3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LIST_GRAPH_H
20 #define LEMON_LIST_GRAPH_H
24 ///\brief ListGraph, ListUGraph classes.
26 #include <lemon/bits/graph_extender.h>
28 #include <lemon/error.h>
39 int first_in, first_out;
45 int prev_in, prev_out;
46 int next_in, next_out;
49 std::vector<NodeT> nodes;
55 std::vector<EdgeT> edges;
61 typedef ListGraphBase Graph;
64 friend class ListGraphBase;
68 Node(int pid) { id = pid;}
72 Node (Invalid) { id = -1; }
73 bool operator==(const Node& node) const {return id == node.id;}
74 bool operator!=(const Node& node) const {return id != node.id;}
75 bool operator<(const Node& node) const {return id < node.id;}
79 friend class ListGraphBase;
83 Edge(int pid) { id = pid;}
87 Edge (Invalid) { id = -1; }
88 bool operator==(const Edge& edge) const {return id == edge.id;}
89 bool operator!=(const Edge& edge) const {return id != edge.id;}
90 bool operator<(const Edge& edge) const {return id < edge.id;}
96 : nodes(), first_node(-1),
97 first_free_node(-1), edges(), first_free_edge(-1) {}
104 int maxNodeId() const { return nodes.size()-1; }
110 int maxEdgeId() const { return edges.size()-1; }
112 Node source(Edge e) const { return edges[e.id].source; }
113 Node target(Edge e) const { return edges[e.id].target; }
116 void first(Node& node) const {
117 node.id = first_node;
120 void next(Node& node) const {
121 node.id = nodes[node.id].next;
125 void first(Edge& e) const {
128 n!=-1 && nodes[n].first_in == -1;
130 e.id = (n == -1) ? -1 : nodes[n].first_in;
133 void next(Edge& edge) const {
134 if (edges[edge.id].next_in != -1) {
135 edge.id = edges[edge.id].next_in;
138 for(n = nodes[edges[edge.id].target].next;
139 n!=-1 && nodes[n].first_in == -1;
141 edge.id = (n == -1) ? -1 : nodes[n].first_in;
145 void firstOut(Edge &e, const Node& v) const {
146 e.id = nodes[v.id].first_out;
148 void nextOut(Edge &e) const {
149 e.id=edges[e.id].next_out;
152 void firstIn(Edge &e, const Node& v) const {
153 e.id = nodes[v.id].first_in;
155 void nextIn(Edge &e) const {
156 e.id=edges[e.id].next_in;
160 static int id(Node v) { return v.id; }
161 static int id(Edge e) { return e.id; }
163 static Node nodeFromId(int id) { return Node(id);}
164 static Edge edgeFromId(int id) { return Edge(id);}
166 /// Adds a new node to the graph.
168 /// \warning It adds the new node to the front of the list.
169 /// (i.e. the lastly added node becomes the first.)
173 if(first_free_node==-1) {
175 nodes.push_back(NodeT());
178 first_free_node = nodes[n].next;
181 nodes[n].next = first_node;
182 if(first_node != -1) nodes[first_node].prev = n;
186 nodes[n].first_in = nodes[n].first_out = -1;
191 Edge addEdge(Node u, Node v) {
194 if (first_free_edge == -1) {
196 edges.push_back(EdgeT());
199 first_free_edge = edges[n].next_in;
202 edges[n].source = u.id;
203 edges[n].target = v.id;
205 edges[n].next_out = nodes[u.id].first_out;
206 if(nodes[u.id].first_out != -1) {
207 edges[nodes[u.id].first_out].prev_out = n;
210 edges[n].next_in = nodes[v.id].first_in;
211 if(nodes[v.id].first_in != -1) {
212 edges[nodes[v.id].first_in].prev_in = n;
215 edges[n].prev_in = edges[n].prev_out = -1;
217 nodes[u.id].first_out = nodes[v.id].first_in = n;
222 void erase(const Node& node) {
225 if(nodes[n].next != -1) {
226 nodes[nodes[n].next].prev = nodes[n].prev;
229 if(nodes[n].prev != -1) {
230 nodes[nodes[n].prev].next = nodes[n].next;
232 first_node = nodes[n].next;
235 nodes[n].next = first_free_node;
240 void erase(const Edge& edge) {
243 if(edges[n].next_in!=-1) {
244 edges[edges[n].next_in].prev_in = edges[n].prev_in;
247 if(edges[n].prev_in!=-1) {
248 edges[edges[n].prev_in].next_in = edges[n].next_in;
250 nodes[edges[n].target].first_in = edges[n].next_in;
254 if(edges[n].next_out!=-1) {
255 edges[edges[n].next_out].prev_out = edges[n].prev_out;
258 if(edges[n].prev_out!=-1) {
259 edges[edges[n].prev_out].next_out = edges[n].next_out;
261 nodes[edges[n].source].first_out = edges[n].next_out;
264 edges[n].next_in = first_free_edge;
272 first_node = first_free_node = first_free_edge = -1;
276 void _changeTarget(Edge e, Node n)
278 if(edges[e.id].next_in != -1)
279 edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
280 if(edges[e.id].prev_in != -1)
281 edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
282 else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
283 if (nodes[n.id].first_in != -1) {
284 edges[nodes[n.id].first_in].prev_in = e.id;
286 edges[e.id].target = n.id;
287 edges[e.id].prev_in = -1;
288 edges[e.id].next_in = nodes[n.id].first_in;
289 nodes[n.id].first_in = e.id;
291 void _changeSource(Edge e, Node n)
293 if(edges[e.id].next_out != -1)
294 edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
295 if(edges[e.id].prev_out != -1)
296 edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
297 else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
298 if (nodes[n.id].first_out != -1) {
299 edges[nodes[n.id].first_out].prev_out = e.id;
301 edges[e.id].source = n.id;
302 edges[e.id].prev_out = -1;
303 edges[e.id].next_out = nodes[n.id].first_out;
304 nodes[n.id].first_out = e.id;
309 typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
311 /// \addtogroup graphs
314 ///A list graph class.
316 ///This is a simple and fast erasable graph implementation.
318 ///It addition that it conforms to the
319 ///\ref concept::ErasableGraph "ErasableGraph" concept,
320 ///it also provides several additional useful extra functionalities.
321 ///\sa concept::ErasableGraph.
323 class ListGraph : public ExtendedListGraphBase
326 /// Changes the target of \c e to \c n
328 /// Changes the target of \c e to \c n
330 ///\note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
331 ///referencing the changed edge remain
332 ///valid. However <tt>InEdge</tt>'s are invalidated.
333 void changeTarget(Edge e, Node n) {
336 /// Changes the source of \c e to \c n
338 /// Changes the source of \c e to \c n
340 ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
341 ///referencing the changed edge remain
342 ///valid. However <tt>OutEdge</tt>'s are invalidated.
343 void changeSource(Edge e, Node n) {
347 /// Invert the direction of an edge.
349 ///\note The <tt>Edge</tt>'s
350 ///referencing the changed edge remain
351 ///valid. However <tt>OutEdge</tt>'s and <tt>InEdge</tt>'s are invalidated.
352 void reverseEdge(Edge e) {
354 _changeTarget(e,source(e));
358 ///Using this it possible to avoid the superfluous memory allocation.
360 ///Using this it possible to avoid the superfluous memory allocation.
361 ///\todo more docs...
362 void reserveEdge(int n) { edges.reserve(n); };
364 ///Contract two nodes.
366 ///This function contracts two nodes.
368 ///Node \p b will be removed but instead of deleting
369 ///its neighboring edges, they will be joined to \p a.
370 ///The last parameter \p r controls whether to remove loops. \c true
371 ///means that loops will be removed.
373 ///\note The <tt>Edge</tt>s
374 ///referencing a moved edge remain
375 ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
376 ///may be invalidated.
377 void contract(Node a, Node b, bool r = true)
379 for(OutEdgeIt e(*this,b);e!=INVALID;) {
382 if(r && target(e)==a) erase(e);
383 else changeSource(e,a);
386 for(InEdgeIt e(*this,b);e!=INVALID;) {
389 if(r && source(e)==a) erase(e);
390 else changeTarget(e,a);
398 ///This function splits a node. First a new node is added to the graph,
399 ///then the source of each outgoing edge of \c n is moved to this new node.
400 ///If \c connect is \c true (this is the default value), then a new edge
401 ///from \c n to the newly created node is also added.
402 ///\return The newly created node.
404 ///\note The <tt>Edge</tt>s
405 ///referencing a moved edge remain
406 ///valid. However <tt>InEdge</tt>'s and <tt>OutEdge</tt>'s
407 ///may be invalidated.
408 ///\warning This functionality cannot be used together with the Snapshot
410 ///\todo It could be implemented in a bit faster way.
411 Node split(Node n, bool connect = true)
414 for(OutEdgeIt e(*this,n);e!=INVALID;) {
420 if(connect) addEdge(n,b);
426 ///This function splits an edge. First a new node \c b is added to the graph,
427 ///then the original edge is re-targetes to \c b. Finally an edge
428 ///from \c b to the original target is added.
429 ///\return The newly created node.
430 ///\warning This functionality cannot be used together with the Snapshot
435 addEdge(b,target(e));
440 ///Class to make a snapshot of the graph and to restrore to it later.
442 ///Class to make a snapshot of the graph and to restrore to it later.
444 ///The newly added nodes and edges can be removed using the
445 ///restore() function.
447 ///\warning Edge and node deletions cannot be restored.
448 ///\warning Snapshots cannot be nested.
449 class Snapshot : protected AlterationNotifier<Node>::ObserverBase,
450 protected AlterationNotifier<Edge>::ObserverBase
454 class UnsupportedOperation : public LogicError {
456 virtual const char* exceptionName() const {
457 return "lemon::ListGraph::Snapshot::UnsupportedOperation";
465 std::list<Node> added_nodes;
466 std::list<Edge> added_edges;
469 virtual void add(const Node& n) {
470 added_nodes.push_back(n);
472 virtual void erase(const Node&)
474 throw UnsupportedOperation();
476 virtual void add(const Edge& n) {
477 added_edges.push_back(n);
479 virtual void erase(const Edge&)
481 throw UnsupportedOperation();
484 ///\bug What is this used for?
486 virtual void build() {}
487 ///\bug What is this used for?
489 virtual void clear() {}
491 void regist(ListGraph &_g) {
493 AlterationNotifier<Node>::ObserverBase::
494 attach(g->getNotifier(Node()));
495 AlterationNotifier<Edge>::ObserverBase::
496 attach(g->getNotifier(Edge()));
500 AlterationNotifier<Node>::ObserverBase::
502 AlterationNotifier<Edge>::ObserverBase::
508 ///Default constructur.
510 ///Default constructur.
511 ///To actually make a snapshot you must call save().
514 ///Constructor that immediately makes a snapshot.
516 ///This constructor immediately makes a snapshot of the graph.
517 ///\param _g The graph we make a snapshot of.
518 Snapshot(ListGraph &_g) {
521 ///\bug Is it necessary?
530 ///Make a snapshot of the graph.
532 ///This function can be called more than once. In case of a repeated
533 ///call, the previous snapshot gets lost.
534 ///\param _g The graph we make the snapshot of.
535 void save(ListGraph &_g)
545 ///Undo the changes until the last snapshot.
547 ///Undo the changes until last snapshot created by save().
549 ///\todo This function might be called undo().
553 while(!added_edges.empty()) {
554 old_g.erase(added_edges.front());
555 added_edges.pop_front();
557 while(!added_nodes.empty()) {
558 old_g.erase(added_nodes.front());
559 added_nodes.pop_front();
568 /**************** Undirected List Graph ****************/
570 typedef UGraphExtender<UGraphBaseExtender<
571 ListGraphBase> > ExtendedListUGraphBase;
573 /// \addtogroup graphs
576 ///An undirected list graph class.
578 ///This is a simple and fast erasable undirected graph implementation.
580 ///It conforms to the
581 ///\ref concept::UGraph "UGraph" concept.
583 ///\sa concept::UGraph.
585 ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
586 ///haven't been implemented yet.
588 class ListUGraph : public ExtendedListUGraphBase {
590 typedef ExtendedListUGraphBase Parent;
591 /// \brief Changes the target of \c e to \c n
593 /// Changes the target of \c e to \c n
595 /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
596 /// referencing the changed edge remain
597 /// valid. However <tt>InEdge</tt>'s are invalidated.
598 void changeTarget(UEdge e, Node n) {
601 /// Changes the source of \c e to \c n
603 /// Changes the source of \c e to \c n
605 ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
606 ///referencing the changed edge remain
607 ///valid. However <tt>OutEdge</tt>'s are invalidated.
608 void changeSource(UEdge e, Node n) {
611 /// \brief Contract two nodes.
613 /// This function contracts two nodes.
615 /// Node \p b will be removed but instead of deleting
616 /// its neighboring edges, they will be joined to \p a.
617 /// The last parameter \p r controls whether to remove loops. \c true
618 /// means that loops will be removed.
620 /// \note The <tt>Edge</tt>s
621 /// referencing a moved edge remain
623 void contract(Node a, Node b, bool r = true) {
624 for(IncEdgeIt e(*this, b); e!=INVALID;) {
625 IncEdgeIt f = e; ++f;
626 if (r && runningNode(e) == a) {
628 } else if (source(e) == b) {
640 class ListBpUGraphBase {
643 class NodeSetError : public LogicError {
644 virtual const char* exceptionName() const {
645 return "lemon::ListBpUGraph::NodeSetError";
652 int first_edge, next_node;
656 int aNode, prev_out, next_out;
657 int bNode, prev_in, next_in;
660 std::vector<NodeT> aNodes;
661 std::vector<NodeT> bNodes;
663 std::vector<EdgeT> edges;
666 int first_free_anode;
669 int first_free_bnode;
676 friend class ListBpUGraphBase;
680 Node(int _id) : id(_id) {}
683 Node(Invalid) { id = -1; }
684 bool operator==(const Node i) const {return id==i.id;}
685 bool operator!=(const Node i) const {return id!=i.id;}
686 bool operator<(const Node i) const {return id<i.id;}
690 friend class ListBpUGraphBase;
694 Edge(int _id) { id = _id;}
697 Edge (Invalid) { id = -1; }
698 bool operator==(const Edge i) const {return id==i.id;}
699 bool operator!=(const Edge i) const {return id!=i.id;}
700 bool operator<(const Edge i) const {return id<i.id;}
704 : first_anode(-1), first_free_anode(-1),
705 first_bnode(-1), first_free_bnode(-1),
706 first_free_edge(-1) {}
708 void firstANode(Node& node) const {
709 node.id = first_anode != -1 ? (first_anode << 1) : -1;
711 void nextANode(Node& node) const {
712 node.id = aNodes[node.id >> 1].next_node;
715 void firstBNode(Node& node) const {
716 node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
718 void nextBNode(Node& node) const {
719 node.id = aNodes[node.id >> 1].next_node;
722 void first(Node& node) const {
723 if (first_anode != -1) {
724 node.id = (first_anode << 1);
725 } else if (first_bnode != -1) {
726 node.id = (first_bnode << 1) + 1;
731 void next(Node& node) const {
733 node.id = aNodes[node.id >> 1].next_node;
735 if (first_bnode != -1) {
736 node.id = (first_bnode << 1) + 1;
740 node.id = bNodes[node.id >> 1].next_node;
744 void first(Edge& edge) const {
745 int aNodeId = first_anode;
746 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
747 aNodeId = aNodes[aNodeId].next_node != -1 ?
748 aNodes[aNodeId].next_node >> 1 : -1;
751 edge.id = aNodes[aNodeId].first_edge;
756 void next(Edge& edge) const {
757 int aNodeId = edges[edge.id].aNode >> 1;
758 edge.id = edges[edge.id].next_out;
760 aNodeId = aNodes[aNodeId].next_node != -1 ?
761 aNodes[aNodeId].next_node >> 1 : -1;
762 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
763 aNodeId = aNodes[aNodeId].next_node != -1 ?
764 aNodes[aNodeId].next_node >> 1 : -1;
767 edge.id = aNodes[aNodeId].first_edge;
774 void firstOut(Edge& edge, const Node& node) const {
775 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
776 edge.id = aNodes[node.id >> 1].first_edge;
778 void nextOut(Edge& edge) const {
779 edge.id = edges[edge.id].next_out;
782 void firstIn(Edge& edge, const Node& node) const {
783 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
784 edge.id = bNodes[node.id >> 1].first_edge;
786 void nextIn(Edge& edge) const {
787 edge.id = edges[edge.id].next_in;
790 static int id(const Node& node) {
793 static Node nodeFromId(int id) {
796 int maxNodeId() const {
797 return aNodes.size() > bNodes.size() ?
798 aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
801 static int id(const Edge& edge) {
804 static Edge edgeFromId(int id) {
807 int maxEdgeId() const {
811 static int aNodeId(const Node& node) {
814 static Node fromANodeId(int id, Node) {
815 return Node(id << 1);
817 int maxANodeId() const {
818 return aNodes.size();
821 static int bNodeId(const Node& node) {
824 static Node fromBNodeId(int id) {
825 return Node((id << 1) + 1);
827 int maxBNodeId() const {
828 return bNodes.size();
831 Node aNode(const Edge& edge) const {
832 return Node(edges[edge.id].aNode);
834 Node bNode(const Edge& edge) const {
835 return Node(edges[edge.id].bNode);
838 static bool aNode(const Node& node) {
839 return (node.id & 1) == 0;
842 static bool bNode(const Node& node) {
843 return (node.id & 1) == 1;
848 if (first_free_anode == -1) {
849 aNodeId = aNodes.size();
850 aNodes.push_back(NodeT());
852 aNodeId = first_free_anode;
853 first_free_anode = aNodes[first_free_anode].next_node;
855 aNodes[aNodeId].next_node =
856 first_anode != -1 ? (first_anode << 1) : -1;
857 first_anode = aNodeId;
858 aNodes[aNodeId].first_edge = -1;
859 return Node(aNodeId << 1);
864 if (first_free_anode == -1) {
865 bNodeId = bNodes.size();
866 bNodes.push_back(NodeT());
868 bNodeId = first_free_bnode;
869 first_free_bnode = bNodes[first_free_bnode].next_node;
871 bNodes[bNodeId].next_node =
872 first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
873 first_bnode = bNodeId;
874 bNodes[bNodeId].first_edge = -1;
875 return Node((bNodeId << 1) + 1);
878 Edge addEdge(const Node& source, const Node& target) {
879 LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
881 if (first_free_edge != -1) {
882 edgeId = first_free_edge;
883 first_free_edge = edges[edgeId].next_out;
885 edgeId = edges.size();
886 edges.push_back(EdgeT());
888 if ((source.id & 1) == 0) {
889 edges[edgeId].aNode = source.id;
890 edges[edgeId].bNode = target.id;
892 edges[edgeId].aNode = target.id;
893 edges[edgeId].bNode = source.id;
895 edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
896 edges[edgeId].prev_out = -1;
897 if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
898 edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
900 aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
901 edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
902 edges[edgeId].prev_in = -1;
903 if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
904 edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
906 bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
910 void erase(const Node& node) {
912 int aNodeId = node.id >> 1;
913 aNodes[aNodeId].next_node = first_free_anode;
914 first_free_anode = aNodeId;
916 int bNodeId = node.id >> 1;
917 bNodes[bNodeId].next_node = first_free_bnode;
918 first_free_bnode = bNodeId;
922 void erase(const Edge& edge) {
923 if (edges[edge.id].prev_out != -1) {
924 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
926 aNodes[edges[edge.id].aNode].first_edge = edges[edge.id].next_out;
928 if (edges[edge.id].next_out != -1) {
929 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
931 if (edges[edge.id].prev_in != -1) {
932 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
934 bNodes[edges[edge.id].bNode].first_edge = edges[edge.id].next_in;
936 if (edges[edge.id].next_in != -1) {
937 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
939 edges[edge.id].next_out = first_free_edge;
940 first_free_edge = edge.id;
948 first_free_anode = -1;
950 first_free_bnode = -1;
951 first_free_edge = -1;
957 typedef BpUGraphExtender< BpUGraphBaseExtender<
958 ListBpUGraphBase> > ExtendedListBpUGraphBase;
962 /// \brief A smart bipartite undirected graph class.
964 /// This is a bipartite undirected graph implementation.
965 /// Except from this it conforms to
966 /// the \ref concept::BpUGraph "BpUGraph" concept.
967 /// \sa concept::BpUGraph.
969 class ListBpUGraph : public ExtendedListBpUGraphBase {};