src/work/jacint/preflow_hl4.h
author alpar
Fri, 20 Feb 2004 21:45:07 +0000
changeset 105 a3c73e9b9b2e
parent 102 294cb99af985
child 109 fc5982b39e10
permissions -rw-r--r--
marci -> hugo replacements
resize -> update replacements
     1 // -*- C++ -*-
     2 /*
     3 preflow_hl4.h
     4 by jacint. 
     5 Runs the two phase highest label preflow push algorithm. In phase 0
     6 we maintain in a list the nodes in level i < n, and we maintain a 
     7 bound k on the max level i < n containing a node, so we can do
     8 the gap heuristic fast. Phase 1 is the same. (The algorithm is the 
     9 same as preflow.hl3, the only diff is that here we use the gap
    10 heuristic with the list of the nodes on level i, and not a bfs form the
    11 upgraded node.)
    12 
    13 In phase 1 we shift everything downwards by n.
    14 
    15 Member functions:
    16 
    17 void run() : runs the algorithm
    18 
    19  The following functions should be used after run() was already run.
    20 
    21 T maxflow() : returns the value of a maximum flow
    22 
    23 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
    24 
    25 FlowMap allflow() : returns a maximum flow
    26 
    27 void allflow(FlowMap& _flow ) : returns a maximum flow
    28 
    29 void mincut(CutMap& M) : sets M to the characteristic vector of a 
    30      minimum cut. M should be a map of bools initialized to false.
    31 
    32 void min_mincut(CutMap& M) : sets M to the characteristic vector of the 
    33      minimum min cut. M should be a map of bools initialized to false.
    34 
    35 void max_mincut(CutMap& M) : sets M to the characteristic vector of the 
    36      maximum min cut. M should be a map of bools initialized to false.
    37 
    38 */
    39 
    40 #ifndef PREFLOW_HL4_H
    41 #define PREFLOW_HL4_H
    42 
    43 #include <vector>
    44 #include <stack>
    45 #include <queue>
    46 
    47 namespace hugo {
    48 
    49   template <typename Graph, typename T, 
    50     typename FlowMap=typename Graph::EdgeMap<T>, 
    51     typename CapMap=typename Graph::EdgeMap<T> >
    52   class preflow_hl4 {
    53     
    54     typedef typename Graph::NodeIt NodeIt;
    55     typedef typename Graph::EdgeIt EdgeIt;
    56     typedef typename Graph::EachNodeIt EachNodeIt;
    57     typedef typename Graph::OutEdgeIt OutEdgeIt;
    58     typedef typename Graph::InEdgeIt InEdgeIt;
    59     
    60     Graph& G;
    61     NodeIt s;
    62     NodeIt t;
    63     FlowMap flow;
    64     CapMap& capacity;  
    65     T value;
    66     
    67   public:
    68 
    69     preflow_hl4(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
    70       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { }
    71 
    72 
    73     void run() {
    74  
    75       bool phase=0;
    76       int n=G.nodeNum(); 
    77       int k=n-2;
    78       int b=k;
    79       /*
    80 	b is a bound on the highest level of the stack. 
    81 	k is a bound on the highest nonempty level i < n.
    82       */
    83 
    84       typename Graph::NodeMap<int> level(G,n);      
    85       typename Graph::NodeMap<T> excess(G); 
    86       std::vector<std::stack<NodeIt> > stack(n);    
    87       //Stack of the active nodes in level i < n.
    88       //We use it in both phases.
    89 
    90       typename Graph::NodeMap<NodeIt> left(G);
    91       typename Graph::NodeMap<NodeIt> right(G);
    92       std::vector<NodeIt> level_list(n);
    93       /*
    94 	Needed for the list of the nodes in level i.
    95       */
    96 
    97       /*Reverse_bfs from t, to find the starting level.*/
    98       level.set(t,0);
    99       std::queue<NodeIt> bfs_queue;
   100       bfs_queue.push(t);
   101 
   102       while (!bfs_queue.empty()) {
   103 
   104 	NodeIt v=bfs_queue.front();	
   105 	bfs_queue.pop();
   106 	int l=level.get(v)+1;
   107 
   108 	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   109 	  NodeIt w=G.tail(e);
   110 	  if ( level.get(w) == n ) {
   111 	    bfs_queue.push(w);
   112 	    NodeIt first=level_list[l];
   113 	    if ( first != 0 ) left.set(first,w);
   114 	    right.set(w,first);
   115 	    level_list[l]=w;
   116 	    level.set(w, l);
   117 	  }
   118 	}
   119       }
   120       
   121       level.set(s,n);
   122 
   123 
   124       /* Starting flow. It is everywhere 0 at the moment. */     
   125       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
   126 	{
   127 	  T c=capacity.get(e);
   128 	  if ( c == 0 ) continue;
   129 	  NodeIt w=G.head(e);
   130 	  if ( level.get(w) < n ) {	  
   131 	    if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
   132 	    flow.set(e, c); 
   133 	    excess.set(w, excess.get(w)+c);
   134 	  }
   135 	}
   136       /* 
   137 	 End of preprocessing 
   138       */
   139 
   140 
   141       /*
   142 	Push/relabel on the highest level active nodes.
   143       */	
   144       while ( true ) {
   145 
   146 	if ( b == 0 ) {
   147 	  if ( phase ) break;
   148 	  
   149 	  /*
   150 	    In the end of phase 0 we apply a bfs from s in
   151 	    the residual graph.
   152 	  */
   153 	  phase=1;
   154 	  level.set(s,0);
   155 	  std::queue<NodeIt> bfs_queue;
   156 	  bfs_queue.push(s);
   157 	  
   158 	  while (!bfs_queue.empty()) {
   159 	    
   160 	    NodeIt v=bfs_queue.front();	
   161 	    bfs_queue.pop();
   162 	    int l=level.get(v)+1;
   163 
   164 	    for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   165 	      if ( capacity.get(e) == flow.get(e) ) continue;
   166 	      NodeIt u=G.tail(e);
   167 	      if ( level.get(u) >= n ) { 
   168 		bfs_queue.push(u);
   169 		level.set(u, l);
   170 		if ( excess.get(u) > 0 ) stack[l].push(u);
   171 	      }
   172 	    }
   173 
   174 	    for(OutEdgeIt e=G.template first<OutEdgeIt>(v); e.valid(); ++e) {
   175 	      if ( 0 == flow.get(e) ) continue;
   176 	      NodeIt u=G.head(e);
   177 	      if ( level.get(u) >= n ) { 
   178 		bfs_queue.push(u);
   179 		level.set(u, l);
   180 		if ( excess.get(u) > 0 ) stack[l].push(u);
   181 	      }
   182 	    }
   183 	  }
   184 	  b=n-2;
   185 	}
   186 
   187 
   188 	if ( stack[b].empty() ) --b;
   189 	else {
   190 	  
   191 	  NodeIt w=stack[b].top();        //w is a highest label active node.
   192 	  stack[b].pop();           
   193 	  int lev=level.get(w);
   194 	  T exc=excess.get(w);
   195 	  int newlevel=n;          //In newlevel we bound the next level of w.
   196 	  
   197 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
   198 	    
   199 	    if ( flow.get(e) == capacity.get(e) ) continue; 
   200 	    NodeIt v=G.head(e);            
   201 	    //e=wv	    
   202 	    
   203 	    if( lev > level.get(v) ) {      
   204 	      /*Push is allowed now*/
   205 	      
   206 	      if ( excess.get(v)==0 && v!=t && v!=s ) 
   207 		stack[level.get(v)].push(v); 
   208 	      /*v becomes active.*/
   209 	      
   210 	      T cap=capacity.get(e);
   211 	      T flo=flow.get(e);
   212 	      T remcap=cap-flo;
   213 	      
   214 	      if ( remcap >= exc ) {       
   215 		/*A nonsaturating push.*/
   216 		
   217 		flow.set(e, flo+exc);
   218 		excess.set(v, excess.get(v)+exc);
   219 		exc=0;
   220 		break; 
   221 		
   222 	      } else { 
   223 		/*A saturating push.*/
   224 		
   225 		flow.set(e, cap);
   226 		excess.set(v, excess.get(v)+remcap);
   227 		exc-=remcap;
   228 	      }
   229 	    } else if ( newlevel > level.get(v) ){
   230 	      newlevel = level.get(v);
   231 	    }	    
   232 	    
   233 	  } //for out edges wv 
   234 	
   235 	
   236 	if ( exc > 0 ) {	
   237 	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
   238 	    
   239 	    if( flow.get(e) == 0 ) continue; 
   240 	    NodeIt v=G.tail(e);  
   241 	    //e=vw
   242 	    
   243 	    if( lev > level.get(v) ) {  
   244 	      /*Push is allowed now*/
   245 	      
   246 	      if ( excess.get(v)==0 && v!=t && v!=s ) 
   247 		stack[level.get(v)].push(v); 
   248 	      /*v becomes active.*/
   249 	      
   250 	      T flo=flow.get(e);
   251 	      
   252 	      if ( flo >= exc ) { 
   253 		/*A nonsaturating push.*/
   254 		
   255 		flow.set(e, flo-exc);
   256 		excess.set(v, excess.get(v)+exc);
   257 		exc=0;
   258 		break; 
   259 	      } else {                                               
   260 		/*A saturating push.*/
   261 		
   262 		excess.set(v, excess.get(v)+flo);
   263 		exc-=flo;
   264 		flow.set(e,0);
   265 	      }  
   266 	    } else if ( newlevel > level.get(v) ) {
   267 	      newlevel = level.get(v);
   268 	    }	    
   269 	  } //for in edges vw
   270 	  
   271 	} // if w still has excess after the out edge for cycle
   272 	
   273 	excess.set(w, exc);
   274 	 
   275 	/*
   276 	  Relabel
   277 	*/
   278 	
   279 	if ( exc > 0 ) {
   280 	  //now 'lev' is the old level of w
   281 	
   282 	  if ( phase ) {
   283 	    level.set(w,++newlevel);
   284 	    stack[newlevel].push(w);
   285 	    b=newlevel;
   286 	  } else {
   287 	    //unlacing
   288 	    NodeIt right_n=right.get(w);
   289 	    NodeIt left_n=left.get(w);
   290 
   291 	    if ( right_n != 0 ) {
   292 	      if ( left_n != 0 ) {
   293 		right.set(left_n, right_n);
   294 		left.set(right_n, left_n);
   295 	      } else {
   296 		level_list[lev]=right_n;
   297 		left.set(right_n, 0);
   298 	      } 
   299 	    } else {
   300 	      if ( left_n != 0 ) {
   301 		right.set(left_n, 0);
   302 	      } else { 
   303 		level_list[lev]=0;
   304 	      } 
   305 	    }
   306 		
   307 
   308 	    if ( level_list[lev]==0 ) {
   309 
   310 	      for (int i=lev; i!=k ; ) {
   311 		NodeIt v=level_list[++i];
   312 		while ( v != 0 ) {
   313 		  level.set(v,n);
   314 		  v=right.get(v);
   315 		}
   316 		level_list[i]=0;
   317 	      }	     
   318 
   319 	      level.set(w,n);
   320 
   321 	      b=--lev;
   322 	      k=b;
   323 
   324 	    } else {
   325 
   326 	      if ( newlevel == n ) {
   327 		level.set(w,n);
   328 	      } else {
   329 		
   330 		level.set(w,++newlevel);
   331 		stack[newlevel].push(w);
   332 		b=newlevel;
   333 		if ( k < newlevel ) ++k;
   334 		NodeIt first=level_list[newlevel];
   335 		if ( first != 0 ) left.set(first,w);
   336 		right.set(w,first);
   337 		left.set(w,0);
   338 		level_list[newlevel]=w;
   339 	      }
   340 	    }
   341 	  } //phase 0
   342 	} // if ( exc > 0 )
   343  
   344 	
   345 	} // if stack[b] is nonempty
   346 	
   347       } // while(true)
   348 
   349 
   350       value = excess.get(t);
   351       /*Max flow value.*/
   352 
   353 
   354     } //void run()
   355 
   356 
   357 
   358 
   359 
   360     /*
   361       Returns the maximum value of a flow.
   362      */
   363 
   364     T maxflow() {
   365       return value;
   366     }
   367 
   368 
   369 
   370     /*
   371       For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). 
   372     */
   373 
   374     T flowonedge(EdgeIt e) {
   375       return flow.get(e);
   376     }
   377 
   378 
   379 
   380     FlowMap allflow() {
   381       return flow;
   382     }
   383 
   384 
   385     
   386     void allflow(FlowMap& _flow ) {
   387       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v)
   388 	_flow.set(v,flow.get(v));
   389     }
   390 
   391 
   392 
   393     /*
   394       Returns the minimum min cut, by a bfs from s in the residual graph.
   395     */
   396     
   397     template<typename CutMap>
   398     void mincut(CutMap& M) {
   399     
   400       std::queue<NodeIt> queue;
   401       
   402       M.set(s,true);      
   403       queue.push(s);
   404 
   405       while (!queue.empty()) {
   406         NodeIt w=queue.front();
   407 	queue.pop();
   408 
   409 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   410 	  NodeIt v=G.head(e);
   411 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   412 	    queue.push(v);
   413 	    M.set(v, true);
   414 	  }
   415 	} 
   416 
   417 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   418 	  NodeIt v=G.tail(e);
   419 	  if (!M.get(v) && flow.get(e) > 0 ) {
   420 	    queue.push(v);
   421 	    M.set(v, true);
   422 	  }
   423 	} 
   424 
   425       }
   426 
   427     }
   428 
   429 
   430 
   431     /*
   432       Returns the maximum min cut, by a reverse bfs 
   433       from t in the residual graph.
   434     */
   435     
   436     template<typename CutMap>
   437     void max_mincut(CutMap& M) {
   438     
   439       std::queue<NodeIt> queue;
   440       
   441       M.set(t,true);        
   442       queue.push(t);
   443 
   444       while (!queue.empty()) {
   445         NodeIt w=queue.front();
   446 	queue.pop();
   447 
   448 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   449 	  NodeIt v=G.tail(e);
   450 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   451 	    queue.push(v);
   452 	    M.set(v, true);
   453 	  }
   454 	}
   455 
   456 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   457 	  NodeIt v=G.head(e);
   458 	  if (!M.get(v) && flow.get(e) > 0 ) {
   459 	    queue.push(v);
   460 	    M.set(v, true);
   461 	  }
   462 	}
   463       }
   464 
   465       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
   466 	M.set(v, !M.get(v));
   467       }
   468 
   469     }
   470 
   471 
   472 
   473     template<typename CutMap>
   474     void min_mincut(CutMap& M) {
   475       mincut(M);
   476     }
   477 
   478 
   479 
   480   };
   481 }//namespace hugo
   482 #endif 
   483 
   484 
   485 
   486