
  2109       }
  2110 
  2111       void setNotifier(typename Graph::NodeNotifier& graph_notifier) {
  2112         Parent::attach(graph_notifier);
  2113       }
  2114 
  2115       
  2116     protected:
  2117 
  2118       virtual void add(const GraphNode& gn) {
  2119         std::vector<Node> nodes;
  2120         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2121         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2122         adaptor->getNotifier(Node()).add(nodes);
  2123       }
  2124 
  2125       virtual void add(const std::vector<GraphNode>& gn) {
  2126         std::vector<Node> nodes;
  2127         for (int i = 0; i < (int)gn.size(); ++i) {
  2128           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2129           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2130         }
  2131         adaptor->getNotifier(Node()).add(nodes);
  2132       }
  2133 
  2134       virtual void erase(const GraphNode& gn) {
  2135         std::vector<Node> nodes;
  2136         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2137         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2138         adaptor->getNotifier(Node()).erase(nodes);
  2139       }
  2140 
  2141       virtual void erase(const std::vector<GraphNode>& gn) {
  2142         std::vector<Node> nodes;
  2143         for (int i = 0; i < (int)gn.size(); ++i) {
  2144           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2145           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2146         }
  2147         adaptor->getNotifier(Node()).erase(nodes);
  2148       }
  2149       virtual void build() {
  2150         adaptor->getNotifier(Node()).build();
  2151       }
  2152       virtual void clear() {
  2153         adaptor->getNotifier(Node()).clear();
  2154       }
  2155 
  2156       const AdaptorBase* adaptor;
  2157     };
  2158 
  2159 
  2160     mutable NodeNotifier node_notifier;
  2161 
  2162     NodeNotifierProxy node_notifier_proxy;
  2163 
  2164   };
  2165 
  2166   template <typename _Graph>
  2167   class AlterableSplitGraphAdaptor<
  2168     _Graph,
  2169     typename enable_if<typename _Graph::NodeNotifier::Notifier>::type,
  2170     typename enable_if<typename _Graph::EdgeNotifier::Notifier>::type> 
  2171       : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
  2172   public:
  2173 
  2174     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  2175     typedef _Graph Graph;
  2176 
  2177     typedef typename Graph::Node GraphNode;
  2178     typedef typename Graph::Edge GraphEdge;
  2179 
  2180     typedef typename Parent::Node Node;
  2181     typedef typename Parent::Edge Edge;
  2182  
  2183   protected:
  2184     
  2185     AlterableSplitGraphAdaptor() 
  2186       : Parent(), node_notifier(*this), edge_notifier(*this), 
  2187         node_notifier_proxy(*this), edge_notifier_proxy(*this) {}
  2188     
  2189     void setGraph(_Graph& graph) {
  2190       Parent::setGraph(graph);
  2191       node_notifier_proxy.setNotifier(graph.getNotifier(GraphNode()));
  2192       edge_notifier_proxy.setNotifier(graph.getNotifier(GraphEdge()));
  2193     }
  2194 
  2195   public:
  2196 
  2197     ~AlterableSplitGraphAdaptor() {
  2198       node_notifier.clear();
  2199       edge_notifier.clear();
  2200     }
  2201 
  2202     typedef AlterationNotifier<AlterableSplitGraphAdaptor, Node> NodeNotifier;
  2203     typedef AlterationNotifier<AlterableSplitGraphAdaptor, Edge> EdgeNotifier;
  2204 
  2205     NodeNotifier& getNotifier(Node) const { return node_notifier; }
  2206     EdgeNotifier& getNotifier(Edge) const { return edge_notifier; }
  2207 
  2208   protected:
  2209 
  2210     class NodeNotifierProxy : public Graph::NodeNotifier::ObserverBase {
  2211     public:
  2212       
  2213       typedef typename Graph::NodeNotifier::ObserverBase Parent;
  2214       typedef AlterableSplitGraphAdaptor AdaptorBase;
  2215       
  2216       NodeNotifierProxy(const AdaptorBase& _adaptor)
  2217         : Parent(), adaptor(&_adaptor) {
  2218       }
  2219 
  2220       virtual ~NodeNotifierProxy() {
  2221         if (Parent::attached()) {
  2222           Parent::detach();
  2223         }
  2224       }
  2225 
  2226       void setNotifier(typename Graph::NodeNotifier& graph_notifier) {
  2227         Parent::attach(graph_notifier);
  2228       }
  2229 
  2230       
  2231     protected:
  2232 
  2233       virtual void add(const GraphNode& gn) {
  2234         std::vector<Node> nodes;
  2235         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2236         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2237         adaptor->getNotifier(Node()).add(nodes);
  2238         adaptor->getNotifier(Edge()).add(AdaptorBase::Parent::edge(gn));
  2239       }
  2240       virtual void add(const std::vector<GraphNode>& gn) {
  2241         std::vector<Node> nodes;
  2242         std::vector<Edge> edges;
  2243         for (int i = 0; i < (int)gn.size(); ++i) {
  2244           edges.push_back(AdaptorBase::Parent::edge(gn[i]));
  2245           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2246           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2247         }
  2248         adaptor->getNotifier(Node()).add(nodes);
  2249         adaptor->getNotifier(Edge()).add(edges);
  2250       }
  2251       virtual void erase(const GraphNode& gn) {
  2252         adaptor->getNotifier(Edge()).erase(AdaptorBase::Parent::edge(gn));
  2253         std::vector<Node> nodes;
  2254         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2255         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2256         adaptor->getNotifier(Node()).erase(nodes);
  2257       }
  2258       virtual void erase(const std::vector<GraphNode>& gn) {
  2259         std::vector<Node> nodes;
  2260         std::vector<Edge> edges;
  2261         for (int i = 0; i < (int)gn.size(); ++i) {
  2262           edges.push_back(AdaptorBase::Parent::edge(gn[i]));
  2263           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2264           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2265         }
  2266         adaptor->getNotifier(Edge()).erase(edges);
  2267         adaptor->getNotifier(Node()).erase(nodes);
  2268       }
  2269       virtual void build() {
  2270         std::vector<Edge> edges;
  2271         const typename Parent::Notifier* notifier = Parent::getNotifier();
  2272         GraphNode it;
  2273         for (notifier->first(it); it != INVALID; notifier->next(it)) {
  2274           edges.push_back(AdaptorBase::Parent::edge(it));
  2275         }
  2276         adaptor->getNotifier(Node()).build();
  2277         adaptor->getNotifier(Edge()).add(edges);        
  2278       }
  2279       virtual void clear() {
  2280         std::vector<Edge> edges;
  2281         const typename Parent::Notifier* notifier = Parent::getNotifier();
  2282         GraphNode it;
  2283         for (notifier->first(it); it != INVALID; notifier->next(it)) {
  2284           edges.push_back(AdaptorBase::Parent::edge(it));
  2285         }
  2286         adaptor->getNotifier(Edge()).erase(edges);        
  2287         adaptor->getNotifier(Node()).clear();
  2288       }
  2289 
  2290       const AdaptorBase* adaptor;
  2291     };
  2292 
  2293     class EdgeNotifierProxy : public Graph::EdgeNotifier::ObserverBase {
  2294     public:
  2295 
  2296       typedef typename Graph::EdgeNotifier::ObserverBase Parent;
  2297       typedef AlterableSplitGraphAdaptor AdaptorBase;
  2298       
  2299       EdgeNotifierProxy(const AdaptorBase& _adaptor)
  2300         : Parent(), adaptor(&_adaptor) {
  2301       }
  2302 
  2303       virtual ~EdgeNotifierProxy() {
  2304         if (Parent::attached()) {
  2305           Parent::detach();
  2306         }
  2307       }
  2308 
  2309       void setNotifier(typename Graph::EdgeNotifier& graph_notifier) {
  2310         Parent::attach(graph_notifier);
  2311       }
  2312 
  2313       
  2314     protected:
  2315 
  2316       virtual void add(const GraphEdge& ge) {
  2317         adaptor->getNotifier(Edge()).add(AdaptorBase::edge(ge));
  2318       }
  2319       virtual void add(const std::vector<GraphEdge>& ge) {
  2320         std::vector<Edge> edges;
  2321         for (int i = 0; i < (int)ge.size(); ++i) {
  2322           edges.push_back(AdaptorBase::edge(ge[i]));
  2323         }
  2324         adaptor->getNotifier(Edge()).add(edges);
  2325       }
  2326       virtual void erase(const GraphEdge& ge) {
  2327         adaptor->getNotifier(Edge()).erase(AdaptorBase::edge(ge));
  2328       }
  2329       virtual void erase(const std::vector<GraphEdge>& ge) {
  2330         std::vector<Edge> edges;
  2331         for (int i = 0; i < (int)ge.size(); ++i) {
  2332           edges.push_back(AdaptorBase::edge(ge[i]));
  2333         }
  2334         adaptor->getNotifier(Edge()).erase(edges);
  2335       }
  2336       virtual void build() {
  2337         std::vector<Edge> edges;
  2338         const typename Parent::Notifier* notifier = Parent::getNotifier();
  2339         GraphEdge it;
  2340         for (notifier->first(it); it != INVALID; notifier->next(it)) {
  2341           edges.push_back(AdaptorBase::Parent::edge(it));
  2342         }
  2343         adaptor->getNotifier(Edge()).add(edges);
  2344       }
  2345       virtual void clear() {
  2346         std::vector<Edge> edges;
  2347         const typename Parent::Notifier* notifier = Parent::getNotifier();
  2348         GraphEdge it;
  2349         for (notifier->first(it); it != INVALID; notifier->next(it)) {
  2350           edges.push_back(AdaptorBase::Parent::edge(it));
  2351         }
  2352         adaptor->getNotifier(Edge()).erase(edges);
  2353       }
  2354 
  2355       const AdaptorBase* adaptor;
  2356     };
  2357 
  2358 
  2359     mutable NodeNotifier node_notifier;
  2360     mutable EdgeNotifier edge_notifier;
  2361 
  2362     NodeNotifierProxy node_notifier_proxy;
  2363     EdgeNotifierProxy edge_notifier_proxy;
  2364 
  2365   };
  2366 
  2367   /// \ingroup graph_adaptors
  2368   ///
  2369   /// \brief Split graph adaptor class
  2370   /// 
  2371   /// This is an graph adaptor which splits all node into an in-node
  2372   /// and an out-node. Formaly, the adaptor replaces each \f$ u \f$
  2373   /// node in the graph with two node, \f$ u_{in} \f$ node and 
  2374   /// \f$ u_{out} \f$ node. If there is an \f$ (v, u) \f$ edge in the 
  2375   /// original graph the new target of the edge will be \f$ u_{in} \f$ and
  2376   /// similarly the source of the original \f$ (u, v) \f$ edge will be
  2377   /// \f$ u_{out} \f$.  The adaptor will add for each node in the 
  2378   /// original graph an additional edge which will connect 
  2379   /// \f$ (u_{in}, u_{out}) \f$.
  2380   ///
  2381   /// The aim of this class is to run algorithm with node costs if the 
  2382   /// algorithm can use directly just edge costs. In this case we should use
  2383   /// a \c SplitGraphAdaptor and set the node cost of the graph to the
  2384   /// bind edge in the adapted graph.
  2385   /// 
  2386   /// By example a maximum flow algoritm can compute how many edge
  2387   /// disjoint paths are in the graph. But we would like to know how
  2388   /// many node disjoint paths are in the graph. First we have to
  2389   /// adapt the graph with the \c SplitGraphAdaptor. Then run the flow
  2390   /// algorithm on the adapted graph. The bottleneck of the flow will
  2391   /// be the bind edges which bounds the flow with the count of the
  2392   /// node disjoint paths.
  2393   ///
  2394   ///\code
  2395   ///
  2396   /// typedef SplitGraphAdaptor<SmartGraph> SGraph;
  2397   ///
  2398   /// SGraph sgraph(graph);
  2399   ///
  2400   /// typedef ConstMap<SGraph::Edge, int> SCapacity;
  2401   /// SCapacity scapacity(1);
  2402   ///
  2403   /// SGraph::EdgeMap<int> sflow(sgraph);
  2404   ///
  2405   /// Preflow<SGraph, int, SCapacity> 
  2406   ///   spreflow(sgraph, SGraph::outNode(source),SGraph::inNode(target),  
  2407   ///            scapacity, sflow);
  2408   ///                                            
  2409   /// spreflow.run();
  2410   ///
  2411   ///\endcode
  2412   ///
  2413   /// The result of the mamixum flow on the original graph
  2414   /// shows the next figure:
  2415   ///
  2416   /// \image html edge_disjoint.png
  2417   /// \image latex edge_disjoint.eps "Edge disjoint paths" width=\textwidth
  2418   /// 
  2419   /// And the maximum flow on the adapted graph:
  2420   ///
  2421   /// \image html node_disjoint.png
  2422   /// \image latex node_disjoint.eps "Node disjoint paths" width=\textwidth
  2423   ///
  2424   /// The second solution contains just 3 disjoint paths while the first 4.
  2425   /// The full code can be found in the \ref disjoint_paths_demo.cc demo file.
  2426   ///
  2427   /// This graph adaptor is fully conform to the 
  2428   /// \ref concept::Graph "Graph" concept and
  2429   /// contains some additional member functions and types. The 
  2430   /// documentation of some member functions may be found just in the
  2431   /// SplitGraphAdaptorBase class.
  2432   ///
  2433   /// \sa SplitGraphAdaptorBase
  2434   template <typename _Graph>
  2435   class SplitGraphAdaptor : public AlterableSplitGraphAdaptor<_Graph> {
  2436   public:
  2437     typedef AlterableSplitGraphAdaptor<_Graph> Parent;
  2438 
  2439     typedef typename Parent::Node Node;
  2440     typedef typename Parent::Edge Edge;
  2441 
  2442     /// \brief Constructor of the adaptor.
  2443     ///
  2444     /// Constructor of the adaptor.
  2445     SplitGraphAdaptor(_Graph& graph) {
  2446       Parent::setGraph(graph);
  2447     }
  2448 
  2449     /// \brief NodeMap combined from two original NodeMap
  2450     ///
  2451     /// This class adapt two of the original graph NodeMap to
  2452     /// get a node map on the adapted graph.
  2453     template <typename InNodeMap, typename OutNodeMap>
  2454     class CombinedNodeMap {
  2455     public:
  2456 
  2457       typedef Node Key;
  2458       typedef typename InNodeMap::Value Value;
  2459 
  2460       /// \brief Constructor
  2461       ///
  2462       /// Constructor.
  2463       CombinedNodeMap(InNodeMap& _inNodeMap, OutNodeMap& _outNodeMap) 
  2464 	: inNodeMap(_inNodeMap), outNodeMap(_outNodeMap) {}
  2465 
  2466       /// \brief The subscript operator.
  2467       ///
  2468       /// The subscript operator.
  2469       Value& operator[](const Key& key) {
  2470 	if (Parent::inNode(key)) {
  2471 	  return inNodeMap[key];
  2472 	} else {
  2473 	  return outNodeMap[key];
  2474 	}
  2475       }
  2476 
  2477       /// \brief The const subscript operator.
  2478       ///
  2479       /// The const subscript operator.
  2480       Value operator[](const Key& key) const {
  2481 	if (Parent::inNode(key)) {
  2482 	  return inNodeMap[key];
  2483 	} else {
  2484 	  return outNodeMap[key];
  2485 	}
  2486       }
  2487 
  2488       /// \brief The setter function of the map.
  2489       /// 
  2490       /// The setter function of the map.
  2491       void set(const Key& key, const Value& value) {
  2492 	if (Parent::inNode(key)) {
  2493 	  inNodeMap.set(key, value);
  2494 	} else {
  2495 	  outNodeMap.set(key, value);
  2496 	}
  2497       }
  2498       
  2499     private:
  2500       
  2501       InNodeMap& inNodeMap;
  2502       OutNodeMap& outNodeMap;
  2503       
  2504     };
  2505 
  2506 
  2507     /// \brief Just gives back a combined node map.
  2508     /// 
  2509     /// Just gives back a combined node map.
  2510     template <typename InNodeMap, typename OutNodeMap>
  2511     static CombinedNodeMap<InNodeMap, OutNodeMap> 
  2512     combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
  2513       return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
  2514     }
  2515 
  2516     template <typename InNodeMap, typename OutNodeMap>
  2517     static CombinedNodeMap<const InNodeMap, OutNodeMap> 
  2518     combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
  2519       return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
  2520     }
  2521 
  2522     template <typename InNodeMap, typename OutNodeMap>
  2523     static CombinedNodeMap<InNodeMap, const OutNodeMap> 
  2524     combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
  2525       return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
  2526     }
  2527 
  2528     template <typename InNodeMap, typename OutNodeMap>
  2529     static CombinedNodeMap<const InNodeMap, const OutNodeMap> 
  2530     combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
  2531       return CombinedNodeMap<const InNodeMap, 
  2532         const OutNodeMap>(in_map, out_map);
  2533     }
  2534 
  2535     /// \brief EdgeMap combined from an original EdgeMap and NodeMap
  2536     ///
  2537     /// This class adapt an original graph EdgeMap and NodeMap to
  2538     /// get an edge map on the adapted graph.
  2539     template <typename GraphEdgeMap, typename GraphNodeMap>
  2540     class CombinedEdgeMap 
  2541       : public MapBase<Edge, typename GraphEdgeMap::Value> {
  2542     public:
  2543       typedef MapBase<Edge, typename GraphEdgeMap::Value> Parent;
  2544 
  2545       typedef typename Parent::Key Key;
  2546       typedef typename Parent::Value Value;
  2547 
  2548       /// \brief Constructor
  2549       ///
  2550       /// Constructor.
  2551       CombinedEdgeMap(GraphEdgeMap& _edge_map, GraphNodeMap& _node_map) 
  2552 	: edge_map(_edge_map), node_map(_node_map) {}
  2553 
  2554       /// \brief The subscript operator.
  2555       ///
  2556       /// The subscript operator.
  2557       void set(const Edge& edge, const Value& val) {
  2558 	if (Parent::origEdge(edge)) {
  2559 	  edge_map.set(edge, val);
  2560 	} else {
  2561 	  node_map.set(edge, val);
  2562 	}
  2563       }
  2564 
  2565       /// \brief The const subscript operator.
  2566       ///
  2567       /// The const subscript operator.
  2568       Value operator[](const Key& edge) const {
  2569 	if (Parent::origEdge(edge)) {
  2570 	  return edge_map[edge];
  2571 	} else {
  2572 	  return node_map[edge];
  2573 	}
  2574       }      
  2575 
  2576       /// \brief The const subscript operator.
  2577       ///
  2578       /// The const subscript operator.
  2579       Value& operator[](const Key& edge) {
  2580 	if (Parent::origEdge(edge)) {
  2581 	  return edge_map[edge];
  2582 	} else {
  2583 	  return node_map[edge];
  2584 	}
  2585       }      
  2586       
  2587     private:
  2588       GraphEdgeMap& edge_map;
  2589       GraphNodeMap& node_map;
  2590     };
  2591                     
  2592     /// \brief Just gives back a combined edge map.
  2593     /// 
  2594     /// Just gives back a combined edge map.
  2595     template <typename GraphEdgeMap, typename GraphNodeMap>
  2596     static CombinedEdgeMap<GraphEdgeMap, GraphNodeMap> 
  2597     combinedEdgeMap(GraphEdgeMap& edge_map, GraphNodeMap& node_map) {
  2598       return CombinedEdgeMap<GraphEdgeMap, GraphNodeMap>(edge_map, node_map);
  2599     }
  2600 
  2601     template <typename GraphEdgeMap, typename GraphNodeMap>
  2602     static CombinedEdgeMap<const GraphEdgeMap, GraphNodeMap> 
  2603     combinedEdgeMap(const GraphEdgeMap& edge_map, GraphNodeMap& node_map) {
  2604       return CombinedEdgeMap<const GraphEdgeMap, 
  2605         GraphNodeMap>(edge_map, node_map);
  2606     }
  2607 
  2608     template <typename GraphEdgeMap, typename GraphNodeMap>
  2609     static CombinedEdgeMap<GraphEdgeMap, const GraphNodeMap> 
  2610     combinedEdgeMap(GraphEdgeMap& edge_map, const GraphNodeMap& node_map) {
  2611       return CombinedEdgeMap<GraphEdgeMap, 
  2612         const GraphNodeMap>(edge_map, node_map);
  2613     }
  2614 
  2615     template <typename GraphEdgeMap, typename GraphNodeMap>
  2616     static CombinedEdgeMap<const GraphEdgeMap, const GraphNodeMap> 
  2617     combinedEdgeMap(const GraphEdgeMap& edge_map, 
  2618                     const GraphNodeMap& node_map) {
  2619       return CombinedEdgeMap<const GraphEdgeMap, 
  2620         const GraphNodeMap>(edge_map, node_map);
  2621     }
  2622 
  2623   };
  2624 
  2625   /// \brief Just gives back a split graph adaptor
  2626   ///
  2627   /// Just gives back a split graph adaptor
  2628   template<typename Graph>
  2629   SplitGraphAdaptor<Graph>
  2630   splitGraphAdaptor(const Graph& graph) {
  2631     return SplitGraphAdaptor<Graph>(graph);
  2632   }
  2633 
  2634 
  2635 } //namespace lemon
  2636 
  2637 #endif //LEMON_GRAPH_ADAPTOR_H
  2638