src/include/dijkstra.h
author alpar
Mon, 26 Apr 2004 18:22:34 +0000
changeset 432 a51ba0e51a3a
parent 421 54b943063901
child 433 d9fac1497298
permissions -rw-r--r--
xy.h went to src/include.
     1 // -*- C++ -*-
     2 #ifndef HUGO_DIJKSTRA_H
     3 #define HUGO_DIJKSTRA_H
     4 
     5 ///ingroup galgs
     6 ///\file
     7 ///\brief Dijkstra algorithm.
     8 
     9 #include <bin_heap.h>
    10 #include <invalid.h>
    11 
    12 namespace hugo {
    13 
    14 /// \addtogroup galgs
    15 /// @{
    16 
    17   ///%Dijkstra algorithm class.
    18 
    19   ///This class provides an efficient implementation of %Dijkstra algorithm.
    20   ///The edge lengths are passed to the algorithm using a
    21   ///\ref ReadMapSkeleton "readable map",
    22   ///so it is easy to change it to any kind of length.
    23   ///
    24   ///The type of the length is determined by the \c ValueType of the length map.
    25   ///
    26   ///It is also possible to change the underlying priority heap.
    27   ///
    28   ///\param Graph The graph type the algorithm runs on.
    29   ///\param LengthMap This read-only
    30   ///EdgeMap
    31   ///determines the
    32   ///lengths of the edges. It is read once for each edge, so the map
    33   ///may involve in relatively time consuming process to compute the edge
    34   ///length if it is necessary. The default map type is
    35   ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
    36   ///\param Heap The heap type used by the %Dijkstra
    37   ///algorithm. The default
    38   ///is using \ref BinHeap "binary heap".
    39   
    40 #ifdef DOXYGEN
    41   template <typename Graph,
    42 	    typename LengthMap,
    43 	    typename Heap>
    44 #else
    45   template <typename Graph,
    46 	    typename LengthMap=typename Graph::EdgeMap<int>,
    47 	    template <class,class,class> class Heap = BinHeap >
    48 #endif
    49   class Dijkstra{
    50   public:
    51     typedef typename Graph::Node Node;
    52     typedef typename Graph::NodeIt NodeIt;
    53     typedef typename Graph::Edge Edge;
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
    55     
    56     typedef typename LengthMap::ValueType ValueType;
    57     typedef typename Graph::NodeMap<Edge> PredMap;
    58     typedef typename Graph::NodeMap<Node> PredNodeMap;
    59     typedef typename Graph::NodeMap<ValueType> DistMap;
    60 
    61   private:
    62     const Graph& G;
    63     const LengthMap& length;
    64     PredMap predecessor;
    65     PredNodeMap pred_node;
    66     DistMap distance;
    67     
    68   public :
    69     
    70     Dijkstra(Graph& _G, LengthMap& _length) :
    71       G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
    72     
    73     void run(Node s);
    74     
    75     ///The distance of a node from the root.
    76 
    77     ///Returns the distance of a node from the root.
    78     ///\pre \ref run() must be called before using this function.
    79     ///\warning If node \c v in unreachable from the root the return value
    80     ///of this funcion is undefined.
    81     ValueType dist(Node v) const { return distance[v]; }
    82 
    83     ///Returns the previous edge of the shortest path tree.
    84 
    85     ///For a node \c v it returns the previous edge of the shortest path tree,
    86     ///i.e. it returns the last edge from a shortest path from the root to \c
    87     ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The
    88     ///shortest path tree used here is equal to the shortest path tree used in
    89     ///\ref predNode(Node v).  \pre \ref run() must be called before using
    90     ///this function.
    91     Edge pred(Node v) const { return predecessor[v]; }
    92 
    93     ///Returns the previous node of the shortest path tree.
    94 
    95     ///For a node \c v it returns the previous node of the shortest path tree,
    96     ///i.e. it returns the last but one node from a shortest path from the
    97     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
    98     ///\c v=s. The shortest path tree used here is equal to the shortest path
    99     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   100     ///using this function.
   101     Node predNode(Node v) const { return pred_node[v]; }
   102     
   103     ///Returns a reference to the NodeMap of distances.
   104 
   105     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   106     ///be called before using this function.
   107     const DistMap &distMap() const { return distance;}
   108  
   109     ///Returns a reference to the shortest path tree map.
   110 
   111     ///Returns a reference to the NodeMap of the edges of the
   112     ///shortest path tree.
   113     ///\pre \ref run() must be called before using this function.
   114     const PredMap &predMap() const { return predecessor;}
   115  
   116     ///Returns a reference to the map of nodes of shortest paths.
   117 
   118     ///Returns a reference to the NodeMap of the last but one nodes of the
   119     ///shortest path tree.
   120     ///\pre \ref run() must be called before using this function.
   121     const PredNodeMap &predNodeMap() const { return pred_node;}
   122 
   123     ///Checks if a node is reachable from the root.
   124 
   125     ///Returns \c true if \c v is reachable from the root.
   126     ///\warning the root node is reported to be unreached!
   127     ///\todo Is this what we want?
   128     ///\pre \ref run() must be called before using this function.
   129     ///
   130     bool reached(Node v) { return G.valid(predecessor[v]); }
   131     
   132   };
   133   
   134 
   135   // **********************************************************************
   136   //  IMPLEMENTATIONS
   137   // **********************************************************************
   138 
   139   ///Runs %Dijkstra algorithm from node the root.
   140 
   141   ///This method runs the %Dijkstra algorithm from a root node \c s
   142   ///in order to
   143   ///compute the
   144   ///shortest path to each node. The algorithm computes
   145   ///- The shortest path tree.
   146   ///- The distance of each node from the root.
   147   template <typename Graph, typename LengthMap,
   148 	    template<class,class,class> class Heap >
   149   void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
   150     
   151     NodeIt u;
   152     for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
   153       predecessor.set(u,INVALID);
   154       pred_node.set(u,INVALID);
   155     }
   156     
   157     typename Graph::NodeMap<int> heap_map(G,-1);
   158     
   159     Heap<Node,ValueType,typename Graph::NodeMap<int> > heap(heap_map);
   160     
   161     heap.push(s,0); 
   162     
   163       while ( !heap.empty() ) {
   164 	
   165 	Node v=heap.top(); 
   166 	ValueType oldvalue=heap[v];
   167 	heap.pop();
   168 	distance.set(v, oldvalue);
   169 	
   170 	{ //FIXME this bracket is for e to be local
   171 	  OutEdgeIt e;
   172 	for(G.first(e, v);
   173 	    G.valid(e); G.next(e)) {
   174 	  Node w=G.bNode(e); 
   175 	  
   176 	  switch(heap.state(w)) {
   177 	  case heap.PRE_HEAP:
   178 	    heap.push(w,oldvalue+length[e]); 
   179 	    predecessor.set(w,e);
   180 	    pred_node.set(w,v);
   181 	    break;
   182 	  case heap.IN_HEAP:
   183 	    if ( oldvalue+length[e] < heap[w] ) {
   184 	      heap.decrease(w, oldvalue+length[e]); 
   185 	      predecessor.set(w,e);
   186 	      pred_node.set(w,v);
   187 	    }
   188 	    break;
   189 	  case heap.POST_HEAP:
   190 	    break;
   191 	  }
   192 	}
   193       } //FIXME tis bracket
   194       }
   195   }
   196 
   197 /// @}
   198   
   199 } //END OF NAMESPACE HUGO
   200 
   201 #endif
   202 
   203