lemon/dijkstra.h
author deba
Wed, 05 Oct 2005 16:45:37 +0000
changeset 1709 a323456bf7c8
parent 1694 6d81e6f7a88d
child 1710 f531c16dd923
permissions -rw-r--r--
Template Named Parameter bugfix
     1 /* -*- C++ -*-
     2  * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_DIJKSTRA_H
    18 #define LEMON_DIJKSTRA_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Dijkstra algorithm.
    23 ///
    24 ///\todo getPath() should be implemented! (also for BFS and DFS)
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/bin_heap.h>
    28 #include <lemon/invalid.h>
    29 #include <lemon/error.h>
    30 #include <lemon/maps.h>
    31 
    32 namespace lemon {
    33 
    34 
    35   
    36   ///Default traits class of Dijkstra class.
    37 
    38   ///Default traits class of Dijkstra class.
    39   ///\param GR Graph type.
    40   ///\param LM Type of length map.
    41   template<class GR, class LM>
    42   struct DijkstraDefaultTraits
    43   {
    44     ///The graph type the algorithm runs on. 
    45     typedef GR Graph;
    46     ///The type of the map that stores the edge lengths.
    47 
    48     ///The type of the map that stores the edge lengths.
    49     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    50     typedef LM LengthMap;
    51     //The type of the length of the edges.
    52     typedef typename LM::Value Value;
    53     ///The heap type used by Dijkstra algorithm.
    54 
    55     ///The heap type used by Dijkstra algorithm.
    56     ///
    57     ///\sa BinHeap
    58     ///\sa Dijkstra
    59     typedef BinHeap<typename Graph::Node, typename LM::Value,
    60 		    typename GR::template NodeMap<int>,
    61 		    std::less<Value> > Heap;
    62 
    63     ///\brief The type of the map that stores the last
    64     ///edges of the shortest paths.
    65     /// 
    66     ///The type of the map that stores the last
    67     ///edges of the shortest paths.
    68     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    69     ///
    70     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    71     ///Instantiates a PredMap.
    72  
    73     ///This function instantiates a \ref PredMap. 
    74     ///\param G is the graph, to which we would like to define the PredMap.
    75     ///\todo The graph alone may be insufficient for the initialization
    76     static PredMap *createPredMap(const GR &G) 
    77     {
    78       return new PredMap(G);
    79     }
    80 
    81     ///The type of the map that stores whether a nodes is processed.
    82  
    83     ///The type of the map that stores whether a nodes is processed.
    84     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    85     ///By default it is a NullMap.
    86     ///\todo If it is set to a real map,
    87     ///Dijkstra::processed() should read this.
    88     ///\todo named parameter to set this type, function to read and write.
    89     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
    90     ///Instantiates a ProcessedMap.
    91  
    92     ///This function instantiates a \ref ProcessedMap. 
    93     ///\param g is the graph, to which
    94     ///we would like to define the \ref ProcessedMap
    95 #ifdef DOXYGEN
    96     static ProcessedMap *createProcessedMap(const GR &g)
    97 #else
    98     static ProcessedMap *createProcessedMap(const GR &)
    99 #endif
   100     {
   101       return new ProcessedMap();
   102     }
   103     ///The type of the map that stores the dists of the nodes.
   104  
   105     ///The type of the map that stores the dists of the nodes.
   106     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   107     ///
   108     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   109     ///Instantiates a DistMap.
   110  
   111     ///This function instantiates a \ref DistMap. 
   112     ///\param G is the graph, to which we would like to define the \ref DistMap
   113     static DistMap *createDistMap(const GR &G)
   114     {
   115       return new DistMap(G);
   116     }
   117   };
   118   
   119   ///%Dijkstra algorithm class.
   120   
   121   /// \ingroup flowalgs
   122   ///This class provides an efficient implementation of %Dijkstra algorithm.
   123   ///The edge lengths are passed to the algorithm using a
   124   ///\ref concept::ReadMap "ReadMap",
   125   ///so it is easy to change it to any kind of length.
   126   ///
   127   ///The type of the length is determined by the
   128   ///\ref concept::ReadMap::Value "Value" of the length map.
   129   ///
   130   ///It is also possible to change the underlying priority heap.
   131   ///
   132   ///\param GR The graph type the algorithm runs on. The default value
   133   ///is \ref ListGraph. The value of GR is not used directly by
   134   ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
   135   ///\param LM This read-only EdgeMap determines the lengths of the
   136   ///edges. It is read once for each edge, so the map may involve in
   137   ///relatively time consuming process to compute the edge length if
   138   ///it is necessary. The default map type is \ref
   139   ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   140   ///of LM is not used directly by Dijkstra, it is only passed to \ref
   141   ///DijkstraDefaultTraits.  \param TR Traits class to set
   142   ///various data types used by the algorithm.  The default traits
   143   ///class is \ref DijkstraDefaultTraits
   144   ///"DijkstraDefaultTraits<GR,LM>".  See \ref
   145   ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
   146   ///class.
   147   ///
   148   ///\author Jacint Szabo and Alpar Juttner
   149   ///\todo A compare object would be nice.
   150 
   151 #ifdef DOXYGEN
   152   template <typename GR,
   153 	    typename LM,
   154 	    typename TR>
   155 #else
   156   template <typename GR=ListGraph,
   157 	    typename LM=typename GR::template EdgeMap<int>,
   158 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   159 #endif
   160   class Dijkstra {
   161   public:
   162     /**
   163      * \brief \ref Exception for uninitialized parameters.
   164      *
   165      * This error represents problems in the initialization
   166      * of the parameters of the algorithms.
   167      */
   168     class UninitializedParameter : public lemon::UninitializedParameter {
   169     public:
   170       virtual const char* exceptionName() const {
   171 	return "lemon::Dijkstra::UninitializedParameter";
   172       }
   173     };
   174 
   175     typedef TR Traits;
   176     ///The type of the underlying graph.
   177     typedef typename TR::Graph Graph;
   178     ///\e
   179     typedef typename Graph::Node Node;
   180     ///\e
   181     typedef typename Graph::NodeIt NodeIt;
   182     ///\e
   183     typedef typename Graph::Edge Edge;
   184     ///\e
   185     typedef typename Graph::OutEdgeIt OutEdgeIt;
   186     
   187     ///The type of the length of the edges.
   188     typedef typename TR::LengthMap::Value Value;
   189     ///The type of the map that stores the edge lengths.
   190     typedef typename TR::LengthMap LengthMap;
   191     ///\brief The type of the map that stores the last
   192     ///edges of the shortest paths.
   193     typedef typename TR::PredMap PredMap;
   194     ///The type of the map indicating if a node is processed.
   195     typedef typename TR::ProcessedMap ProcessedMap;
   196     ///The type of the map that stores the dists of the nodes.
   197     typedef typename TR::DistMap DistMap;
   198     ///The heap type used by the dijkstra algorithm.
   199     typedef typename TR::Heap Heap;
   200   private:
   201     /// Pointer to the underlying graph.
   202     const Graph *G;
   203     /// Pointer to the length map
   204     const LengthMap *length;
   205     ///Pointer to the map of predecessors edges.
   206     PredMap *_pred;
   207     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   208     bool local_pred;
   209     ///Pointer to the map of distances.
   210     DistMap *_dist;
   211     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   212     bool local_dist;
   213     ///Pointer to the map of processed status of the nodes.
   214     ProcessedMap *_processed;
   215     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   216     bool local_processed;
   217 
   218     ///Creates the maps if necessary.
   219     
   220     ///\todo Error if \c G or are \c NULL. What about \c length?
   221     ///\todo Better memory allocation (instead of new).
   222     void create_maps() 
   223     {
   224       if(!_pred) {
   225 	local_pred = true;
   226 	_pred = Traits::createPredMap(*G);
   227       }
   228       if(!_dist) {
   229 	local_dist = true;
   230 	_dist = Traits::createDistMap(*G);
   231       }
   232       if(!_processed) {
   233 	local_processed = true;
   234 	_processed = Traits::createProcessedMap(*G);
   235       }
   236     }
   237     
   238   public :
   239  
   240     ///\name Named template parameters
   241 
   242     ///@{
   243 
   244     template <class T>
   245     struct DefPredMapTraits : public Traits {
   246       typedef T PredMap;
   247       static PredMap *createPredMap(const Graph &G) 
   248       {
   249 	throw UninitializedParameter();
   250       }
   251     };
   252     ///\ref named-templ-param "Named parameter" for setting PredMap type
   253 
   254     ///\ref named-templ-param "Named parameter" for setting PredMap type
   255     ///
   256     template <class T>
   257     struct DefPredMap 
   258       : public Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > {
   259       typedef Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > Create;
   260     };
   261     
   262     template <class T>
   263     struct DefDistMapTraits : public Traits {
   264       typedef T DistMap;
   265       static DistMap *createDistMap(const Graph &G) 
   266       {
   267 	throw UninitializedParameter();
   268       }
   269     };
   270     ///\ref named-templ-param "Named parameter" for setting DistMap type
   271 
   272     ///\ref named-templ-param "Named parameter" for setting DistMap type
   273     ///
   274     template <class T>
   275     struct DefDistMap 
   276       : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > { 
   277       typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
   278     };
   279     
   280     template <class T>
   281     struct DefProcessedMapTraits : public Traits {
   282       typedef T ProcessedMap;
   283       static ProcessedMap *createProcessedMap(const Graph &G) 
   284       {
   285 	throw UninitializedParameter();
   286       }
   287     };
   288     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   289 
   290     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   291     ///
   292     template <class T>
   293     struct DefProcessedMap 
   294       : public Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > { 
   295       typedef Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > Create;
   296     };
   297     
   298     struct DefGraphProcessedMapTraits : public Traits {
   299       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   300       static ProcessedMap *createProcessedMap(const Graph &G) 
   301       {
   302 	return new ProcessedMap(G);
   303       }
   304     };
   305     ///\brief \ref named-templ-param "Named parameter"
   306     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   307     ///
   308     ///\ref named-templ-param "Named parameter"
   309     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   310     ///If you don't set it explicitely, it will be automatically allocated.
   311     template <class T>
   312     struct DefProcessedMapToBeDefaultMap 
   313       : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
   314       typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
   315     };
   316     
   317     ///@}
   318 
   319 
   320   private:
   321     typename Graph::template NodeMap<int> _heap_map;
   322     Heap _heap;
   323   public:      
   324     
   325     ///Constructor.
   326     
   327     ///\param _G the graph the algorithm will run on.
   328     ///\param _length the length map used by the algorithm.
   329     Dijkstra(const Graph& _G, const LengthMap& _length) :
   330       G(&_G), length(&_length),
   331       _pred(NULL), local_pred(false),
   332       _dist(NULL), local_dist(false),
   333       _processed(NULL), local_processed(false),
   334       _heap_map(*G,-1),_heap(_heap_map)
   335     { }
   336     
   337     ///Destructor.
   338     ~Dijkstra() 
   339     {
   340       if(local_pred) delete _pred;
   341       if(local_dist) delete _dist;
   342       if(local_processed) delete _processed;
   343     }
   344 
   345     ///Sets the length map.
   346 
   347     ///Sets the length map.
   348     ///\return <tt> (*this) </tt>
   349     Dijkstra &lengthMap(const LengthMap &m) 
   350     {
   351       length = &m;
   352       return *this;
   353     }
   354 
   355     ///Sets the map storing the predecessor edges.
   356 
   357     ///Sets the map storing the predecessor edges.
   358     ///If you don't use this function before calling \ref run(),
   359     ///it will allocate one. The destuctor deallocates this
   360     ///automatically allocated map, of course.
   361     ///\return <tt> (*this) </tt>
   362     Dijkstra &predMap(PredMap &m) 
   363     {
   364       if(local_pred) {
   365 	delete _pred;
   366 	local_pred=false;
   367       }
   368       _pred = &m;
   369       return *this;
   370     }
   371 
   372     ///Sets the map storing the distances calculated by the algorithm.
   373 
   374     ///Sets the map storing the distances calculated by the algorithm.
   375     ///If you don't use this function before calling \ref run(),
   376     ///it will allocate one. The destuctor deallocates this
   377     ///automatically allocated map, of course.
   378     ///\return <tt> (*this) </tt>
   379     Dijkstra &distMap(DistMap &m) 
   380     {
   381       if(local_dist) {
   382 	delete _dist;
   383 	local_dist=false;
   384       }
   385       _dist = &m;
   386       return *this;
   387     }
   388 
   389   private:
   390     void finalizeNodeData(Node v,Value dst)
   391     {
   392       _processed->set(v,true);
   393       _dist->set(v, dst);
   394     }
   395 
   396   public:
   397     ///\name Execution control
   398     ///The simplest way to execute the algorithm is to use
   399     ///one of the member functions called \c run(...).
   400     ///\n
   401     ///If you need more control on the execution,
   402     ///first you must call \ref init(), then you can add several source nodes
   403     ///with \ref addSource().
   404     ///Finally \ref start() will perform the actual path
   405     ///computation.
   406 
   407     ///@{
   408 
   409     ///Initializes the internal data structures.
   410 
   411     ///Initializes the internal data structures.
   412     ///
   413     ///\todo _heap_map's type could also be in the traits class.
   414     ///\todo The heaps should be able to make themselves empty directly.
   415     void init()
   416     {
   417       create_maps();
   418       while(!_heap.empty()) _heap.pop();
   419       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   420 	_pred->set(u,INVALID);
   421 	_processed->set(u,false);
   422 	_heap_map.set(u,Heap::PRE_HEAP);
   423       }
   424     }
   425     
   426     ///Adds a new source node.
   427 
   428     ///Adds a new source node to the priority heap.
   429     ///
   430     ///The optional second parameter is the initial distance of the node.
   431     ///
   432     ///It checks if the node has already been added to the heap and
   433     ///It is pushed to the heap only if either it was not in the heap
   434     ///or the shortest path found till then is longer then \c dst.
   435     void addSource(Node s,Value dst=0)
   436     {
   437       if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
   438       else if(_heap[s]<dst) {
   439 	_heap.push(s,dst);
   440 	_pred->set(s,INVALID);
   441       }
   442     }
   443     
   444     ///Processes the next node in the priority heap
   445 
   446     ///Processes the next node in the priority heap.
   447     ///
   448     ///\return The processed node.
   449     ///
   450     ///\warning The priority heap must not be empty!
   451     Node processNextNode()
   452     {
   453       Node v=_heap.top(); 
   454       Value oldvalue=_heap[v];
   455       _heap.pop();
   456       finalizeNodeData(v,oldvalue);
   457       
   458       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   459 	Node w=G->target(e); 
   460 	switch(_heap.state(w)) {
   461 	case Heap::PRE_HEAP:
   462 	  _heap.push(w,oldvalue+(*length)[e]); 
   463 	  _pred->set(w,e);
   464 	  break;
   465 	case Heap::IN_HEAP:
   466 	  if ( oldvalue+(*length)[e] < _heap[w] ) {
   467 	    _heap.decrease(w, oldvalue+(*length)[e]); 
   468 	    _pred->set(w,e);
   469 	  }
   470 	  break;
   471 	case Heap::POST_HEAP:
   472 	  break;
   473 	}
   474       }
   475       return v;
   476     }
   477 
   478     ///Next node to be processed.
   479     
   480     ///Next node to be processed.
   481     ///
   482     ///\return The next node to be processed or INVALID if the priority heap
   483     /// is empty.
   484     Node nextNode()
   485     { 
   486       return _heap.empty()?_heap.top():INVALID;
   487     }
   488  
   489     ///\brief Returns \c false if there are nodes
   490     ///to be processed in the priority heap
   491     ///
   492     ///Returns \c false if there are nodes
   493     ///to be processed in the priority heap
   494     bool emptyQueue() { return _heap.empty(); }
   495     ///Returns the number of the nodes to be processed in the priority heap
   496 
   497     ///Returns the number of the nodes to be processed in the priority heap
   498     ///
   499     int queueSize() { return _heap.size(); }
   500     
   501     ///Executes the algorithm.
   502 
   503     ///Executes the algorithm.
   504     ///
   505     ///\pre init() must be called and at least one node should be added
   506     ///with addSource() before using this function.
   507     ///
   508     ///This method runs the %Dijkstra algorithm from the root node(s)
   509     ///in order to
   510     ///compute the
   511     ///shortest path to each node. The algorithm computes
   512     ///- The shortest path tree.
   513     ///- The distance of each node from the root(s).
   514     ///
   515     void start()
   516     {
   517       while ( !_heap.empty() ) processNextNode();
   518     }
   519     
   520     ///Executes the algorithm until \c dest is reached.
   521 
   522     ///Executes the algorithm until \c dest is reached.
   523     ///
   524     ///\pre init() must be called and at least one node should be added
   525     ///with addSource() before using this function.
   526     ///
   527     ///This method runs the %Dijkstra algorithm from the root node(s)
   528     ///in order to
   529     ///compute the
   530     ///shortest path to \c dest. The algorithm computes
   531     ///- The shortest path to \c  dest.
   532     ///- The distance of \c dest from the root(s).
   533     ///
   534     void start(Node dest)
   535     {
   536       while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
   537       if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   538     }
   539     
   540     ///Executes the algorithm until a condition is met.
   541 
   542     ///Executes the algorithm until a condition is met.
   543     ///
   544     ///\pre init() must be called and at least one node should be added
   545     ///with addSource() before using this function.
   546     ///
   547     ///\param nm must be a bool (or convertible) node map. The algorithm
   548     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   549     template<class NodeBoolMap>
   550     void start(const NodeBoolMap &nm)
   551     {
   552       while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
   553       if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
   554     }
   555     
   556     ///Runs %Dijkstra algorithm from node \c s.
   557     
   558     ///This method runs the %Dijkstra algorithm from a root node \c s
   559     ///in order to
   560     ///compute the
   561     ///shortest path to each node. The algorithm computes
   562     ///- The shortest path tree.
   563     ///- The distance of each node from the root.
   564     ///
   565     ///\note d.run(s) is just a shortcut of the following code.
   566     ///\code
   567     ///  d.init();
   568     ///  d.addSource(s);
   569     ///  d.start();
   570     ///\endcode
   571     void run(Node s) {
   572       init();
   573       addSource(s);
   574       start();
   575     }
   576     
   577     ///Finds the shortest path between \c s and \c t.
   578     
   579     ///Finds the shortest path between \c s and \c t.
   580     ///
   581     ///\return The length of the shortest s---t path if there exists one,
   582     ///0 otherwise.
   583     ///\note Apart from the return value, d.run(s) is
   584     ///just a shortcut of the following code.
   585     ///\code
   586     ///  d.init();
   587     ///  d.addSource(s);
   588     ///  d.start(t);
   589     ///\endcode
   590     Value run(Node s,Node t) {
   591       init();
   592       addSource(s);
   593       start(t);
   594       return (*_pred)[t]==INVALID?0:(*_dist)[t];
   595     }
   596     
   597     ///@}
   598 
   599     ///\name Query Functions
   600     ///The result of the %Dijkstra algorithm can be obtained using these
   601     ///functions.\n
   602     ///Before the use of these functions,
   603     ///either run() or start() must be called.
   604     
   605     ///@{
   606 
   607     ///Copies the shortest path to \c t into \c p
   608     
   609     ///This function copies the shortest path to \c t into \c p.
   610     ///If it \c t is a source itself or unreachable, then it does not
   611     ///alter \c p.
   612     ///\todo Is it the right way to handle unreachable nodes?
   613     ///\return Returns \c true if a path to \c t was actually copied to \c p,
   614     ///\c false otherwise.
   615     ///\sa DirPath
   616     template<class P>
   617     bool getPath(P &p,Node t) 
   618     {
   619       if(reached(t)) {
   620 	p.clear();
   621 	typename P::Builder b(p);
   622 	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
   623 	  b.pushFront(pred(t));
   624 	b.commit();
   625 	return true;
   626       }
   627       return false;
   628     }
   629 	  
   630     ///The distance of a node from the root.
   631 
   632     ///Returns the distance of a node from the root.
   633     ///\pre \ref run() must be called before using this function.
   634     ///\warning If node \c v in unreachable from the root the return value
   635     ///of this funcion is undefined.
   636     Value dist(Node v) const { return (*_dist)[v]; }
   637 
   638     ///Returns the 'previous edge' of the shortest path tree.
   639 
   640     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   641     ///i.e. it returns the last edge of a shortest path from the root to \c
   642     ///v. It is \ref INVALID
   643     ///if \c v is unreachable from the root or if \c v=s. The
   644     ///shortest path tree used here is equal to the shortest path tree used in
   645     ///\ref predNode().  \pre \ref run() must be called before using
   646     ///this function.
   647     ///\todo predEdge could be a better name.
   648     Edge pred(Node v) const { return (*_pred)[v]; }
   649 
   650     ///Returns the 'previous node' of the shortest path tree.
   651 
   652     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   653     ///i.e. it returns the last but one node from a shortest path from the
   654     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   655     ///\c v=s. The shortest path tree used here is equal to the shortest path
   656     ///tree used in \ref pred().  \pre \ref run() must be called before
   657     ///using this function.
   658     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   659 				  G->source((*_pred)[v]); }
   660     
   661     ///Returns a reference to the NodeMap of distances.
   662 
   663     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   664     ///be called before using this function.
   665     const DistMap &distMap() const { return *_dist;}
   666  
   667     ///Returns a reference to the shortest path tree map.
   668 
   669     ///Returns a reference to the NodeMap of the edges of the
   670     ///shortest path tree.
   671     ///\pre \ref run() must be called before using this function.
   672     const PredMap &predMap() const { return *_pred;}
   673  
   674     ///Checks if a node is reachable from the root.
   675 
   676     ///Returns \c true if \c v is reachable from the root.
   677     ///\warning The source nodes are inditated as unreached.
   678     ///\pre \ref run() must be called before using this function.
   679     ///
   680     bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
   681     
   682     ///@}
   683   };
   684 
   685 
   686 
   687 
   688  
   689   ///Default traits class of Dijkstra function.
   690 
   691   ///Default traits class of Dijkstra function.
   692   ///\param GR Graph type.
   693   ///\param LM Type of length map.
   694   template<class GR, class LM>
   695   struct DijkstraWizardDefaultTraits
   696   {
   697     ///The graph type the algorithm runs on. 
   698     typedef GR Graph;
   699     ///The type of the map that stores the edge lengths.
   700 
   701     ///The type of the map that stores the edge lengths.
   702     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
   703     typedef LM LengthMap;
   704     //The type of the length of the edges.
   705     typedef typename LM::Value Value;
   706     ///The heap type used by Dijkstra algorithm.
   707 
   708     ///The heap type used by Dijkstra algorithm.
   709     ///
   710     ///\sa BinHeap
   711     ///\sa Dijkstra
   712     typedef BinHeap<typename Graph::Node,
   713 		    typename LM::Value,
   714 		    typename GR::template NodeMap<int>,
   715 		    std::less<Value> > Heap;
   716 
   717     ///\brief The type of the map that stores the last
   718     ///edges of the shortest paths.
   719     /// 
   720     ///The type of the map that stores the last
   721     ///edges of the shortest paths.
   722     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   723     ///
   724     typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
   725     ///Instantiates a PredMap.
   726  
   727     ///This function instantiates a \ref PredMap. 
   728     ///\param g is the graph, to which we would like to define the PredMap.
   729     ///\todo The graph alone may be insufficient for the initialization
   730 #ifdef DOXYGEN
   731     static PredMap *createPredMap(const GR &g) 
   732 #else
   733     static PredMap *createPredMap(const GR &) 
   734 #endif
   735     {
   736       return new PredMap();
   737     }
   738     ///The type of the map that stores whether a nodes is processed.
   739  
   740     ///The type of the map that stores whether a nodes is processed.
   741     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   742     ///By default it is a NullMap.
   743     ///\todo If it is set to a real map,
   744     ///Dijkstra::processed() should read this.
   745     ///\todo named parameter to set this type, function to read and write.
   746     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   747     ///Instantiates a ProcessedMap.
   748  
   749     ///This function instantiates a \ref ProcessedMap. 
   750     ///\param g is the graph, to which
   751     ///we would like to define the \ref ProcessedMap
   752 #ifdef DOXYGEN
   753     static ProcessedMap *createProcessedMap(const GR &g)
   754 #else
   755     static ProcessedMap *createProcessedMap(const GR &)
   756 #endif
   757     {
   758       return new ProcessedMap();
   759     }
   760     ///The type of the map that stores the dists of the nodes.
   761  
   762     ///The type of the map that stores the dists of the nodes.
   763     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   764     ///
   765     typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
   766     ///Instantiates a DistMap.
   767  
   768     ///This function instantiates a \ref DistMap. 
   769     ///\param g is the graph, to which we would like to define the \ref DistMap
   770 #ifdef DOXYGEN
   771     static DistMap *createDistMap(const GR &g)
   772 #else
   773     static DistMap *createDistMap(const GR &)
   774 #endif
   775     {
   776       return new DistMap();
   777     }
   778   };
   779   
   780   /// Default traits used by \ref DijkstraWizard
   781 
   782   /// To make it easier to use Dijkstra algorithm
   783   ///we have created a wizard class.
   784   /// This \ref DijkstraWizard class needs default traits,
   785   ///as well as the \ref Dijkstra class.
   786   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   787   /// \ref DijkstraWizard class.
   788   /// \todo More named parameters are required...
   789   template<class GR,class LM>
   790   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
   791   {
   792 
   793     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
   794   protected:
   795     /// Type of the nodes in the graph.
   796     typedef typename Base::Graph::Node Node;
   797 
   798     /// Pointer to the underlying graph.
   799     void *_g;
   800     /// Pointer to the length map
   801     void *_length;
   802     ///Pointer to the map of predecessors edges.
   803     void *_pred;
   804 //     ///Pointer to the map of predecessors nodes.
   805 //     void *_predNode;
   806     ///Pointer to the map of distances.
   807     void *_dist;
   808     ///Pointer to the source node.
   809     Node _source;
   810 
   811     public:
   812     /// Constructor.
   813     
   814     /// This constructor does not require parameters, therefore it initiates
   815     /// all of the attributes to default values (0, INVALID).
   816     DijkstraWizardBase() : _g(0), _length(0), _pred(0),
   817 // 			   _predNode(0),
   818 			   _dist(0), _source(INVALID) {}
   819 
   820     /// Constructor.
   821     
   822     /// This constructor requires some parameters,
   823     /// listed in the parameters list.
   824     /// Others are initiated to 0.
   825     /// \param g is the initial value of  \ref _g
   826     /// \param l is the initial value of  \ref _length
   827     /// \param s is the initial value of  \ref _source
   828     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   829       _g((void *)&g), _length((void *)&l), _pred(0),
   830 //       _predNode(0),
   831       _dist(0), _source(s) {}
   832 
   833   };
   834   
   835   /// A class to make the usage of Dijkstra algorithm easier
   836 
   837   /// This class is created to make it easier to use Dijkstra algorithm.
   838   /// It uses the functions and features of the plain \ref Dijkstra,
   839   /// but it is much simpler to use it.
   840   ///
   841   /// Simplicity means that the way to change the types defined
   842   /// in the traits class is based on functions that returns the new class
   843   /// and not on templatable built-in classes.
   844   /// When using the plain \ref Dijkstra
   845   /// the new class with the modified type comes from
   846   /// the original class by using the ::
   847   /// operator. In the case of \ref DijkstraWizard only
   848   /// a function have to be called and it will
   849   /// return the needed class.
   850   ///
   851   /// It does not have own \ref run method. When its \ref run method is called
   852   /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
   853   /// method of it.
   854   template<class TR>
   855   class DijkstraWizard : public TR
   856   {
   857     typedef TR Base;
   858 
   859     ///The type of the underlying graph.
   860     typedef typename TR::Graph Graph;
   861     //\e
   862     typedef typename Graph::Node Node;
   863     //\e
   864     typedef typename Graph::NodeIt NodeIt;
   865     //\e
   866     typedef typename Graph::Edge Edge;
   867     //\e
   868     typedef typename Graph::OutEdgeIt OutEdgeIt;
   869     
   870     ///The type of the map that stores the edge lengths.
   871     typedef typename TR::LengthMap LengthMap;
   872     ///The type of the length of the edges.
   873     typedef typename LengthMap::Value Value;
   874     ///\brief The type of the map that stores the last
   875     ///edges of the shortest paths.
   876     typedef typename TR::PredMap PredMap;
   877 //     ///\brief The type of the map that stores the last but one
   878 //     ///nodes of the shortest paths.
   879 //     typedef typename TR::PredNodeMap PredNodeMap;
   880     ///The type of the map that stores the dists of the nodes.
   881     typedef typename TR::DistMap DistMap;
   882 
   883     ///The heap type used by the dijkstra algorithm.
   884     typedef typename TR::Heap Heap;
   885 public:
   886     /// Constructor.
   887     DijkstraWizard() : TR() {}
   888 
   889     /// Constructor that requires parameters.
   890 
   891     /// Constructor that requires parameters.
   892     /// These parameters will be the default values for the traits class.
   893     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
   894       TR(g,l,s) {}
   895 
   896     ///Copy constructor
   897     DijkstraWizard(const TR &b) : TR(b) {}
   898 
   899     ~DijkstraWizard() {}
   900 
   901     ///Runs Dijkstra algorithm from a given node.
   902     
   903     ///Runs Dijkstra algorithm from a given node.
   904     ///The node can be given by the \ref source function.
   905     void run()
   906     {
   907       if(Base::_source==INVALID) throw UninitializedParameter();
   908       Dijkstra<Graph,LengthMap,TR> 
   909 	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
   910       if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
   911 //       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
   912       if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
   913       dij.run(Base::_source);
   914     }
   915 
   916     ///Runs Dijkstra algorithm from the given node.
   917 
   918     ///Runs Dijkstra algorithm from the given node.
   919     ///\param s is the given source.
   920     void run(Node s)
   921     {
   922       Base::_source=s;
   923       run();
   924     }
   925 
   926     template<class T>
   927     struct DefPredMapBase : public Base {
   928       typedef T PredMap;
   929       static PredMap *createPredMap(const Graph &) { return 0; };
   930       DefPredMapBase(const TR &b) : TR(b) {}
   931     };
   932     
   933     ///\brief \ref named-templ-param "Named parameter"
   934     ///function for setting PredMap type
   935     ///
   936     /// \ref named-templ-param "Named parameter"
   937     ///function for setting PredMap type
   938     ///
   939     template<class T>
   940     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
   941     {
   942       Base::_pred=(void *)&t;
   943       return DijkstraWizard<DefPredMapBase<T> >(*this);
   944     }
   945     
   946 
   947 //     template<class T>
   948 //     struct DefPredNodeMapBase : public Base {
   949 //       typedef T PredNodeMap;
   950 //       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
   951 //       DefPredNodeMapBase(const TR &b) : TR(b) {}
   952 //     };
   953     
   954 //     ///\brief \ref named-templ-param "Named parameter"
   955 //     ///function for setting PredNodeMap type
   956 //     ///
   957 //     /// \ref named-templ-param "Named parameter"
   958 //     ///function for setting PredNodeMap type
   959 //     ///
   960 //     template<class T>
   961 //     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
   962 //     {
   963 //       Base::_predNode=(void *)&t;
   964 //       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
   965 //     }
   966    
   967     template<class T>
   968     struct DefDistMapBase : public Base {
   969       typedef T DistMap;
   970       static DistMap *createDistMap(const Graph &) { return 0; };
   971       DefDistMapBase(const TR &b) : TR(b) {}
   972     };
   973     
   974     ///\brief \ref named-templ-param "Named parameter"
   975     ///function for setting DistMap type
   976     ///
   977     /// \ref named-templ-param "Named parameter"
   978     ///function for setting DistMap type
   979     ///
   980     template<class T>
   981     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
   982     {
   983       Base::_dist=(void *)&t;
   984       return DijkstraWizard<DefDistMapBase<T> >(*this);
   985     }
   986     
   987     /// Sets the source node, from which the Dijkstra algorithm runs.
   988 
   989     /// Sets the source node, from which the Dijkstra algorithm runs.
   990     /// \param s is the source node.
   991     DijkstraWizard<TR> &source(Node s) 
   992     {
   993       Base::_source=s;
   994       return *this;
   995     }
   996     
   997   };
   998   
   999   ///Function type interface for Dijkstra algorithm.
  1000 
  1001   /// \ingroup flowalgs
  1002   ///Function type interface for Dijkstra algorithm.
  1003   ///
  1004   ///This function also has several
  1005   ///\ref named-templ-func-param "named parameters",
  1006   ///they are declared as the members of class \ref DijkstraWizard.
  1007   ///The following
  1008   ///example shows how to use these parameters.
  1009   ///\code
  1010   ///  dijkstra(g,length,source).predMap(preds).run();
  1011   ///\endcode
  1012   ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1013   ///to the end of the parameter list.
  1014   ///\sa DijkstraWizard
  1015   ///\sa Dijkstra
  1016   template<class GR, class LM>
  1017   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1018   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
  1019   {
  1020     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
  1021   }
  1022 
  1023 } //END OF NAMESPACE LEMON
  1024 
  1025 #endif