lemon/fib_heap.h
author deba
Thu, 10 Nov 2005 12:41:33 +0000
changeset 1786 a263c131e999
parent 1717 75fe24093ded
child 1834 0a14e1ae45a1
permissions -rw-r--r--
Doc bug fix
     1 /* -*- C++ -*-
     2  * lemon/fib_heap.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_FIB_HEAP_H
    18 #define LEMON_FIB_HEAP_H
    19 
    20 ///\file
    21 ///\ingroup auxdat
    22 ///\brief Fibonacci Heap implementation.
    23 
    24 #include <vector>
    25 #include <functional>
    26 #include <cmath>
    27 
    28 namespace lemon {
    29   
    30   /// \addtogroup auxdat
    31   /// @{
    32 
    33   /// Fibonacci Heap.
    34 
    35   ///This class implements the \e Fibonacci \e heap data structure. A \e heap
    36   ///is a data structure for storing items with specified values called \e
    37   ///priorities in such a way that finding the item with minimum priority is
    38   ///efficient. \c Compare specifies the ordering of the priorities. In a heap
    39   ///one can change the priority of an item, add or erase an item, etc.
    40   ///
    41   ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
    42   ///heap. In case of many calls to these operations, it is better to use a
    43   ///\e binary \e heap.
    44   ///
    45   ///\param Item Type of the items to be stored.  
    46   ///\param Prio Type of the priority of the items.
    47   ///\param ItemIntMap A read and writable Item int map, used internally
    48   ///to handle the cross references.
    49   ///\param Compare A class for the ordering of the priorities. The
    50   ///default is \c std::less<Prio>.
    51   ///
    52   ///\sa BinHeap
    53   ///\sa Dijkstra
    54   ///\author Jacint Szabo 
    55  
    56 #ifdef DOXYGEN
    57   template <typename Item, 
    58 	    typename Prio, 
    59 	    typename ItemIntMap, 
    60 	    typename Compare>
    61 #else
    62   template <typename Item, 
    63 	    typename Prio, 
    64 	    typename ItemIntMap, 
    65 	    typename Compare = std::less<Prio> >
    66 #endif
    67   class FibHeap {
    68   public:     
    69     typedef Prio PrioType;
    70     
    71   private:
    72     class store;
    73     
    74     std::vector<store> container;
    75     int minimum;
    76     ItemIntMap &iimap;
    77     Compare comp;
    78     int num_items;
    79     
    80   public:
    81     ///Status of the nodes
    82     enum state_enum {
    83       ///The node is in the heap
    84       IN_HEAP = 0,
    85       ///The node has never been in the heap
    86       PRE_HEAP = -1,
    87       ///The node was in the heap but it got out of it
    88       POST_HEAP = -2
    89     };
    90     
    91     /// \brief The constructor
    92     ///
    93     /// \c _iimap should be given to the constructor, since it is
    94     ///   used internally to handle the cross references.
    95     explicit FibHeap(ItemIntMap &_iimap) 
    96       : minimum(0), iimap(_iimap), num_items() {} 
    97  
    98     /// \brief The constructor
    99     ///
   100     /// \c _iimap should be given to the constructor, since it is used
   101     /// internally to handle the cross references. \c _comp is an
   102     /// object for ordering of the priorities. 
   103     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(0), 
   104 		  iimap(_iimap), comp(_comp), num_items() {}
   105     
   106     /// \brief The number of items stored in the heap.
   107     ///
   108     /// Returns the number of items stored in the heap.
   109     int size() const { return num_items; }
   110 
   111     /// \brief Checks if the heap stores no items.
   112     ///
   113     ///   Returns \c true if and only if the heap stores no items.
   114     bool empty() const { return num_items==0; }
   115 
   116     /// \brief Make empty this heap.
   117     /// 
   118     /// Make empty this heap.
   119     void clear() {
   120       if (num_items != 0) {
   121 	for (int i = 0; i < (int)container.size(); ++i) {
   122 	  iimap[container[i].name] = -2;
   123 	}
   124       }
   125       container.clear(); minimum = 0; num_items = 0;
   126     }
   127 
   128     /// \brief \c item gets to the heap with priority \c value independently 
   129     /// if \c item was already there.
   130     ///
   131     /// This method calls \ref push(\c item, \c value) if \c item is not
   132     /// stored in the heap and it calls \ref decrease(\c item, \c value) or
   133     /// \ref increase(\c item, \c value) otherwise.
   134     void set (Item const item, PrioType const value); 
   135     
   136     /// \brief Adds \c item to the heap with priority \c value. 
   137     ///    
   138     /// Adds \c item to the heap with priority \c value. 
   139     /// \pre \c item must not be stored in the heap. 
   140     void push (Item const item, PrioType const value);
   141     
   142     /// \brief Returns the item with minimum priority relative to \c Compare.
   143     ///
   144     /// This method returns the item with minimum priority relative to \c
   145     /// Compare.  
   146     /// \pre The heap must be nonempty.  
   147     Item top() const { return container[minimum].name; }
   148 
   149     /// \brief Returns the minimum priority relative to \c Compare.
   150     ///
   151     /// It returns the minimum priority relative to \c Compare.
   152     /// \pre The heap must be nonempty.
   153     PrioType prio() const { return container[minimum].prio; }
   154     
   155     /// \brief Returns the priority of \c item.
   156     ///
   157     /// This function returns the priority of \c item.
   158     /// \pre \c item must be in the heap.
   159     PrioType& operator[](const Item& item) { 
   160       return container[iimap[item]].prio; 
   161     }
   162     
   163     /// \brief Returns the priority of \c item.
   164     ///
   165     /// It returns the priority of \c item.
   166     /// \pre \c item must be in the heap.
   167     const PrioType& operator[](const Item& item) const { 
   168       return container[iimap[item]].prio; 
   169     }
   170 
   171 
   172     /// \brief Deletes the item with minimum priority relative to \c Compare.
   173     ///
   174     /// This method deletes the item with minimum priority relative to \c
   175     /// Compare from the heap.  
   176     /// \pre The heap must be non-empty.  
   177     void pop();
   178 
   179     /// \brief Deletes \c item from the heap.
   180     ///
   181     /// This method deletes \c item from the heap, if \c item was already
   182     /// stored in the heap. It is quite inefficient in Fibonacci heaps.
   183     void erase (const Item& item); 
   184 
   185     /// \brief Decreases the priority of \c item to \c value.
   186     ///
   187     /// This method decreases the priority of \c item to \c value.
   188     /// \pre \c item must be stored in the heap with priority at least \c
   189     ///   value relative to \c Compare.
   190     void decrease (Item item, PrioType const value); 
   191 
   192     /// \brief Increases the priority of \c item to \c value.
   193     ///
   194     /// This method sets the priority of \c item to \c value. Though
   195     /// there is no precondition on the priority of \c item, this
   196     /// method should be used only if it is indeed necessary to increase
   197     /// (relative to \c Compare) the priority of \c item, because this
   198     /// method is inefficient.
   199     void increase (Item item, PrioType const value) {
   200       erase(item);
   201       push(item, value);
   202     }
   203 
   204 
   205     /// \brief Returns if \c item is in, has already been in, or has never 
   206     /// been in the heap.
   207     ///
   208     /// This method returns PRE_HEAP if \c item has never been in the
   209     /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
   210     /// otherwise. In the latter case it is possible that \c item will
   211     /// get back to the heap again.
   212     state_enum state(const Item &item) const {
   213       int i=iimap[item];
   214       if( i>=0 ) {
   215 	if ( container[i].in ) i=0;
   216 	else i=-2; 
   217       }
   218       return state_enum(i);
   219     }    
   220     
   221   private:
   222     
   223     void balance();
   224     void makeroot(int c);
   225     void cut(int a, int b);
   226     void cascade(int a);
   227     void fuse(int a, int b);
   228     void unlace(int a);
   229 
   230 
   231     class store {
   232       friend class FibHeap;
   233       
   234       Item name;
   235       int parent;
   236       int left_neighbor;
   237       int right_neighbor;
   238       int child;
   239       int degree;  
   240       bool marked;
   241       bool in;
   242       PrioType prio;
   243       
   244       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   245     };
   246   };    
   247  
   248 
   249 
   250     // **********************************************************************
   251     //  IMPLEMENTATIONS
   252     // **********************************************************************
   253     
   254   template <typename Item, typename Prio, typename ItemIntMap, 
   255     typename Compare>
   256   void FibHeap<Item, Prio, ItemIntMap, Compare>::set 
   257   (Item const item, PrioType const value) 
   258   {
   259     int i=iimap[item];
   260     if ( i >= 0 && container[i].in ) {
   261       if ( comp(value, container[i].prio) ) decrease(item, value); 
   262       if ( comp(container[i].prio, value) ) increase(item, value); 
   263     } else push(item, value);
   264   }
   265     
   266   template <typename Item, typename Prio, typename ItemIntMap, 
   267     typename Compare>
   268   void FibHeap<Item, Prio, ItemIntMap, Compare>::push 
   269   (Item const item, PrioType const value) {
   270       int i=iimap[item];      
   271       if ( i < 0 ) {
   272 	int s=container.size();
   273 	iimap.set( item, s );	
   274 	store st;
   275 	st.name=item;
   276 	container.push_back(st);
   277 	i=s;
   278       } else {
   279 	container[i].parent=container[i].child=-1;
   280 	container[i].degree=0;
   281 	container[i].in=true;
   282 	container[i].marked=false;
   283       }
   284 
   285       if ( num_items ) {
   286 	container[container[minimum].right_neighbor].left_neighbor=i;
   287 	container[i].right_neighbor=container[minimum].right_neighbor;
   288 	container[minimum].right_neighbor=i;
   289 	container[i].left_neighbor=minimum;
   290 	if ( comp( value, container[minimum].prio) ) minimum=i; 
   291       } else {
   292 	container[i].right_neighbor=container[i].left_neighbor=i;
   293 	minimum=i;	
   294       }
   295       container[i].prio=value;
   296       ++num_items;
   297     }
   298     
   299   template <typename Item, typename Prio, typename ItemIntMap, 
   300     typename Compare>
   301   void FibHeap<Item, Prio, ItemIntMap, Compare>::pop() {
   302       /*The first case is that there are only one root.*/
   303       if ( container[minimum].left_neighbor==minimum ) {
   304 	container[minimum].in=false;
   305 	if ( container[minimum].degree!=0 ) { 
   306 	  makeroot(container[minimum].child);
   307 	  minimum=container[minimum].child;
   308 	  balance();
   309 	}
   310       } else {
   311 	int right=container[minimum].right_neighbor;
   312 	unlace(minimum);
   313 	container[minimum].in=false;
   314 	if ( container[minimum].degree > 0 ) {
   315 	  int left=container[minimum].left_neighbor;
   316 	  int child=container[minimum].child;
   317 	  int last_child=container[child].left_neighbor;
   318 	
   319 	  makeroot(child);
   320 	  
   321 	  container[left].right_neighbor=child;
   322 	  container[child].left_neighbor=left;
   323 	  container[right].left_neighbor=last_child;
   324 	  container[last_child].right_neighbor=right;
   325 	}
   326 	minimum=right;
   327 	balance();
   328       } // the case where there are more roots
   329       --num_items;   
   330     }
   331 
   332 
   333   template <typename Item, typename Prio, typename ItemIntMap, 
   334     typename Compare>
   335   void FibHeap<Item, Prio, ItemIntMap, Compare>::erase 
   336   (const Item& item) {
   337       int i=iimap[item];
   338       
   339       if ( i >= 0 && container[i].in ) { 	
   340 	if ( container[i].parent!=-1 ) {
   341 	  int p=container[i].parent;
   342 	  cut(i,p);	    
   343 	  cascade(p);
   344 	}
   345 	minimum=i;     //As if its prio would be -infinity
   346 	pop();
   347       }
   348   }
   349     
   350   template <typename Item, typename Prio, typename ItemIntMap, 
   351     typename Compare>
   352   void FibHeap<Item, Prio, ItemIntMap, Compare>::decrease 
   353   (Item item, PrioType const value) {
   354       int i=iimap[item];
   355       container[i].prio=value;
   356       int p=container[i].parent;
   357       
   358       if ( p!=-1 && comp(value, container[p].prio) ) {
   359 	cut(i,p);	    
   360 	cascade(p);
   361       }      
   362       if ( comp(value, container[minimum].prio) ) minimum=i; 
   363   }
   364  
   365 
   366   template <typename Item, typename Prio, typename ItemIntMap, 
   367     typename Compare>
   368   void FibHeap<Item, Prio, ItemIntMap, Compare>::balance() {      
   369 
   370     int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
   371   
   372     std::vector<int> A(maxdeg,-1); 
   373     
   374     /*
   375      *Recall that now minimum does not point to the minimum prio element.
   376      *We set minimum to this during balance().
   377      */
   378     int anchor=container[minimum].left_neighbor; 
   379     int next=minimum; 
   380     bool end=false; 
   381     	
   382        do {
   383 	int active=next;
   384 	if ( anchor==active ) end=true;
   385 	int d=container[active].degree;
   386 	next=container[active].right_neighbor;
   387 
   388 	while (A[d]!=-1) {	  
   389 	  if( comp(container[active].prio, container[A[d]].prio) ) {
   390 	    fuse(active,A[d]); 
   391 	  } else { 
   392 	    fuse(A[d],active);
   393 	    active=A[d];
   394 	  } 
   395 	  A[d]=-1;
   396 	  ++d;
   397 	}	
   398 	A[d]=active;
   399        } while ( !end );
   400 
   401 
   402        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   403        int s=minimum;
   404        int m=minimum;
   405        do {  
   406 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   407 	 s=container[s].right_neighbor;
   408        } while ( s != m );
   409     }
   410 
   411   template <typename Item, typename Prio, typename ItemIntMap, 
   412     typename Compare>
   413   void FibHeap<Item, Prio, ItemIntMap, Compare>::makeroot 
   414   (int c) {
   415       int s=c;
   416       do {  
   417 	container[s].parent=-1;
   418 	s=container[s].right_neighbor;
   419       } while ( s != c );
   420     }
   421   
   422   
   423   template <typename Item, typename Prio, typename ItemIntMap, 
   424     typename Compare>
   425   void FibHeap<Item, Prio, ItemIntMap, Compare>::cut 
   426   (int a, int b) {    
   427     /*
   428      *Replacing a from the children of b.
   429      */
   430     --container[b].degree;
   431     
   432     if ( container[b].degree !=0 ) {
   433       int child=container[b].child;
   434       if ( child==a ) 
   435 	container[b].child=container[child].right_neighbor;
   436       unlace(a);
   437     }
   438     
   439     
   440     /*Lacing a to the roots.*/
   441     int right=container[minimum].right_neighbor;
   442     container[minimum].right_neighbor=a;
   443     container[a].left_neighbor=minimum;
   444     container[a].right_neighbor=right;
   445     container[right].left_neighbor=a;
   446     
   447     container[a].parent=-1;
   448     container[a].marked=false;
   449   }
   450   
   451 
   452   template <typename Item, typename Prio, typename ItemIntMap, 
   453     typename Compare>
   454   void FibHeap<Item, Prio, ItemIntMap, Compare>::cascade 
   455   (int a) 
   456     {
   457       if ( container[a].parent!=-1 ) {
   458 	int p=container[a].parent;
   459 	
   460 	if ( container[a].marked==false ) container[a].marked=true;
   461 	else {
   462 	  cut(a,p);
   463 	  cascade(p);
   464 	}
   465       }
   466     }
   467 
   468 
   469   template <typename Item, typename Prio, typename ItemIntMap, 
   470     typename Compare>
   471   void FibHeap<Item, Prio, ItemIntMap, Compare>::fuse 
   472   (int a, int b) {
   473       unlace(b);
   474       
   475       /*Lacing b under a.*/
   476       container[b].parent=a;
   477 
   478       if (container[a].degree==0) {
   479 	container[b].left_neighbor=b;
   480 	container[b].right_neighbor=b;
   481 	container[a].child=b;	
   482       } else {
   483 	int child=container[a].child;
   484 	int last_child=container[child].left_neighbor;
   485 	container[child].left_neighbor=b;
   486 	container[b].right_neighbor=child;
   487 	container[last_child].right_neighbor=b;
   488 	container[b].left_neighbor=last_child;
   489       }
   490 
   491       ++container[a].degree;
   492       
   493       container[b].marked=false;
   494     }
   495 
   496   
   497   /*
   498    *It is invoked only if a has siblings.
   499    */
   500   template <typename Item, typename Prio, typename ItemIntMap, 
   501     typename Compare>
   502   void FibHeap<Item, Prio, ItemIntMap, Compare>::unlace 
   503   (int a) {      
   504       int leftn=container[a].left_neighbor;
   505       int rightn=container[a].right_neighbor;
   506       container[leftn].right_neighbor=rightn;
   507       container[rightn].left_neighbor=leftn;
   508   }
   509   
   510   ///@}
   511 
   512 } //namespace lemon
   513 
   514 #endif //LEMON_FIB_HEAP_H
   515