lemon/maps.h
author hegyi
Tue, 06 Dec 2005 10:53:38 +0000
changeset 1849 a4d1362397fe
parent 1778 4ba7965386fb
child 1875 98698b69a902
permissions -rw-r--r--
Notebook style is provided. Without opportunity to close tabs. :-) But with all other necessary things (I think).
     1 /* -*- C++ -*-
     2  * lemon/maps.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MAPS_H
    18 #define LEMON_MAPS_H
    19 
    20 #include <iterator>
    21 
    22 #include <lemon/utility.h>
    23 #include <lemon/traits.h>
    24 
    25 ///\file
    26 ///\ingroup maps
    27 ///\brief Miscellaneous property maps
    28 ///
    29 ///\todo This file has the same name as the concept file in concept/,
    30 /// and this is not easily detectable in docs...
    31 
    32 #include <map>
    33 
    34 namespace lemon {
    35 
    36   /// \addtogroup maps
    37   /// @{
    38 
    39   /// Base class of maps.
    40 
    41   /// Base class of maps.
    42   /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    43   template<typename K, typename T>
    44   class MapBase {
    45   public:
    46     ///\e
    47     typedef K Key;
    48     ///\e
    49     typedef T Value;
    50   };
    51 
    52   /// Null map. (a.k.a. DoNothingMap)
    53 
    54   /// If you have to provide a map only for its type definitions,
    55   /// or if you have to provide a writable map, but
    56   /// data written to it will sent to <tt>/dev/null</tt>...
    57   template<typename K, typename T>
    58   class NullMap : public MapBase<K, T> {
    59   public:
    60     typedef MapBase<K, T> Parent;
    61     typedef typename Parent::Key Key;
    62     typedef typename Parent::Value Value;
    63     
    64     /// Gives back a default constructed element.
    65     T operator[](const K&) const { return T(); }
    66     /// Absorbs the value.
    67     void set(const K&, const T&) {}
    68   };
    69 
    70   template <typename K, typename V> 
    71   NullMap<K, V> nullMap() {
    72     return NullMap<K, V>();
    73   }
    74 
    75 
    76   /// Constant map.
    77 
    78   /// This is a readable map which assigns a specified value to each key.
    79   /// In other aspects it is equivalent to the \ref NullMap.
    80   /// \todo set could be used to set the value.
    81   template<typename K, typename T>
    82   class ConstMap : public MapBase<K, T> {
    83   private:
    84     T v;
    85   public:
    86 
    87     typedef MapBase<K, T> Parent;
    88     typedef typename Parent::Key Key;
    89     typedef typename Parent::Value Value;
    90 
    91     /// Default constructor
    92 
    93     /// The value of the map will be uninitialized. 
    94     /// (More exactly it will be default constructed.)
    95     ConstMap() {}
    96     ///\e
    97 
    98     /// \param _v The initial value of the map.
    99     ///
   100     ConstMap(const T &_v) : v(_v) {}
   101 
   102     T operator[](const K&) const { return v; }
   103     void set(const K&, const T&) {}
   104 
   105     template<typename T1>
   106     struct rebind {
   107       typedef ConstMap<K, T1> other;
   108     };
   109 
   110     template<typename T1>
   111     ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
   112   };
   113 
   114   ///Returns a \ref ConstMap class
   115 
   116   ///This function just returns a \ref ConstMap class.
   117   ///\relates ConstMap
   118   template<typename K, typename V> 
   119   inline ConstMap<K, V> constMap(const V &v) {
   120     return ConstMap<K, V>(v);
   121   }
   122 
   123 
   124   //\todo to document later
   125   template<typename T, T v>
   126   struct Const { };
   127 
   128   //\todo to document later
   129   template<typename K, typename V, V v>
   130   class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
   131   public:
   132     typedef MapBase<K, V> Parent;
   133     typedef typename Parent::Key Key;
   134     typedef typename Parent::Value Value;
   135 
   136     ConstMap() { }
   137     V operator[](const K&) const { return v; }
   138     void set(const K&, const V&) { }
   139   };
   140 
   141   ///Returns a \ref ConstMap class
   142 
   143   ///This function just returns a \ref ConstMap class.
   144   ///\relates ConstMap
   145   template<typename K, typename V, V v> 
   146   inline ConstMap<K, Const<V, v> > constMap() {
   147     return ConstMap<K, Const<V, v> >();
   148   }
   149 
   150   /// \c std::map wrapper
   151 
   152   /// This is essentially a wrapper for \c std::map. With addition that
   153   /// you can specify a default value different from \c Value() .
   154   ///
   155   /// \todo Provide allocator parameter...
   156   template <typename K, typename T, typename Compare = std::less<K> >
   157   class StdMap : public std::map<K, T, Compare> {
   158     typedef std::map<K, T, Compare> parent;
   159     T v;
   160     typedef typename parent::value_type PairType;
   161 
   162   public:
   163     ///\e
   164     typedef K Key;
   165     ///\e
   166     typedef T Value;
   167     ///\e
   168     typedef T& Reference;
   169     ///\e
   170     typedef const T& ConstReference;
   171 
   172 
   173     StdMap() : v() {}
   174     /// Constructor with specified default value
   175     StdMap(const T& _v) : v(_v) {}
   176 
   177     /// \brief Constructs the map from an appropriate std::map.
   178     ///
   179     /// \warning Inefficient: copies the content of \c m !
   180     StdMap(const parent &m) : parent(m) {}
   181     /// \brief Constructs the map from an appropriate std::map, and explicitly
   182     /// specifies a default value.
   183     ///
   184     /// \warning Inefficient: copies the content of \c m !
   185     StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
   186     
   187     template<typename T1, typename Comp1>
   188     StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) { 
   189       //FIXME; 
   190     }
   191 
   192     Reference operator[](const Key &k) {
   193       return insert(PairType(k,v)).first -> second;
   194     }
   195 
   196     ConstReference operator[](const Key &k) const {
   197       typename parent::iterator i = lower_bound(k);
   198       if (i == parent::end() || parent::key_comp()(k, (*i).first))
   199 	return v;
   200       return (*i).second;
   201     }
   202     void set(const Key &k, const T &t) {
   203       parent::operator[](k) = t;
   204     }
   205 
   206     /// Changes the default value of the map.
   207     /// \return Returns the previous default value.
   208     ///
   209     /// \warning The value of some keys (which has already been queried, but
   210     /// the value has been unchanged from the default) may change!
   211     T setDefault(const T &_v) { T old=v; v=_v; return old; }
   212 
   213     template<typename T1>
   214     struct rebind {
   215       typedef StdMap<Key, T1,Compare> other;
   216     };
   217   };
   218 
   219   /// @}
   220 
   221   /// \addtogroup map_adaptors
   222   /// @{
   223 
   224   /// \brief Identity mapping.
   225   ///
   226   /// This mapping gives back the given key as value without any
   227   /// modification. 
   228   template <typename T>
   229   class IdentityMap : public MapBase<T, T> {
   230   public:
   231     typedef MapBase<T, T> Parent;
   232     typedef typename Parent::Key Key;
   233     typedef typename Parent::Value Value;
   234 
   235     const T& operator[](const T& t) const {
   236       return t;
   237     }
   238   };
   239 
   240   ///Returns an \ref IdentityMap class
   241 
   242   ///This function just returns an \ref IdentityMap class.
   243   ///\relates IdentityMap
   244   template<typename T>
   245   inline IdentityMap<T> identityMap() {
   246     return IdentityMap<T>();
   247   }
   248   
   249 
   250   ///Convert the \c Value of a map to another type.
   251 
   252   ///This \ref concept::ReadMap "read only map"
   253   ///converts the \c Value of a maps to type \c T.
   254   ///Its \c Key is inherited from \c M.
   255   template <typename M, typename T> 
   256   class ConvertMap : public MapBase<typename M::Key, T> {
   257     const M& m;
   258   public:
   259     typedef MapBase<typename M::Key, T> Parent;
   260     typedef typename Parent::Key Key;
   261     typedef typename Parent::Value Value;
   262 
   263     ///Constructor
   264 
   265     ///Constructor
   266     ///\param _m is the underlying map
   267     ConvertMap(const M &_m) : m(_m) {};
   268 
   269     /// \brief The subscript operator.
   270     ///
   271     /// The subscript operator.
   272     /// \param k The key
   273     /// \return The target of the edge 
   274     Value operator[](const Key& k) const {return m[k];}
   275   };
   276   
   277   ///Returns an \ref ConvertMap class
   278 
   279   ///This function just returns an \ref ConvertMap class.
   280   ///\relates ConvertMap
   281   ///\todo The order of the template parameters are changed.
   282   template<typename T, typename M>
   283   inline ConvertMap<M, T> convertMap(const M &m) {
   284     return ConvertMap<M, T>(m);
   285   }
   286 
   287   ///Sum of two maps
   288 
   289   ///This \ref concept::ReadMap "read only map" returns the sum of the two
   290   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   291   ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   292 
   293   template<typename M1, typename M2> 
   294   class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
   295     const M1& m1;
   296     const M2& m2;
   297 
   298   public:
   299     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   300     typedef typename Parent::Key Key;
   301     typedef typename Parent::Value Value;
   302 
   303     ///Constructor
   304     AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   305     Value operator[](Key k) const {return m1[k]+m2[k];}
   306   };
   307   
   308   ///Returns an \ref AddMap class
   309 
   310   ///This function just returns an \ref AddMap class.
   311   ///\todo How to call these type of functions?
   312   ///
   313   ///\relates AddMap
   314   ///\todo Wrong scope in Doxygen when \c \\relates is used
   315   template<typename M1, typename M2> 
   316   inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
   317     return AddMap<M1, M2>(m1,m2);
   318   }
   319 
   320   ///Shift a map with a constant.
   321 
   322   ///This \ref concept::ReadMap "read only map" returns the sum of the
   323   ///given map and a constant value.
   324   ///Its \c Key and \c Value is inherited from \c M.
   325   ///
   326   ///Actually,
   327   ///\code
   328   ///  ShiftMap<X> sh(x,v);
   329   ///\endcode
   330   ///is equivalent with
   331   ///\code
   332   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   333   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   334   ///\endcode
   335   template<typename M, typename C = typename M::Value> 
   336   class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
   337     const M& m;
   338     C v;
   339   public:
   340     typedef MapBase<typename M::Key, typename M::Value> Parent;
   341     typedef typename Parent::Key Key;
   342     typedef typename Parent::Value Value;
   343 
   344     ///Constructor
   345 
   346     ///Constructor
   347     ///\param _m is the undelying map
   348     ///\param _v is the shift value
   349     ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   350     Value operator[](Key k) const {return m[k] + v;}
   351   };
   352   
   353   ///Returns an \ref ShiftMap class
   354 
   355   ///This function just returns an \ref ShiftMap class.
   356   ///\relates ShiftMap
   357   ///\todo A better name is required.
   358   template<typename M, typename C> 
   359   inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
   360     return ShiftMap<M, C>(m,v);
   361   }
   362 
   363   ///Difference of two maps
   364 
   365   ///This \ref concept::ReadMap "read only map" returns the difference
   366   ///of the values of the two
   367   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   368   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   369 
   370   template<typename M1, typename M2> 
   371   class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
   372     const M1& m1;
   373     const M2& m2;
   374   public:
   375     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   376     typedef typename Parent::Key Key;
   377     typedef typename Parent::Value Value;
   378 
   379     ///Constructor
   380     SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   381     Value operator[](Key k) const {return m1[k]-m2[k];}
   382   };
   383   
   384   ///Returns a \ref SubMap class
   385 
   386   ///This function just returns a \ref SubMap class.
   387   ///
   388   ///\relates SubMap
   389   template<typename M1, typename M2> 
   390   inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
   391     return SubMap<M1, M2>(m1, m2);
   392   }
   393 
   394   ///Product of two maps
   395 
   396   ///This \ref concept::ReadMap "read only map" returns the product of the
   397   ///values of the two
   398   ///given
   399   ///maps. Its \c Key and \c Value will be inherited from \c M1.
   400   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   401 
   402   template<typename M1, typename M2> 
   403   class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
   404     const M1& m1;
   405     const M2& m2;
   406   public:
   407     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   408     typedef typename Parent::Key Key;
   409     typedef typename Parent::Value Value;
   410 
   411     ///Constructor
   412     MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   413     Value operator[](Key k) const {return m1[k]*m2[k];}
   414   };
   415   
   416   ///Returns a \ref MulMap class
   417 
   418   ///This function just returns a \ref MulMap class.
   419   ///\relates MulMap
   420   template<typename M1, typename M2> 
   421   inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
   422     return MulMap<M1, M2>(m1,m2);
   423   }
   424  
   425   ///Scales a maps with a constant.
   426 
   427   ///This \ref concept::ReadMap "read only map" returns the value of the
   428   ///given map multiplied from the left side with a constant value.
   429   ///Its \c Key and \c Value is inherited from \c M.
   430   ///
   431   ///Actually,
   432   ///\code
   433   ///  ScaleMap<X> sc(x,v);
   434   ///\endcode
   435   ///is equivalent with
   436   ///\code
   437   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   438   ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   439   ///\endcode
   440   template<typename M, typename C = typename M::Value> 
   441   class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
   442     const M& m;
   443     C v;
   444   public:
   445     typedef MapBase<typename M::Key, typename M::Value> Parent;
   446     typedef typename Parent::Key Key;
   447     typedef typename Parent::Value Value;
   448 
   449     ///Constructor
   450 
   451     ///Constructor
   452     ///\param _m is the undelying map
   453     ///\param _v is the scaling value
   454     ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
   455     Value operator[](Key k) const {return v * m[k];}
   456   };
   457   
   458   ///Returns an \ref ScaleMap class
   459 
   460   ///This function just returns an \ref ScaleMap class.
   461   ///\relates ScaleMap
   462   ///\todo A better name is required.
   463   template<typename M, typename C> 
   464   inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
   465     return ScaleMap<M, C>(m,v);
   466   }
   467 
   468   ///Quotient of two maps
   469 
   470   ///This \ref concept::ReadMap "read only map" returns the quotient of the
   471   ///values of the two
   472   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   473   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   474 
   475   template<typename M1, typename M2> 
   476   class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
   477     const M1& m1;
   478     const M2& m2;
   479   public:
   480     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   481     typedef typename Parent::Key Key;
   482     typedef typename Parent::Value Value;
   483 
   484     ///Constructor
   485     DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   486     Value operator[](Key k) const {return m1[k]/m2[k];}
   487   };
   488   
   489   ///Returns a \ref DivMap class
   490 
   491   ///This function just returns a \ref DivMap class.
   492   ///\relates DivMap
   493   template<typename M1, typename M2> 
   494   inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
   495     return DivMap<M1, M2>(m1,m2);
   496   }
   497   
   498   ///Composition of two maps
   499 
   500   ///This \ref concept::ReadMap "read only map" returns the composition of
   501   ///two
   502   ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   503   ///of \c M2,
   504   ///then for
   505   ///\code
   506   ///  ComposeMap<M1, M2> cm(m1,m2);
   507   ///\endcode
   508   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   509   ///
   510   ///Its \c Key is inherited from \c M2 and its \c Value is from
   511   ///\c M1.
   512   ///The \c M2::Value must be convertible to \c M1::Key.
   513   ///\todo Check the requirements.
   514 
   515   template <typename M1, typename M2> 
   516   class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
   517     const M1& m1;
   518     const M2& m2;
   519   public:
   520     typedef MapBase<typename M2::Key, typename M1::Value> Parent;
   521     typedef typename Parent::Key Key;
   522     typedef typename Parent::Value Value;
   523 
   524     ///Constructor
   525     ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   526     
   527     typename MapTraits<M1>::ConstReturnValue
   528     operator[](Key k) const {return m1[m2[k]];}
   529   };
   530   ///Returns a \ref ComposeMap class
   531 
   532   ///This function just returns a \ref ComposeMap class.
   533   ///
   534   ///\relates ComposeMap
   535   template <typename M1, typename M2> 
   536   inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
   537     return ComposeMap<M1, M2>(m1,m2);
   538   }
   539   
   540   ///Combines of two maps using an STL (binary) functor.
   541 
   542   ///Combines of two maps using an STL (binary) functor.
   543   ///
   544   ///
   545   ///This \ref concept::ReadMap "read only map" takes two maps and a
   546   ///binary functor and returns the composition of
   547   ///the two
   548   ///given maps unsing the functor. 
   549   ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   550   ///and \c f is of \c F,
   551   ///then for
   552   ///\code
   553   ///  CombineMap<M1, M2,F,V> cm(m1,m2,f);
   554   ///\endcode
   555   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   556   ///
   557   ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   558   ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   559   ///input parameter of \c F and the return type of \c F must be convertible
   560   ///to \c V.
   561   ///\todo Check the requirements.
   562 
   563   template<typename M1, typename M2, typename F,
   564 	   typename V = typename F::result_type,
   565 	   typename NC = False> 
   566   class CombineMap : public MapBase<typename M1::Key, V> {
   567     const M1& m1;
   568     const M2& m2;
   569     F f;
   570   public:
   571     typedef MapBase<typename M1::Key, V> Parent;
   572     typedef typename Parent::Key Key;
   573     typedef typename Parent::Value Value;
   574 
   575     ///Constructor
   576     CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
   577       : m1(_m1), m2(_m2), f(_f) {};
   578     Value operator[](Key k) const {return f(m1[k],m2[k]);}
   579   };
   580   
   581   ///Returns a \ref CombineMap class
   582 
   583   ///This function just returns a \ref CombineMap class.
   584   ///
   585   ///Only the first template parameter (the value type) must be given.
   586   ///
   587   ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   588   ///\code
   589   ///combineMap<double>(m1,m2,std::plus<double>)
   590   ///\endcode
   591   ///is equivalent with
   592   ///\code
   593   ///addMap(m1,m2)
   594   ///\endcode
   595   ///
   596   ///\relates CombineMap
   597   template<typename M1, typename M2, typename F, typename V> 
   598   inline CombineMap<M1, M2, F, V> 
   599   combineMap(const M1& m1,const M2& m2, const F& f) {
   600     return CombineMap<M1, M2, F, V>(m1,m2,f);
   601   }
   602 
   603   template<typename M1, typename M2, typename F> 
   604   inline CombineMap<M1, M2, F, typename F::result_type> 
   605   combineMap(const M1& m1, const M2& m2, const F& f) {
   606     return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
   607   }
   608 
   609   template<typename M1, typename M2, typename K1, typename K2, typename V> 
   610   inline CombineMap<M1, M2, V (*)(K1, K2), V> 
   611   combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
   612     return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
   613   }
   614 
   615   ///Negative value of a map
   616 
   617   ///This \ref concept::ReadMap "read only map" returns the negative
   618   ///value of the
   619   ///value returned by the
   620   ///given map. Its \c Key and \c Value will be inherited from \c M.
   621   ///The unary \c - operator must be defined for \c Value, of course.
   622 
   623   template<typename M> 
   624   class NegMap : public MapBase<typename M::Key, typename M::Value> {
   625     const M& m;
   626   public:
   627     typedef MapBase<typename M::Key, typename M::Value> Parent;
   628     typedef typename Parent::Key Key;
   629     typedef typename Parent::Value Value;
   630 
   631     ///Constructor
   632     NegMap(const M &_m) : m(_m) {};
   633     Value operator[](Key k) const {return -m[k];}
   634   };
   635   
   636   ///Returns a \ref NegMap class
   637 
   638   ///This function just returns a \ref NegMap class.
   639   ///\relates NegMap
   640   template <typename M> 
   641   inline NegMap<M> negMap(const M &m) {
   642     return NegMap<M>(m);
   643   }
   644 
   645 
   646   ///Absolute value of a map
   647 
   648   ///This \ref concept::ReadMap "read only map" returns the absolute value
   649   ///of the
   650   ///value returned by the
   651   ///given map. Its \c Key and \c Value will be inherited
   652   ///from <tt>M</tt>. <tt>Value</tt>
   653   ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   654   ///operator must be defined for it, of course.
   655   ///
   656   ///\bug We need a unified way to handle the situation below:
   657   ///\code
   658   ///  struct _UnConvertible {};
   659   ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   660   ///  template<> inline int t_abs<>(int n) {return abs(n);}
   661   ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   662   ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   663   ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   664   ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   665   ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   666   ///\endcode
   667   
   668 
   669   template<typename M> 
   670   class AbsMap : public MapBase<typename M::Key, typename M::Value> {
   671     const M& m;
   672   public:
   673     typedef MapBase<typename M::Key, typename M::Value> Parent;
   674     typedef typename Parent::Key Key;
   675     typedef typename Parent::Value Value;
   676 
   677     ///Constructor
   678     AbsMap(const M &_m) : m(_m) {};
   679     Value operator[](Key k) const {
   680       Value tmp = m[k]; 
   681       return tmp >= 0 ? tmp : -tmp;
   682     }
   683 
   684   };
   685   
   686   ///Returns a \ref AbsMap class
   687 
   688   ///This function just returns a \ref AbsMap class.
   689   ///\relates AbsMap
   690   template<typename M> 
   691   inline AbsMap<M> absMap(const M &m) {
   692     return AbsMap<M>(m);
   693   }
   694 
   695   ///Converts an STL style functor to a map
   696 
   697   ///This \ref concept::ReadMap "read only map" returns the value
   698   ///of a
   699   ///given map.
   700   ///
   701   ///Template parameters \c K and \c V will become its
   702   ///\c Key and \c Value. They must be given explicitely
   703   ///because a functor does not provide such typedefs.
   704   ///
   705   ///Parameter \c F is the type of the used functor.
   706   
   707 
   708   template<typename F, 
   709 	   typename K = typename F::argument_type, 
   710 	   typename V = typename F::result_type,
   711 	   typename NC = False> 
   712   class FunctorMap : public MapBase<K, V> {
   713     F f;
   714   public:
   715     typedef MapBase<K, V> Parent;
   716     typedef typename Parent::Key Key;
   717     typedef typename Parent::Value Value;
   718 
   719     ///Constructor
   720     FunctorMap(const F &_f) : f(_f) {}
   721 
   722     Value operator[](Key k) const { return f(k);}
   723   };
   724   
   725   ///Returns a \ref FunctorMap class
   726 
   727   ///This function just returns a \ref FunctorMap class.
   728   ///
   729   ///The third template parameter isn't necessary to be given.
   730   ///\relates FunctorMap
   731   template<typename K, typename V, typename F> inline 
   732   FunctorMap<F, K, V> functorMap(const F &f) {
   733     return FunctorMap<F, K, V>(f);
   734   }
   735 
   736   template <typename F> inline 
   737   FunctorMap<F, typename F::argument_type, typename F::result_type> 
   738   functorMap(const F &f) {
   739     return FunctorMap<F, typename F::argument_type, 
   740       typename F::result_type>(f);
   741   }
   742 
   743   template <typename K, typename V> inline 
   744   FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
   745     return FunctorMap<V (*)(K), K, V>(f);
   746   }
   747 
   748 
   749   ///Converts a map to an STL style (unary) functor
   750 
   751   ///This class Converts a map to an STL style (unary) functor.
   752   ///that is it provides an <tt>operator()</tt> to read its values.
   753   ///
   754   ///For the sake of convenience it also works as
   755   ///a ususal \ref concept::ReadMap "readable map",
   756   ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
   757 
   758   template <typename M> 
   759   class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
   760     const M& m;
   761   public:
   762     typedef MapBase<typename M::Key, typename M::Value> Parent;
   763     typedef typename Parent::Key Key;
   764     typedef typename Parent::Value Value;
   765 
   766     ///\e
   767     typedef typename M::Key argument_type;
   768     ///\e
   769     typedef typename M::Value result_type;
   770 
   771     ///Constructor
   772     MapFunctor(const M &_m) : m(_m) {};
   773     ///Returns a value of the map
   774     Value operator()(Key k) const {return m[k];}
   775     ///\e
   776     Value operator[](Key k) const {return m[k];}
   777   };
   778   
   779   ///Returns a \ref MapFunctor class
   780 
   781   ///This function just returns a \ref MapFunctor class.
   782   ///\relates MapFunctor
   783   template<typename M> 
   784   inline MapFunctor<M> mapFunctor(const M &m) {
   785     return MapFunctor<M>(m);
   786   }
   787 
   788 
   789   ///Applies all map setting operations to two maps
   790 
   791   ///This map has two \ref concept::WriteMap "writable map"
   792   ///parameters and each write request will be passed to both of them.
   793   ///If \c M1 is also \ref concept::ReadMap "readable",
   794   ///then the read operations will return the
   795   ///corresponding values of \c M1.
   796   ///
   797   ///The \c Key and \c Value will be inherited from \c M1.
   798   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
   799 
   800   template<typename  M1, typename M2> 
   801   class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
   802     const M1& m1;
   803     const M2& m2;
   804   public:
   805     typedef MapBase<typename M1::Key, typename M1::Value> Parent;
   806     typedef typename Parent::Key Key;
   807     typedef typename Parent::Value Value;
   808 
   809     ///Constructor
   810     ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   811     Value operator[](Key k) const {return m1[k];}
   812     //    void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
   813   };
   814   
   815   ///Returns an \ref ForkMap class
   816 
   817   ///This function just returns an \ref ForkMap class.
   818   ///\todo How to call these type of functions?
   819   ///
   820   ///\relates ForkMap
   821   ///\todo Wrong scope in Doxygen when \c \\relates is used
   822   template <typename M1, typename M2> 
   823   inline ForkMap<M1, M2> forkMap(const M1 &m1,const M2 &m2) {
   824     return ForkMap<M1, M2>(m1,m2);
   825   }
   826 
   827 
   828   
   829   /* ************* BOOL MAPS ******************* */
   830   
   831   ///Logical 'not' of a map
   832   
   833   ///This bool \ref concept::ReadMap "read only map" returns the 
   834   ///logical negation of
   835   ///value returned by the
   836   ///given map. Its \c Key and will be inherited from \c M,
   837   ///its Value is <tt>bool</tt>.
   838 
   839   template <typename M> 
   840   class NotMap : public MapBase<typename M::Key, bool> {
   841     const M& m;
   842   public:
   843     typedef MapBase<typename M::Key, bool> Parent;
   844     typedef typename Parent::Key Key;
   845     typedef typename Parent::Value Value;
   846 
   847     /// Constructor
   848     NotMap(const M &_m) : m(_m) {};
   849     Value operator[](Key k) const {return !m[k];}
   850   };
   851   
   852   ///Returns a \ref NotMap class
   853   
   854   ///This function just returns a \ref NotMap class.
   855   ///\relates NotMap
   856   template <typename M> 
   857   inline NotMap<M> notMap(const M &m) {
   858     return NotMap<M>(m);
   859   }
   860 
   861   /// \brief Writable bool map for store each true assigned elements.
   862   ///
   863   /// Writable bool map for store each true assigned elements. It will
   864   /// copies all the true setted keys to the given iterator.
   865   ///
   866   /// \note The container of the iterator should contain for each element.
   867   template <typename _Iterator>
   868   class StoreBoolMap {
   869   public:
   870     typedef _Iterator Iterator;
   871 
   872     typedef typename std::iterator_traits<Iterator>::value_type Key;
   873     typedef bool Value;
   874 
   875     /// Constructor
   876     StoreBoolMap(Iterator it) : _begin(it), _end(it) {}
   877 
   878     /// Gives back the given first setted iterator.
   879     Iterator begin() const {
   880       return _begin;
   881     }
   882  
   883     /// Gives back the iterator after the last setted.
   884     Iterator end() const {
   885       return _end;
   886     }
   887 
   888     /// Setter function of the map
   889     void set(const Key& key, Value value) {
   890       if (value) {
   891 	*_end++ = key;
   892       }
   893     }
   894     
   895   private:
   896     Iterator _begin, _end;
   897   };
   898 
   899   /// \brief Writable bool map for store each true assigned elements in 
   900   /// a back insertable container.
   901   ///
   902   /// Writable bool map for store each true assigned elements in a back 
   903   /// insertable container. It will push back all the true setted keys into
   904   /// the container.
   905   template <typename Container>
   906   class BackInserterBoolMap {
   907   public:
   908     typedef typename Container::value_type Key;
   909     typedef bool Value;
   910 
   911     /// Constructor
   912     BackInserterBoolMap(Container& _container) : container(_container) {}
   913 
   914     /// Setter function of the map
   915     void set(const Key& key, Value value) {
   916       if (value) {
   917 	container.push_back(key);
   918       }
   919     }
   920     
   921   private:
   922     Container& container;    
   923   };
   924 
   925   /// \brief Writable bool map for store each true assigned elements in 
   926   /// a front insertable container.
   927   ///
   928   /// Writable bool map for store each true assigned elements in a front 
   929   /// insertable container. It will push front all the true setted keys into
   930   /// the container.
   931   template <typename Container>
   932   class FrontInserterBoolMap {
   933   public:
   934     typedef typename Container::value_type Key;
   935     typedef bool Value;
   936 
   937     /// Constructor
   938     FrontInserterBoolMap(Container& _container) : container(_container) {}
   939 
   940     /// Setter function of the map
   941     void set(const Key& key, Value value) {
   942       if (value) {
   943 	container.push_front(key);
   944       }
   945     }
   946     
   947   private:
   948     Container& container;    
   949   };
   950 
   951   /// \brief Writable bool map for store each true assigned elements in 
   952   /// an insertable container.
   953   ///
   954   /// Writable bool map for store each true assigned elements in an 
   955   /// insertable container. It will insert all the true setted keys into
   956   /// the container.
   957   template <typename Container>
   958   class InserterBoolMap {
   959   public:
   960     typedef typename Container::value_type Key;
   961     typedef bool Value;
   962 
   963     /// Constructor
   964     InserterBoolMap(Container& _container) : container(_container) {}
   965 
   966     /// Setter function of the map
   967     void set(const Key& key, Value value) {
   968       if (value) {
   969 	container.insert(key);
   970       }
   971     }
   972     
   973   private:
   974     Container& container;    
   975   };
   976 
   977   /// \brief Fill the true setted elements with a given value.
   978   ///
   979   /// Writable bool map for fill the true setted elements with a given value.
   980   /// The value can be setted 
   981   /// the container.
   982   template <typename Map>
   983   class FillBoolMap {
   984   public:
   985     typedef typename Map::Key Key;
   986     typedef bool Value;
   987 
   988     /// Constructor
   989     FillBoolMap(Map& _map, const typename Map::Value& _fill) 
   990       : map(_map), fill(_fill) {}
   991 
   992     /// Constructor
   993     FillBoolMap(Map& _map) 
   994       : map(_map), fill() {}
   995 
   996     /// Gives back the current fill value
   997     typename Map::Value fillValue() const {
   998       return fill;
   999     } 
  1000 
  1001     /// Sets the current fill value
  1002     void fillValue(const typename Map::Value& _fill) {
  1003       fill = _fill;
  1004     } 
  1005 
  1006     /// Setter function of the map
  1007     void set(const Key& key, Value value) {
  1008       if (value) {
  1009 	map.set(key, fill);
  1010       }
  1011     }
  1012     
  1013   private:
  1014     Map& map;
  1015     typename Map::Value fill;
  1016   };
  1017 
  1018 
  1019   /// \brief Writable bool map which stores for each true assigned elements  
  1020   /// the setting order number.
  1021   ///
  1022   /// Writable bool map which stores for each true assigned elements  
  1023   /// the setting order number.
  1024   template <typename Map>
  1025   class SettingOrderBoolMap {
  1026   public:
  1027     typedef typename Map::Key Key;
  1028     typedef bool Value;
  1029 
  1030     /// Constructor
  1031     SettingOrderBoolMap(Map& _map) 
  1032       : map(_map), counter(0) {}
  1033 
  1034     /// Number of setted keys.
  1035     int num() const {
  1036       return counter;
  1037     }
  1038 
  1039     /// Setter function of the map
  1040     void set(const Key& key, Value value) {
  1041       if (value) {
  1042 	map.set(key, counter++);
  1043       }
  1044     }
  1045     
  1046   private:
  1047     Map& map;
  1048     int counter;
  1049   };
  1050 
  1051   /// @}
  1052 }
  1053 
  1054 #endif // LEMON_MAPS_H