lemon/hypercube_graph.h
author deba
Fri, 24 Feb 2006 11:02:11 +0000
changeset 1983 a60527609489
parent 1963 f1ace6d02a32
child 1986 9b56cca61e2e
permissions -rw-r--r--
Bugfix
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef HYPERCUBE_GRAPH_H
    20 #define HYPERCUBE_GRAPH_H
    21 
    22 #include <iostream>
    23 #include <vector>
    24 #include <lemon/invalid.h>
    25 #include <lemon/utility.h>
    26 #include <lemon/error.h>
    27 
    28 #include <lemon/bits/graph_extender.h>
    29 
    30 ///\ingroup graphs
    31 ///\file
    32 ///\brief HyperCubeGraph class.
    33 
    34 namespace lemon {
    35 
    36   /// \brief Base graph for HyperCubeGraph.
    37   ///
    38   /// Base graph for hyper-cube graph. It describes some member functions
    39   /// which can be used in the HyperCubeGraph.
    40   ///
    41   /// \warning Always use the HyperCubeGraph instead of this.
    42   /// \see HyperCubeGraph
    43   class HyperCubeGraphBase {
    44 
    45   public:
    46 
    47     typedef HyperCubeGraphBase Graph;
    48 
    49     class Node;
    50     class Edge;
    51 
    52   public:
    53 
    54     HyperCubeGraphBase() {}
    55 
    56   protected:
    57 
    58     /// \brief Creates a hypercube graph with the given size.
    59     ///
    60     /// Creates a hypercube graph with the given size.
    61     void construct(int dim) {
    62       _dim = dim;
    63       _nodeNum = 1 << dim;
    64     }
    65 
    66   public:
    67     
    68 
    69     typedef True NodeNumTag;
    70     typedef True EdgeNumTag;
    71 
    72     ///Number of nodes.
    73     int nodeNum() const { return _nodeNum; }
    74     ///Number of edges.
    75     int edgeNum() const { return _nodeNum * _dim; }
    76 
    77     /// Maximum node ID.
    78     
    79     /// Maximum node ID.
    80     ///\sa id(Node)
    81     int maxNodeId() const { return nodeNum() - 1; }
    82     /// Maximum edge ID.
    83     
    84     /// Maximum edge ID.
    85     ///\sa id(Edge)
    86     int maxEdgeId() const { return edgeNum() - 1; }
    87 
    88     /// \brief Gives back the source node of an edge.
    89     ///    
    90     /// Gives back the source node of an edge.
    91     Node source(Edge e) const {
    92       return e.id / _dim;
    93     }
    94 
    95     /// \brief Gives back the target node of an edge.
    96     ///    
    97     /// Gives back the target node of an edge.
    98     Node target(Edge e) const {
    99       return (e.id / _dim) ^ ( 1 << (e.id % _dim));
   100     }
   101 
   102     /// Node ID.
   103     
   104     /// The ID of a valid Node is a nonnegative integer not greater than
   105     /// \ref maxNodeId(). The range of the ID's is not surely continuous
   106     /// and the greatest node ID can be actually less then \ref maxNodeId().
   107     ///
   108     /// The ID of the \ref INVALID node is -1.
   109     ///\return The ID of the node \c v. 
   110 
   111     static int id(Node v) { return v.id; }
   112     /// Edge ID.
   113     
   114     /// The ID of a valid Edge is a nonnegative integer not greater than
   115     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
   116     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
   117     ///
   118     /// The ID of the \ref INVALID edge is -1.
   119     ///\return The ID of the edge \c e. 
   120     static int id(Edge e) { return e.id; }
   121 
   122     static Node nodeFromId(int id) { return Node(id);}
   123     
   124     static Edge edgeFromId(int id) { return Edge(id);}
   125 
   126     class Node {
   127       friend class HyperCubeGraphBase;
   128 
   129     protected:
   130       int id;
   131       Node(int _id) { id = _id;}
   132     public:
   133       Node() {}
   134       Node (Invalid) { id = -1; }
   135       bool operator==(const Node node) const {return id == node.id;}
   136       bool operator!=(const Node node) const {return id != node.id;}
   137       bool operator<(const Node node) const {return id < node.id;}
   138     };
   139     
   140     class Edge {
   141       friend class HyperCubeGraphBase;
   142       
   143     protected:
   144       int id; 
   145 
   146       Edge(int _id) : id(_id) {}
   147 
   148     public:
   149       Edge() { }
   150       Edge (Invalid) { id = -1; }
   151       bool operator==(const Edge edge) const {return id == edge.id;}
   152       bool operator!=(const Edge edge) const {return id != edge.id;}
   153       bool operator<(const Edge edge) const {return id < edge.id;}
   154     };
   155 
   156     void first(Node& node) const {
   157       node.id = nodeNum() - 1;
   158     }
   159 
   160     static void next(Node& node) {
   161       --node.id;
   162     }
   163 
   164     void first(Edge& edge) const {
   165       edge.id = edgeNum() - 1;
   166     }
   167 
   168     static void next(Edge& edge) {
   169       --edge.id;
   170     }
   171 
   172     void firstOut(Edge& edge, const Node& node) const {
   173       edge.id = node.id * _dim;
   174     }
   175 
   176     void nextOut(Edge& edge) const {
   177       ++edge.id;
   178       if (edge.id % _dim == 0) edge.id = -1;
   179     }
   180 
   181     void firstIn(Edge& edge, const Node& node) const {
   182       edge.id = (node.id ^ 1) * _dim;
   183     }
   184     
   185     void nextIn(Edge& edge) const {
   186       int cnt = edge.id % _dim;
   187       if ((cnt + 1) % _dim == 0) {
   188 	edge.id = -1;
   189       } else {
   190 	edge.id = ((edge.id / _dim) ^ ((1 << cnt) * 3)) * _dim + cnt + 1; 
   191       }
   192     }
   193 
   194     /// \brief Gives back the number of the dimensions.
   195     ///
   196     /// Gives back the number of the dimensions.
   197     int dimension() const {
   198       return _dim;
   199     }
   200 
   201     /// \brief Returns true if the n'th bit of the node is one.
   202     ///
   203     /// Returns true if the n'th bit of the node is one. 
   204     bool projection(Node node, int n) const {
   205       return (bool)(node.id & (1 << n));
   206     }
   207 
   208     /// \brief The dimension id of the edge.
   209     ///
   210     /// It returns the dimension id of the edge. It can
   211     /// be in the ${0, 1, dim-1}$ intervall.
   212     int dimension(Edge edge) const {
   213       return edge.id % _dim;
   214     }
   215 
   216     /// \brief Gives back the index of the node.
   217     ///
   218     /// Gives back the index of the node. The lower bits of the
   219     /// integer describe the node.
   220     int index(Node node) const {
   221       return node.id;
   222     }
   223 
   224     /// \brief Gives back the node by its index.
   225     ///
   226     ///  Gives back the node by its index.
   227     Node node(int index) const {
   228       return Node(index);
   229     }
   230     
   231   private:
   232     int _dim, _nodeNum;
   233   };
   234 
   235 
   236   typedef GraphExtender<HyperCubeGraphBase> ExtendedHyperCubeGraphBase;
   237 
   238   /// \ingroup graphs
   239   ///
   240   /// \brief HyperCube graph class
   241   ///
   242   /// This class implements a special graph type. The nodes of the
   243   /// graph can be indiced with integers with at most \c dim binary length.
   244   /// Two nodes are connected in the graph if the indices differ only
   245   /// on one position in the binary form. 
   246   ///
   247   /// \note The type of the \c ids is chosen to \c int because efficiency
   248   /// reasons. This way the maximal dimension of this implementation
   249   /// is 26. 
   250   ///
   251   /// The graph type is fully conform to the \ref concept::StaticGraph
   252   /// concept but it does not conform to the \ref concept::UGraph.
   253   ///
   254   /// \see HyperCubeGraphBase
   255   /// \author Balazs Dezso
   256   class HyperCubeGraph : public ExtendedHyperCubeGraphBase {
   257   public:
   258 
   259     /// \brief Construct a graph with \c dim dimension.
   260     ///
   261     /// Construct a graph with \c dim dimension.
   262     HyperCubeGraph(int dim) { construct(dim); }
   263 
   264     /// \brief Linear combination map.
   265     ///
   266     /// It makes possible to give back a linear combination
   267     /// for each node. This function works like the \c std::accumulate
   268     /// so it accumulates the \c bf binary function with the \c fv
   269     /// first value. The map accumulates only on that dimensions where
   270     /// the node's index is one. The accumulated values should be
   271     /// given by the \c begin and \c end iterators and this range's length
   272     /// should be the dimension number of the graph.
   273     /// 
   274     ///\code
   275     /// const int DIM = 3;
   276     /// HyperCubeGraph graph(DIM);
   277     /// xy<double> base[DIM];
   278     /// for (int k = 0; k < DIM; ++k) {
   279     ///   base[k].x = rand() / (RAND_MAX + 1.0);
   280     ///   base[k].y = rand() / (RAND_MAX + 1.0);
   281     /// } 
   282     /// HyperCubeGraph::HyperMap<xy<double> > 
   283     ///   pos(graph, base, base + DIM, xy<double>(0.0, 0.0));
   284     ///\endcode
   285     ///
   286     /// \see HyperCubeGraph
   287     template <typename T, typename BF = std::plus<T> >
   288     class HyperMap {
   289     public:
   290 
   291       typedef Node Key;
   292       typedef T Value;
   293     
   294       
   295       /// \brief Constructor for HyperMap. 
   296       ///
   297       /// Construct a HyperMap for the given graph. The accumulated values 
   298       /// should be given by the \c begin and \c end iterators and this 
   299       /// range's length should be the dimension number of the graph.
   300       ///
   301       /// This function accumulates the \c bf binary function with 
   302       /// the \c fv first value. The map accumulates only on that dimensions 
   303       /// where the node's index is one.           
   304       template <typename It>
   305       HyperMap(const Graph& graph, It begin, It end, 
   306 		   T fv = 0.0, const BF& bf = BF()) 
   307 	: _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) {
   308 	LEMON_ASSERT(_values.size() == graph.dimension(), 
   309 		     "Wrong size of dimension");
   310       }
   311 
   312       /// \brief Gives back the partial accumulated value.
   313       ///
   314       /// Gives back the partial accumulated value.
   315       Value operator[](Key k) const {
   316 	Value val = _first_value;
   317 	int id = _graph.index(k); 
   318 	int n = 0;
   319 	while (id != 0) {
   320 	  if (id & 1) {
   321 	    val = _bin_func(_values[n], _first_value);
   322 	  }
   323 	  id >>= 1;
   324 	  ++n;
   325 	}
   326 	return val;
   327       }
   328       
   329     private:
   330       const Graph& _graph;
   331       std::vector<T> _values;
   332       T _first_value;
   333       BF _bin_func;
   334     };    
   335   };
   336 }
   337 #endif
   338