lemon/floyd_warshall.h
author deba
Wed, 05 Oct 2005 16:45:37 +0000
changeset 1709 a323456bf7c8
child 1710 f531c16dd923
permissions -rw-r--r--
Template Named Parameter bugfix
     1 /* -*- C++ -*-
     2  * lemon/floyd_warshall.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_FLOYD_WARSHALL_H
    18 #define LEMON_FLOYD_WARSHALL_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief FloydWarshall algorithm.
    23 ///
    24 /// \todo getPath() should be implemented! (also for BFS and DFS)
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/invalid.h>
    29 #include <lemon/error.h>
    30 #include <lemon/maps.h>
    31 
    32 #include <limits>
    33 
    34 namespace lemon {
    35 
    36   /// \brief Default OperationTraits for the FloydWarshall algorithm class.
    37   ///  
    38   /// It defines all computational operations and constants which are
    39   /// used in the Floyd-Warshall algorithm. The default implementation
    40   /// is based on the numeric_limits class. If the numeric type does not
    41   /// have infinity value then the maximum value is used as extremal
    42   /// infinity value.
    43   template <
    44     typename Value, 
    45     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    46   struct FloydWarshallDefaultOperationTraits {
    47     /// \brief Gives back the zero value of the type.
    48     static Value zero() {
    49       return static_cast<Value>(0);
    50     }
    51     /// \brief Gives back the positive infinity value of the type.
    52     static Value infinity() {
    53       return std::numeric_limits<Value>::infinity();
    54     }
    55     /// \brief Gives back the sum of the given two elements.
    56     static Value plus(const Value& left, const Value& right) {
    57       return left + right;
    58     }
    59     /// \brief Gives back true only if the first value less than the second.
    60     static bool less(const Value& left, const Value& right) {
    61       return left < right;
    62     }
    63   };
    64 
    65   template <typename Value>
    66   struct FloydWarshallDefaultOperationTraits<Value, false> {
    67     static Value zero() {
    68       return static_cast<Value>(0);
    69     }
    70     static Value infinity() {
    71       return std::numeric_limits<Value>::max();
    72     }
    73     static Value plus(const Value& left, const Value& right) {
    74       if (left == infinity() || right == infinity()) return infinity();
    75       return left + right;
    76     }
    77     static bool less(const Value& left, const Value& right) {
    78       return left < right;
    79     }
    80   };
    81   
    82   /// \brief Default traits class of FloydWarshall class.
    83   ///
    84   /// Default traits class of FloydWarshall class.
    85   /// \param _Graph Graph type.
    86   /// \param _LegthMap Type of length map.
    87   template<class _Graph, class _LengthMap>
    88   struct FloydWarshallDefaultTraits {
    89     /// The graph type the algorithm runs on. 
    90     typedef _Graph Graph;
    91 
    92     /// \brief The type of the map that stores the edge lengths.
    93     ///
    94     /// The type of the map that stores the edge lengths.
    95     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    96     typedef _LengthMap LengthMap;
    97 
    98     // The type of the length of the edges.
    99     typedef typename _LengthMap::Value Value;
   100 
   101     /// \brief Operation traits for belmann-ford algorithm.
   102     ///
   103     /// It defines the infinity type on the given Value type
   104     /// and the used operation.
   105     /// \see FloydWarshallDefaultOperationTraits
   106     typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
   107  
   108     /// \brief The type of the map that stores the last edges of the 
   109     /// shortest paths.
   110     /// 
   111     /// The type of the map that stores the last
   112     /// edges of the shortest paths.
   113     /// It must be a matrix map with \c Graph::Edge value type.
   114     ///
   115     typedef NodeMatrixMap<Graph, typename Graph::Edge> PredMap;
   116 
   117     /// \brief Instantiates a PredMap.
   118     /// 
   119     /// This function instantiates a \ref PredMap. 
   120     /// \param G is the graph, to which we would like to define the PredMap.
   121     /// \todo The graph alone may be insufficient for the initialization
   122     static PredMap *createPredMap(const _Graph& graph) {
   123       return new PredMap(graph);
   124     }
   125 
   126     /// \brief The type of the map that stores the dists of the nodes.
   127     ///
   128     /// The type of the map that stores the dists of the nodes.
   129     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
   130     ///
   131     typedef NodeMatrixMap<Graph, Value> DistMap;
   132 
   133     /// \brief Instantiates a DistMap.
   134     ///
   135     /// This function instantiates a \ref DistMap. 
   136     /// \param G is the graph, to which we would like to define the 
   137     /// \ref DistMap
   138     static DistMap *createDistMap(const _Graph& graph) {
   139       return new DistMap(graph);
   140     }
   141 
   142   };
   143   
   144   /// \brief FloydWarshall algorithm class.
   145   ///
   146   /// \ingroup flowalgs
   147   /// This class provides an efficient implementation of \c FloydWarshall 
   148   /// algorithm. The edge lengths are passed to the algorithm using a
   149   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   150   /// kind of length.
   151   ///
   152   /// The type of the length is determined by the
   153   /// \ref concept::ReadMap::Value "Value" of the length map.
   154   ///
   155   /// \param _Graph The graph type the algorithm runs on. The default value
   156   /// is \ref ListGraph. The value of _Graph is not used directly by
   157   /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
   158   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   159   /// edges. It is read once for each edge, so the map may involve in
   160   /// relatively time consuming process to compute the edge length if
   161   /// it is necessary. The default map type is \ref
   162   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   163   /// of _LengthMap is not used directly by FloydWarshall, it is only passed 
   164   /// to \ref FloydWarshallDefaultTraits.  \param _Traits Traits class to set
   165   /// various data types used by the algorithm.  The default traits
   166   /// class is \ref FloydWarshallDefaultTraits
   167   /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>".  See \ref
   168   /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall 
   169   /// traits class.
   170   ///
   171   /// \author Balazs Dezso
   172 
   173 
   174   template <typename _Graph=ListGraph,
   175 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   176 	    typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
   177   class FloydWarshall {
   178   public:
   179     
   180     /// \brief \ref Exception for uninitialized parameters.
   181     ///
   182     /// This error represents problems in the initialization
   183     /// of the parameters of the algorithms.
   184 
   185     class UninitializedParameter : public lemon::UninitializedParameter {
   186     public:
   187       virtual const char* exceptionName() const {
   188 	return "lemon::FloydWarshall::UninitializedParameter";
   189       }
   190     };
   191 
   192     typedef _Traits Traits;
   193     ///The type of the underlying graph.
   194     typedef typename _Traits::Graph Graph;
   195 
   196     typedef typename Graph::Node Node;
   197     typedef typename Graph::NodeIt NodeIt;
   198     typedef typename Graph::Edge Edge;
   199     typedef typename Graph::EdgeIt EdgeIt;
   200     
   201     /// \brief The type of the length of the edges.
   202     typedef typename _Traits::LengthMap::Value Value;
   203     /// \brief The type of the map that stores the edge lengths.
   204     typedef typename _Traits::LengthMap LengthMap;
   205     /// \brief The type of the map that stores the last
   206     /// edges of the shortest paths. The type of the PredMap
   207     /// is a matrix map for Edges
   208     typedef typename _Traits::PredMap PredMap;
   209     /// \brief The type of the map that stores the dists of the nodes.
   210     /// The type of the DistMap is a matrix map for Values
   211     typedef typename _Traits::DistMap DistMap;
   212     /// \brief The operation traits.
   213     typedef typename _Traits::OperationTraits OperationTraits;
   214   private:
   215     /// Pointer to the underlying graph.
   216     const Graph *graph;
   217     /// Pointer to the length map
   218     const LengthMap *length;
   219     ///Pointer to the map of predecessors edges.
   220     PredMap *_pred;
   221     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   222     bool local_pred;
   223     ///Pointer to the map of distances.
   224     DistMap *_dist;
   225     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   226     bool local_dist;
   227 
   228     /// Creates the maps if necessary.
   229     void create_maps() {
   230       if(!_pred) {
   231 	local_pred = true;
   232 	_pred = Traits::createPredMap(*graph);
   233       }
   234       if(!_dist) {
   235 	local_dist = true;
   236 	_dist = Traits::createDistMap(*graph);
   237       }
   238     }
   239     
   240   public :
   241  
   242     /// \name Named template parameters
   243 
   244     ///@{
   245 
   246     template <class T>
   247     struct DefPredMapTraits : public Traits {
   248       typedef T PredMap;
   249       static PredMap *createPredMap(const Graph& graph) {
   250 	throw UninitializedParameter();
   251       }
   252     };
   253 
   254     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   255     /// type
   256     /// \ref named-templ-param "Named parameter" for setting PredMap type
   257     ///
   258     template <class T>
   259     class DefPredMap 
   260       : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {};
   261     
   262     template <class T>
   263     struct DefDistMapTraits : public Traits {
   264       typedef T DistMap;
   265       static DistMap *createDistMap(const Graph& graph) {
   266 	throw UninitializedParameter();
   267       }
   268     };
   269     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   270     /// type
   271     ///
   272     /// \ref named-templ-param "Named parameter" for setting DistMap type
   273     ///
   274     template <class T>
   275     class DefDistMap 
   276       : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {};
   277     
   278     template <class T>
   279     struct DefOperationTraitsTraits : public Traits {
   280       typedef T OperationTraits;
   281     };
   282     
   283     /// \brief \ref named-templ-param "Named parameter" for setting 
   284     /// OperationTraits type
   285     ///
   286     /// \ref named-templ-param "Named parameter" for setting PredMap type
   287     template <class T>
   288     class DefOperationTraits
   289       : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   290     };
   291     
   292     ///@}
   293 
   294   public:      
   295     
   296     /// \brief Constructor.
   297     ///
   298     /// \param _graph the graph the algorithm will run on.
   299     /// \param _length the length map used by the algorithm.
   300     FloydWarshall(const Graph& _graph, const LengthMap& _length) :
   301       graph(&_graph), length(&_length),
   302       _pred(0), local_pred(false),
   303       _dist(0), local_dist(false) {}
   304     
   305     ///Destructor.
   306     ~FloydWarshall() {
   307       if(local_pred) delete _pred;
   308       if(local_dist) delete _dist;
   309     }
   310 
   311     /// \brief Sets the length map.
   312     ///
   313     /// Sets the length map.
   314     /// \return \c (*this)
   315     FloydWarshall &lengthMap(const LengthMap &m) {
   316       length = &m;
   317       return *this;
   318     }
   319 
   320     /// \brief Sets the map storing the predecessor edges.
   321     ///
   322     /// Sets the map storing the predecessor edges.
   323     /// If you don't use this function before calling \ref run(),
   324     /// it will allocate one. The destuctor deallocates this
   325     /// automatically allocated map, of course.
   326     /// \return \c (*this)
   327     FloydWarshall &predMap(PredMap &m) {
   328       if(local_pred) {
   329 	delete _pred;
   330 	local_pred=false;
   331       }
   332       _pred = &m;
   333       return *this;
   334     }
   335 
   336     /// \brief Sets the map storing the distances calculated by the algorithm.
   337     ///
   338     /// Sets the map storing the distances calculated by the algorithm.
   339     /// If you don't use this function before calling \ref run(),
   340     /// it will allocate one. The destuctor deallocates this
   341     /// automatically allocated map, of course.
   342     /// \return \c (*this)
   343     FloydWarshall &distMap(DistMap &m) {
   344       if(local_dist) {
   345 	delete _dist;
   346 	local_dist=false;
   347       }
   348       _dist = &m;
   349       return *this;
   350     }
   351 
   352     ///\name Execution control
   353     /// The simplest way to execute the algorithm is to use
   354     /// one of the member functions called \c run(...).
   355     /// \n
   356     /// If you need more control on the execution,
   357     /// Finally \ref start() will perform the actual path
   358     /// computation.
   359 
   360     ///@{
   361 
   362     /// \brief Initializes the internal data structures.
   363     /// 
   364     /// Initializes the internal data structures.
   365     void init() {
   366       create_maps();
   367       for (NodeIt it(*graph); it != INVALID; ++it) {
   368 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   369 	  _pred->set(it, jt, INVALID);
   370 	  _dist->set(it, jt, it == jt ? 
   371 		     OperationTraits::zero() : OperationTraits::infinity());
   372 	}
   373       }
   374       for (EdgeIt it(*graph); it != INVALID; ++it) {
   375 	Node source = graph->source(it);
   376 	Node target = graph->target(it);	
   377 	if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
   378 	  _dist->set(source, target, (*length)[it]);
   379 	  _pred->set(source, target, it);
   380 	}
   381       }
   382     }
   383     
   384     /// \brief Executes the algorithm.
   385     ///
   386     /// This method runs the %FloydWarshall algorithm in order to compute 
   387     /// the shortest path to each node pairs. The algorithm 
   388     /// computes 
   389     /// - The shortest path tree for each node.
   390     /// - The distance between each node pairs.
   391     void start() {
   392       for (NodeIt kt(*graph); kt != INVALID; ++kt) {
   393 	for (NodeIt it(*graph); it != INVALID; ++it) {
   394 	  for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   395 	    Value relaxed = OperationTraits::plus((*_dist)(it, kt),
   396 						  (*_dist)(kt, jt));
   397 	    if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
   398 	      _dist->set(it, jt, relaxed);
   399 	      _pred->set(it, jt, (*_pred)(kt, jt));
   400 	    }
   401 	  }
   402 	}
   403       }
   404     }
   405     
   406     /// \brief Runs %FloydWarshall algorithm.
   407     ///    
   408     /// This method runs the %FloydWarshall algorithm from a each node
   409     /// in order to compute the shortest path to each node pairs. 
   410     /// The algorithm computes
   411     /// - The shortest path tree for each node.
   412     /// - The distance between each node pairs.
   413     ///
   414     /// \note d.run(s) is just a shortcut of the following code.
   415     /// \code
   416     ///  d.init();
   417     ///  d.start();
   418     /// \endcode
   419     void run() {
   420       init();
   421       start();
   422     }
   423     
   424     ///@}
   425 
   426     /// \name Query Functions
   427     /// The result of the %FloydWarshall algorithm can be obtained using these
   428     /// functions.\n
   429     /// Before the use of these functions,
   430     /// either run() or start() must be called.
   431     
   432     ///@{
   433 
   434     /// \brief Copies the shortest path to \c t into \c p
   435     ///    
   436     /// This function copies the shortest path to \c t into \c p.
   437     /// If it \c t is a source itself or unreachable, then it does not
   438     /// alter \c p.
   439     /// \todo Is it the right way to handle unreachable nodes?
   440     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   441     /// \c false otherwise.
   442     /// \sa DirPath
   443     template <typename Path>
   444     bool getPath(Path &p, Node source, Node target) {
   445       if (connected(source, target)) {
   446 	p.clear();
   447 	typename Path::Builder b(target);
   448 	for(b.setStartNode(target); pred(source, target) != INVALID;
   449 	    target = predNode(target)) {
   450 	  b.pushFront(pred(source, target));
   451 	}
   452 	b.commit();
   453 	return true;
   454       }
   455       return false;
   456     }
   457 	  
   458     /// \brief The distance between two nodes.
   459     ///
   460     /// Returns the distance between two nodes.
   461     /// \pre \ref run() must be called before using this function.
   462     /// \warning If node \c v in unreachable from the root the return value
   463     /// of this funcion is undefined.
   464     Value dist(Node source, Node target) const { 
   465       return (*_dist)(source, target); 
   466     }
   467 
   468     /// \brief Returns the 'previous edge' of the shortest path tree.
   469     ///
   470     /// For the node \c node it returns the 'previous edge' of the shortest 
   471     /// path tree to direction of the node \c root 
   472     /// i.e. it returns the last edge of a shortest path from the node \c root 
   473     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   474     /// or if \c node=root. The shortest path tree used here is equal to the 
   475     /// shortest path tree used in \ref predNode(). 
   476     /// \pre \ref run() must be called before using this function.
   477     /// \todo predEdge could be a better name.
   478     Edge pred(Node root, Node node) const { 
   479       return (*_pred)(root, node); 
   480     }
   481 
   482     /// \brief Returns the 'previous node' of the shortest path tree.
   483     ///
   484     /// For a node \c node it returns the 'previous node' of the shortest path 
   485     /// tree to direction of the node \c root, i.e. it returns the last but 
   486     /// one node from a shortest path from the \c root to \c node. It is 
   487     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   488     /// The shortest path tree used here is equal to the 
   489     /// shortest path tree used in \ref pred().  
   490     /// \pre \ref run() must be called before using this function.
   491     Node predNode(Node root, Node node) const { 
   492       return (*_pred)(root, node) == INVALID ? 
   493       INVALID : graph->source((*_pred)(root, node)); 
   494     }
   495     
   496     /// \brief Returns a reference to the matrix node map of distances.
   497     ///
   498     /// Returns a reference to the matrix node map of distances. 
   499     ///
   500     /// \pre \ref run() must be called before using this function.
   501     const DistMap &distMap() const { return *_dist;}
   502  
   503     /// \brief Returns a reference to the shortest path tree map.
   504     ///
   505     /// Returns a reference to the matrix node map of the edges of the
   506     /// shortest path tree.
   507     /// \pre \ref run() must be called before using this function.
   508     const PredMap &predMap() const { return *_pred;}
   509  
   510     /// \brief Checks if a node is reachable from the root.
   511     ///
   512     /// Returns \c true if \c v is reachable from the root.
   513     /// \pre \ref run() must be called before using this function.
   514     ///
   515     bool connected(Node source, Node target) { 
   516       return (*_dist)(source, target) != OperationTraits::infinity(); 
   517     }
   518     
   519     ///@}
   520   };
   521  
   522 } //END OF NAMESPACE LEMON
   523 
   524 #endif
   525