lemon/dijkstra.h
author deba
Wed, 25 Jan 2006 14:58:04 +0000
changeset 1904 a64e4735bda6
parent 1765 f15b3c09481c
child 1956 a055123339d5
permissions -rw-r--r--
Bug fix for empty intervall sorting
     1 /* -*- C++ -*-
     2  * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_DIJKSTRA_H
    18 #define LEMON_DIJKSTRA_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Dijkstra algorithm.
    23 ///
    24 ///\todo dijkstraZero() solution should be revised.
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/bin_heap.h>
    28 #include <lemon/invalid.h>
    29 #include <lemon/error.h>
    30 #include <lemon/maps.h>
    31 
    32 namespace lemon {
    33 
    34   template<class T> T dijkstraZero() {return 0;}
    35   
    36   ///Default traits class of Dijkstra class.
    37 
    38   ///Default traits class of Dijkstra class.
    39   ///\param GR Graph type.
    40   ///\param LM Type of length map.
    41   template<class GR, class LM>
    42   struct DijkstraDefaultTraits
    43   {
    44     ///The graph type the algorithm runs on. 
    45     typedef GR Graph;
    46     ///The type of the map that stores the edge lengths.
    47 
    48     ///The type of the map that stores the edge lengths.
    49     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    50     typedef LM LengthMap;
    51     //The type of the length of the edges.
    52     typedef typename LM::Value Value;
    53     /// The cross reference type used by heap.
    54 
    55     /// The cross reference type used by heap.
    56     /// Usually it is \c Graph::NodeMap<int>.
    57     typedef typename Graph::template NodeMap<int> HeapCrossRef;
    58     ///Instantiates a HeapCrossRef.
    59 
    60     ///This function instantiates a \ref HeapCrossRef. 
    61     /// \param G is the graph, to which we would like to define the 
    62     /// HeapCrossRef.
    63     static HeapCrossRef *createHeapCrossRef(const GR &G) 
    64     {
    65       return new HeapCrossRef(G);
    66     }
    67     
    68     ///The heap type used by Dijkstra algorithm.
    69 
    70     ///The heap type used by Dijkstra algorithm.
    71     ///
    72     ///\sa BinHeap
    73     ///\sa Dijkstra
    74     typedef BinHeap<typename Graph::Node, typename LM::Value,
    75 		    HeapCrossRef, std::less<Value> > Heap;
    76 
    77     static Heap *createHeap(HeapCrossRef& R) 
    78     {
    79       return new Heap(R);
    80     }
    81 
    82     ///\brief The type of the map that stores the last
    83     ///edges of the shortest paths.
    84     /// 
    85     ///The type of the map that stores the last
    86     ///edges of the shortest paths.
    87     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    88     ///
    89     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    90     ///Instantiates a PredMap.
    91  
    92     ///This function instantiates a \ref PredMap. 
    93     ///\param G is the graph, to which we would like to define the PredMap.
    94     ///\todo The graph alone may be insufficient for the initialization
    95     static PredMap *createPredMap(const GR &G) 
    96     {
    97       return new PredMap(G);
    98     }
    99 
   100     ///The type of the map that stores whether a nodes is processed.
   101  
   102     ///The type of the map that stores whether a nodes is processed.
   103     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   104     ///By default it is a NullMap.
   105     ///\todo If it is set to a real map,
   106     ///Dijkstra::processed() should read this.
   107     ///\todo named parameter to set this type, function to read and write.
   108     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   109     ///Instantiates a ProcessedMap.
   110  
   111     ///This function instantiates a \ref ProcessedMap. 
   112     ///\param g is the graph, to which
   113     ///we would like to define the \ref ProcessedMap
   114 #ifdef DOXYGEN
   115     static ProcessedMap *createProcessedMap(const GR &g)
   116 #else
   117     static ProcessedMap *createProcessedMap(const GR &)
   118 #endif
   119     {
   120       return new ProcessedMap();
   121     }
   122     ///The type of the map that stores the dists of the nodes.
   123  
   124     ///The type of the map that stores the dists of the nodes.
   125     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   126     ///
   127     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   128     ///Instantiates a DistMap.
   129  
   130     ///This function instantiates a \ref DistMap. 
   131     ///\param G is the graph, to which we would like to define the \ref DistMap
   132     static DistMap *createDistMap(const GR &G)
   133     {
   134       return new DistMap(G);
   135     }
   136   };
   137   
   138   ///%Dijkstra algorithm class.
   139   
   140   /// \ingroup flowalgs
   141   ///This class provides an efficient implementation of %Dijkstra algorithm.
   142   ///The edge lengths are passed to the algorithm using a
   143   ///\ref concept::ReadMap "ReadMap",
   144   ///so it is easy to change it to any kind of length.
   145   ///
   146   ///The type of the length is determined by the
   147   ///\ref concept::ReadMap::Value "Value" of the length map.
   148   ///
   149   ///It is also possible to change the underlying priority heap.
   150   ///
   151   ///\param GR The graph type the algorithm runs on. The default value
   152   ///is \ref ListGraph. The value of GR is not used directly by
   153   ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
   154   ///\param LM This read-only EdgeMap determines the lengths of the
   155   ///edges. It is read once for each edge, so the map may involve in
   156   ///relatively time consuming process to compute the edge length if
   157   ///it is necessary. The default map type is \ref
   158   ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   159   ///of LM is not used directly by Dijkstra, it is only passed to \ref
   160   ///DijkstraDefaultTraits.  \param TR Traits class to set
   161   ///various data types used by the algorithm.  The default traits
   162   ///class is \ref DijkstraDefaultTraits
   163   ///"DijkstraDefaultTraits<GR,LM>".  See \ref
   164   ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
   165   ///class.
   166   ///
   167   ///\author Jacint Szabo and Alpar Juttner
   168 
   169 #ifdef DOXYGEN
   170   template <typename GR,
   171 	    typename LM,
   172 	    typename TR>
   173 #else
   174   template <typename GR=ListGraph,
   175 	    typename LM=typename GR::template EdgeMap<int>,
   176 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   177 #endif
   178   class Dijkstra {
   179   public:
   180     /**
   181      * \brief \ref Exception for uninitialized parameters.
   182      *
   183      * This error represents problems in the initialization
   184      * of the parameters of the algorithms.
   185      */
   186     class UninitializedParameter : public lemon::UninitializedParameter {
   187     public:
   188       virtual const char* exceptionName() const {
   189 	return "lemon::Dijkstra::UninitializedParameter";
   190       }
   191     };
   192 
   193     typedef TR Traits;
   194     ///The type of the underlying graph.
   195     typedef typename TR::Graph Graph;
   196     ///\e
   197     typedef typename Graph::Node Node;
   198     ///\e
   199     typedef typename Graph::NodeIt NodeIt;
   200     ///\e
   201     typedef typename Graph::Edge Edge;
   202     ///\e
   203     typedef typename Graph::OutEdgeIt OutEdgeIt;
   204     
   205     ///The type of the length of the edges.
   206     typedef typename TR::LengthMap::Value Value;
   207     ///The type of the map that stores the edge lengths.
   208     typedef typename TR::LengthMap LengthMap;
   209     ///\brief The type of the map that stores the last
   210     ///edges of the shortest paths.
   211     typedef typename TR::PredMap PredMap;
   212     ///The type of the map indicating if a node is processed.
   213     typedef typename TR::ProcessedMap ProcessedMap;
   214     ///The type of the map that stores the dists of the nodes.
   215     typedef typename TR::DistMap DistMap;
   216     ///The cross reference type used for the current heap.
   217     typedef typename TR::HeapCrossRef HeapCrossRef;
   218     ///The heap type used by the dijkstra algorithm.
   219     typedef typename TR::Heap Heap;
   220   private:
   221     /// Pointer to the underlying graph.
   222     const Graph *G;
   223     /// Pointer to the length map
   224     const LengthMap *length;
   225     ///Pointer to the map of predecessors edges.
   226     PredMap *_pred;
   227     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   228     bool local_pred;
   229     ///Pointer to the map of distances.
   230     DistMap *_dist;
   231     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   232     bool local_dist;
   233     ///Pointer to the map of processed status of the nodes.
   234     ProcessedMap *_processed;
   235     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   236     bool local_processed;
   237     ///Pointer to the heap cross references.
   238     HeapCrossRef *_heap_cross_ref;
   239     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   240     bool local_heap_cross_ref;
   241     ///Pointer to the heap.
   242     Heap *_heap;
   243     ///Indicates if \ref _heap is locally allocated (\c true) or not.
   244     bool local_heap;
   245 
   246     ///Creates the maps if necessary.
   247     
   248     ///\todo Better memory allocation (instead of new).
   249     void create_maps() 
   250     {
   251       if(!_pred) {
   252 	local_pred = true;
   253 	_pred = Traits::createPredMap(*G);
   254       }
   255       if(!_dist) {
   256 	local_dist = true;
   257 	_dist = Traits::createDistMap(*G);
   258       }
   259       if(!_processed) {
   260 	local_processed = true;
   261 	_processed = Traits::createProcessedMap(*G);
   262       }
   263       if (!_heap_cross_ref) {
   264 	local_heap_cross_ref = true;
   265 	_heap_cross_ref = Traits::createHeapCrossRef(*G);
   266       }
   267       if (!_heap) {
   268 	local_heap = true;
   269 	_heap = Traits::createHeap(*_heap_cross_ref);
   270       }
   271     }
   272     
   273   public :
   274 
   275     typedef Dijkstra Create;
   276  
   277     ///\name Named template parameters
   278 
   279     ///@{
   280 
   281     template <class T>
   282     struct DefPredMapTraits : public Traits {
   283       typedef T PredMap;
   284       static PredMap *createPredMap(const Graph &G) 
   285       {
   286 	throw UninitializedParameter();
   287       }
   288     };
   289     ///\ref named-templ-param "Named parameter" for setting PredMap type
   290 
   291     ///\ref named-templ-param "Named parameter" for setting PredMap type
   292     ///
   293     template <class T>
   294     struct DefPredMap 
   295       : public Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > {
   296       typedef Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > Create;
   297     };
   298     
   299     template <class T>
   300     struct DefDistMapTraits : public Traits {
   301       typedef T DistMap;
   302       static DistMap *createDistMap(const Graph &G) 
   303       {
   304 	throw UninitializedParameter();
   305       }
   306     };
   307     ///\ref named-templ-param "Named parameter" for setting DistMap type
   308 
   309     ///\ref named-templ-param "Named parameter" for setting DistMap type
   310     ///
   311     template <class T>
   312     struct DefDistMap 
   313       : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > { 
   314       typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
   315     };
   316     
   317     template <class T>
   318     struct DefProcessedMapTraits : public Traits {
   319       typedef T ProcessedMap;
   320       static ProcessedMap *createProcessedMap(const Graph &G) 
   321       {
   322 	throw UninitializedParameter();
   323       }
   324     };
   325     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   326 
   327     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   328     ///
   329     template <class T>
   330     struct DefProcessedMap 
   331       : public Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > { 
   332       typedef Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > Create;
   333     };
   334     
   335     struct DefGraphProcessedMapTraits : public Traits {
   336       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   337       static ProcessedMap *createProcessedMap(const Graph &G) 
   338       {
   339 	return new ProcessedMap(G);
   340       }
   341     };
   342     ///\brief \ref named-templ-param "Named parameter"
   343     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   344     ///
   345     ///\ref named-templ-param "Named parameter"
   346     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   347     ///If you don't set it explicitely, it will be automatically allocated.
   348     template <class T>
   349     struct DefProcessedMapToBeDefaultMap 
   350       : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
   351       typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
   352     };
   353 
   354     template <class H, class CR>
   355     struct DefHeapTraits : public Traits {
   356       typedef CR HeapCrossRef;
   357       typedef H Heap;
   358       static HeapCrossRef *createHeapCrossRef(const Graph &) {
   359 	throw UninitializedParameter();
   360       }
   361       static Heap *createHeap(HeapCrossRef &) 
   362       {
   363 	throw UninitializedParameter();
   364       }
   365     };
   366     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   367     ///reference type
   368 
   369     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   370     ///reference type
   371     ///
   372     template <class H, class CR = typename Graph::template NodeMap<int> >
   373     struct DefHeap
   374       : public Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > { 
   375       typedef Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > Create;
   376     };
   377 
   378     template <class H, class CR>
   379     struct DefStandardHeapTraits : public Traits {
   380       typedef CR HeapCrossRef;
   381       typedef H Heap;
   382       static HeapCrossRef *createHeapCrossRef(const Graph &G) {
   383 	return new HeapCrossRef(G);
   384       }
   385       static Heap *createHeap(HeapCrossRef &R) 
   386       {
   387 	return new Heap(R);
   388       }
   389     };
   390     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   391     ///reference type with automatic allocation
   392 
   393     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   394     ///reference type. It can allocate the heap and the cross reference 
   395     ///object if the cross reference's constructor waits for the graph as 
   396     ///parameter and the heap's constructor waits for the cross reference.
   397     template <class H, class CR = typename Graph::template NodeMap<int> >
   398     struct DefStandardHeap
   399       : public Dijkstra< Graph,	LengthMap, DefStandardHeapTraits<H, CR> > { 
   400       typedef Dijkstra< Graph,	LengthMap, DefStandardHeapTraits<H, CR> > 
   401       Create;
   402     };
   403     
   404     ///@}
   405 
   406 
   407   protected:
   408 
   409     Dijkstra() {}
   410 
   411   public:      
   412     
   413     ///Constructor.
   414     
   415     ///\param _G the graph the algorithm will run on.
   416     ///\param _length the length map used by the algorithm.
   417     Dijkstra(const Graph& _G, const LengthMap& _length) :
   418       G(&_G), length(&_length),
   419       _pred(NULL), local_pred(false),
   420       _dist(NULL), local_dist(false),
   421       _processed(NULL), local_processed(false),
   422       _heap_cross_ref(NULL), local_heap_cross_ref(false),
   423       _heap(NULL), local_heap(false)
   424     { }
   425     
   426     ///Destructor.
   427     ~Dijkstra() 
   428     {
   429       if(local_pred) delete _pred;
   430       if(local_dist) delete _dist;
   431       if(local_processed) delete _processed;
   432       if(local_heap_cross_ref) delete _heap_cross_ref;
   433       if(local_heap) delete _heap;
   434     }
   435 
   436     ///Sets the length map.
   437 
   438     ///Sets the length map.
   439     ///\return <tt> (*this) </tt>
   440     Dijkstra &lengthMap(const LengthMap &m) 
   441     {
   442       length = &m;
   443       return *this;
   444     }
   445 
   446     ///Sets the map storing the predecessor edges.
   447 
   448     ///Sets the map storing the predecessor edges.
   449     ///If you don't use this function before calling \ref run(),
   450     ///it will allocate one. The destuctor deallocates this
   451     ///automatically allocated map, of course.
   452     ///\return <tt> (*this) </tt>
   453     Dijkstra &predMap(PredMap &m) 
   454     {
   455       if(local_pred) {
   456 	delete _pred;
   457 	local_pred=false;
   458       }
   459       _pred = &m;
   460       return *this;
   461     }
   462 
   463     ///Sets the map storing the distances calculated by the algorithm.
   464 
   465     ///Sets the map storing the distances calculated by the algorithm.
   466     ///If you don't use this function before calling \ref run(),
   467     ///it will allocate one. The destuctor deallocates this
   468     ///automatically allocated map, of course.
   469     ///\return <tt> (*this) </tt>
   470     Dijkstra &distMap(DistMap &m) 
   471     {
   472       if(local_dist) {
   473 	delete _dist;
   474 	local_dist=false;
   475       }
   476       _dist = &m;
   477       return *this;
   478     }
   479 
   480     ///Sets the heap and the cross reference used by algorithm.
   481 
   482     ///Sets the heap and the cross reference used by algorithm.
   483     ///If you don't use this function before calling \ref run(),
   484     ///it will allocate one. The destuctor deallocates this
   485     ///automatically allocated map, of course.
   486     ///\return <tt> (*this) </tt>
   487     Dijkstra &heap(Heap& heap, HeapCrossRef &crossRef)
   488     {
   489       if(local_heap_cross_ref) {
   490 	delete _heap_cross_ref;
   491 	local_heap_cross_ref=false;
   492       }
   493       _heap_cross_ref = &crossRef;
   494       if(local_heap) {
   495 	delete _heap;
   496 	local_heap=false;
   497       }
   498       _heap = &heap;
   499       return *this;
   500     }
   501 
   502   private:
   503     void finalizeNodeData(Node v,Value dst)
   504     {
   505       _processed->set(v,true);
   506       _dist->set(v, dst);
   507     }
   508 
   509   public:
   510     ///\name Execution control
   511     ///The simplest way to execute the algorithm is to use
   512     ///one of the member functions called \c run(...).
   513     ///\n
   514     ///If you need more control on the execution,
   515     ///first you must call \ref init(), then you can add several source nodes
   516     ///with \ref addSource().
   517     ///Finally \ref start() will perform the actual path
   518     ///computation.
   519 
   520     ///@{
   521 
   522     ///Initializes the internal data structures.
   523 
   524     ///Initializes the internal data structures.
   525     ///
   526     void init()
   527     {
   528       create_maps();
   529       _heap->clear();
   530       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   531 	_pred->set(u,INVALID);
   532 	_processed->set(u,false);
   533 	_heap_cross_ref->set(u,Heap::PRE_HEAP);
   534       }
   535     }
   536     
   537     ///Adds a new source node.
   538 
   539     ///Adds a new source node to the priority heap.
   540     ///
   541     ///The optional second parameter is the initial distance of the node.
   542     ///
   543     ///It checks if the node has already been added to the heap and
   544     ///It is pushed to the heap only if either it was not in the heap
   545     ///or the shortest path found till then is longer then \c dst.
   546     void addSource(Node s,Value dst=dijkstraZero<Value>())
   547     {
   548       if(_heap->state(s) != Heap::IN_HEAP) {
   549 	_heap->push(s,dst);
   550       } else if((*_heap)[s]<dst) {
   551 	_heap->push(s,dst);
   552 	_pred->set(s,INVALID);
   553       }
   554     }
   555     
   556     ///Processes the next node in the priority heap
   557 
   558     ///Processes the next node in the priority heap.
   559     ///
   560     ///\return The processed node.
   561     ///
   562     ///\warning The priority heap must not be empty!
   563     Node processNextNode()
   564     {
   565       Node v=_heap->top(); 
   566       Value oldvalue=_heap->prio();
   567       _heap->pop();
   568       finalizeNodeData(v,oldvalue);
   569       
   570       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   571 	Node w=G->target(e); 
   572 	switch(_heap->state(w)) {
   573 	case Heap::PRE_HEAP:
   574 	  _heap->push(w,oldvalue+(*length)[e]); 
   575 	  _pred->set(w,e);
   576 	  break;
   577 	case Heap::IN_HEAP:
   578 	  if ( oldvalue+(*length)[e] < (*_heap)[w] ) {
   579 	    _heap->decrease(w, oldvalue+(*length)[e]); 
   580 	    _pred->set(w,e);
   581 	  }
   582 	  break;
   583 	case Heap::POST_HEAP:
   584 	  break;
   585 	}
   586       }
   587       return v;
   588     }
   589 
   590     ///Next node to be processed.
   591     
   592     ///Next node to be processed.
   593     ///
   594     ///\return The next node to be processed or INVALID if the priority heap
   595     /// is empty.
   596     Node nextNode()
   597     { 
   598       return _heap->empty()?_heap->top():INVALID;
   599     }
   600  
   601     ///\brief Returns \c false if there are nodes
   602     ///to be processed in the priority heap
   603     ///
   604     ///Returns \c false if there are nodes
   605     ///to be processed in the priority heap
   606     bool emptyQueue() { return _heap->empty(); }
   607     ///Returns the number of the nodes to be processed in the priority heap
   608 
   609     ///Returns the number of the nodes to be processed in the priority heap
   610     ///
   611     int queueSize() { return _heap->size(); }
   612     
   613     ///Executes the algorithm.
   614 
   615     ///Executes the algorithm.
   616     ///
   617     ///\pre init() must be called and at least one node should be added
   618     ///with addSource() before using this function.
   619     ///
   620     ///This method runs the %Dijkstra algorithm from the root node(s)
   621     ///in order to
   622     ///compute the
   623     ///shortest path to each node. The algorithm computes
   624     ///- The shortest path tree.
   625     ///- The distance of each node from the root(s).
   626     ///
   627     void start()
   628     {
   629       while ( !_heap->empty() ) processNextNode();
   630     }
   631     
   632     ///Executes the algorithm until \c dest is reached.
   633 
   634     ///Executes the algorithm until \c dest is reached.
   635     ///
   636     ///\pre init() must be called and at least one node should be added
   637     ///with addSource() before using this function.
   638     ///
   639     ///This method runs the %Dijkstra algorithm from the root node(s)
   640     ///in order to
   641     ///compute the
   642     ///shortest path to \c dest. The algorithm computes
   643     ///- The shortest path to \c  dest.
   644     ///- The distance of \c dest from the root(s).
   645     ///
   646     void start(Node dest)
   647     {
   648       while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
   649       if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
   650     }
   651     
   652     ///Executes the algorithm until a condition is met.
   653 
   654     ///Executes the algorithm until a condition is met.
   655     ///
   656     ///\pre init() must be called and at least one node should be added
   657     ///with addSource() before using this function.
   658     ///
   659     ///\param nm must be a bool (or convertible) node map. The algorithm
   660     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   661     template<class NodeBoolMap>
   662     void start(const NodeBoolMap &nm)
   663     {
   664       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
   665       if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
   666     }
   667     
   668     ///Runs %Dijkstra algorithm from node \c s.
   669     
   670     ///This method runs the %Dijkstra algorithm from a root node \c s
   671     ///in order to
   672     ///compute the
   673     ///shortest path to each node. The algorithm computes
   674     ///- The shortest path tree.
   675     ///- The distance of each node from the root.
   676     ///
   677     ///\note d.run(s) is just a shortcut of the following code.
   678     ///\code
   679     ///  d.init();
   680     ///  d.addSource(s);
   681     ///  d.start();
   682     ///\endcode
   683     void run(Node s) {
   684       init();
   685       addSource(s);
   686       start();
   687     }
   688     
   689     ///Finds the shortest path between \c s and \c t.
   690     
   691     ///Finds the shortest path between \c s and \c t.
   692     ///
   693     ///\return The length of the shortest s---t path if there exists one,
   694     ///0 otherwise.
   695     ///\note Apart from the return value, d.run(s) is
   696     ///just a shortcut of the following code.
   697     ///\code
   698     ///  d.init();
   699     ///  d.addSource(s);
   700     ///  d.start(t);
   701     ///\endcode
   702     Value run(Node s,Node t) {
   703       init();
   704       addSource(s);
   705       start(t);
   706       return (*_pred)[t]==INVALID?dijkstraZero<Value>():(*_dist)[t];
   707     }
   708     
   709     ///@}
   710 
   711     ///\name Query Functions
   712     ///The result of the %Dijkstra algorithm can be obtained using these
   713     ///functions.\n
   714     ///Before the use of these functions,
   715     ///either run() or start() must be called.
   716     
   717     ///@{
   718 
   719     ///Copies the shortest path to \c t into \c p
   720     
   721     ///This function copies the shortest path to \c t into \c p.
   722     ///If it \c t is a source itself or unreachable, then it does not
   723     ///alter \c p.
   724     ///\return Returns \c true if a path to \c t was actually copied to \c p,
   725     ///\c false otherwise.
   726     ///\sa DirPath
   727     template<class P>
   728     bool getPath(P &p,Node t) 
   729     {
   730       if(reached(t)) {
   731 	p.clear();
   732 	typename P::Builder b(p);
   733 	for(b.setStartNode(t);predEdge(t)!=INVALID;t=predNode(t))
   734 	  b.pushFront(predEdge(t));
   735 	b.commit();
   736 	return true;
   737       }
   738       return false;
   739     }
   740 	  
   741     ///The distance of a node from the root.
   742 
   743     ///Returns the distance of a node from the root.
   744     ///\pre \ref run() must be called before using this function.
   745     ///\warning If node \c v in unreachable from the root the return value
   746     ///of this funcion is undefined.
   747     Value dist(Node v) const { return (*_dist)[v]; }
   748 
   749     ///Returns the 'previous edge' of the shortest path tree.
   750 
   751     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   752     ///i.e. it returns the last edge of a shortest path from the root to \c
   753     ///v. It is \ref INVALID
   754     ///if \c v is unreachable from the root or if \c v=s. The
   755     ///shortest path tree used here is equal to the shortest path tree used in
   756     ///\ref predNode().  \pre \ref run() must be called before using
   757     ///this function.
   758     Edge predEdge(Node v) const { return (*_pred)[v]; }
   759 
   760     ///Returns the 'previous node' of the shortest path tree.
   761 
   762     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   763     ///i.e. it returns the last but one node from a shortest path from the
   764     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   765     ///\c v=s. The shortest path tree used here is equal to the shortest path
   766     ///tree used in \ref predEdge().  \pre \ref run() must be called before
   767     ///using this function.
   768     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   769 				  G->source((*_pred)[v]); }
   770     
   771     ///Returns a reference to the NodeMap of distances.
   772 
   773     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   774     ///be called before using this function.
   775     const DistMap &distMap() const { return *_dist;}
   776  
   777     ///Returns a reference to the shortest path tree map.
   778 
   779     ///Returns a reference to the NodeMap of the edges of the
   780     ///shortest path tree.
   781     ///\pre \ref run() must be called before using this function.
   782     const PredMap &predMap() const { return *_pred;}
   783  
   784     ///Checks if a node is reachable from the root.
   785 
   786     ///Returns \c true if \c v is reachable from the root.
   787     ///\warning The source nodes are inditated as unreached.
   788     ///\pre \ref run() must be called before using this function.
   789     ///
   790     bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
   791 
   792     ///Checks if a node is processed.
   793 
   794     ///Returns \c true if \c v is processed, i.e. the shortest
   795     ///path to \c v has already found.
   796     ///\pre \ref run() must be called before using this function.
   797     ///
   798     bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
   799     
   800     ///@}
   801   };
   802 
   803 
   804 
   805 
   806  
   807   ///Default traits class of Dijkstra function.
   808 
   809   ///Default traits class of Dijkstra function.
   810   ///\param GR Graph type.
   811   ///\param LM Type of length map.
   812   template<class GR, class LM>
   813   struct DijkstraWizardDefaultTraits
   814   {
   815     ///The graph type the algorithm runs on. 
   816     typedef GR Graph;
   817     ///The type of the map that stores the edge lengths.
   818 
   819     ///The type of the map that stores the edge lengths.
   820     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
   821     typedef LM LengthMap;
   822     //The type of the length of the edges.
   823     typedef typename LM::Value Value;
   824     ///The heap type used by Dijkstra algorithm.
   825 
   826     /// The cross reference type used by heap.
   827 
   828     /// The cross reference type used by heap.
   829     /// Usually it is \c Graph::NodeMap<int>.
   830     typedef typename Graph::template NodeMap<int> HeapCrossRef;
   831     ///Instantiates a HeapCrossRef.
   832 
   833     ///This function instantiates a \ref HeapCrossRef. 
   834     /// \param G is the graph, to which we would like to define the 
   835     /// HeapCrossRef.
   836     /// \todo The graph alone may be insufficient for the initialization
   837     static HeapCrossRef *createHeapCrossRef(const GR &G) 
   838     {
   839       return new HeapCrossRef(G);
   840     }
   841     
   842     ///The heap type used by Dijkstra algorithm.
   843 
   844     ///The heap type used by Dijkstra algorithm.
   845     ///
   846     ///\sa BinHeap
   847     ///\sa Dijkstra
   848     typedef BinHeap<typename Graph::Node, typename LM::Value,
   849 		    typename GR::template NodeMap<int>,
   850 		    std::less<Value> > Heap;
   851 
   852     static Heap *createHeap(HeapCrossRef& R) 
   853     {
   854       return new Heap(R);
   855     }
   856 
   857     ///\brief The type of the map that stores the last
   858     ///edges of the shortest paths.
   859     /// 
   860     ///The type of the map that stores the last
   861     ///edges of the shortest paths.
   862     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   863     ///
   864     typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
   865     ///Instantiates a PredMap.
   866  
   867     ///This function instantiates a \ref PredMap. 
   868     ///\param g is the graph, to which we would like to define the PredMap.
   869     ///\todo The graph alone may be insufficient for the initialization
   870 #ifdef DOXYGEN
   871     static PredMap *createPredMap(const GR &g) 
   872 #else
   873     static PredMap *createPredMap(const GR &) 
   874 #endif
   875     {
   876       return new PredMap();
   877     }
   878     ///The type of the map that stores whether a nodes is processed.
   879  
   880     ///The type of the map that stores whether a nodes is processed.
   881     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   882     ///By default it is a NullMap.
   883     ///\todo If it is set to a real map,
   884     ///Dijkstra::processed() should read this.
   885     ///\todo named parameter to set this type, function to read and write.
   886     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   887     ///Instantiates a ProcessedMap.
   888  
   889     ///This function instantiates a \ref ProcessedMap. 
   890     ///\param g is the graph, to which
   891     ///we would like to define the \ref ProcessedMap
   892 #ifdef DOXYGEN
   893     static ProcessedMap *createProcessedMap(const GR &g)
   894 #else
   895     static ProcessedMap *createProcessedMap(const GR &)
   896 #endif
   897     {
   898       return new ProcessedMap();
   899     }
   900     ///The type of the map that stores the dists of the nodes.
   901  
   902     ///The type of the map that stores the dists of the nodes.
   903     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   904     ///
   905     typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
   906     ///Instantiates a DistMap.
   907  
   908     ///This function instantiates a \ref DistMap. 
   909     ///\param g is the graph, to which we would like to define the \ref DistMap
   910 #ifdef DOXYGEN
   911     static DistMap *createDistMap(const GR &g)
   912 #else
   913     static DistMap *createDistMap(const GR &)
   914 #endif
   915     {
   916       return new DistMap();
   917     }
   918   };
   919   
   920   /// Default traits used by \ref DijkstraWizard
   921 
   922   /// To make it easier to use Dijkstra algorithm
   923   ///we have created a wizard class.
   924   /// This \ref DijkstraWizard class needs default traits,
   925   ///as well as the \ref Dijkstra class.
   926   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   927   /// \ref DijkstraWizard class.
   928   /// \todo More named parameters are required...
   929   template<class GR,class LM>
   930   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
   931   {
   932 
   933     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
   934   protected:
   935     /// Type of the nodes in the graph.
   936     typedef typename Base::Graph::Node Node;
   937 
   938     /// Pointer to the underlying graph.
   939     void *_g;
   940     /// Pointer to the length map
   941     void *_length;
   942     ///Pointer to the map of predecessors edges.
   943     void *_pred;
   944     ///Pointer to the map of distances.
   945     void *_dist;
   946     ///Pointer to the source node.
   947     Node _source;
   948 
   949     public:
   950     /// Constructor.
   951     
   952     /// This constructor does not require parameters, therefore it initiates
   953     /// all of the attributes to default values (0, INVALID).
   954     DijkstraWizardBase() : _g(0), _length(0), _pred(0),
   955 			   _dist(0), _source(INVALID) {}
   956 
   957     /// Constructor.
   958     
   959     /// This constructor requires some parameters,
   960     /// listed in the parameters list.
   961     /// Others are initiated to 0.
   962     /// \param g is the initial value of  \ref _g
   963     /// \param l is the initial value of  \ref _length
   964     /// \param s is the initial value of  \ref _source
   965     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   966       _g((void *)&g), _length((void *)&l), _pred(0),
   967       _dist(0), _source(s) {}
   968 
   969   };
   970   
   971   /// A class to make the usage of Dijkstra algorithm easier
   972 
   973   /// This class is created to make it easier to use Dijkstra algorithm.
   974   /// It uses the functions and features of the plain \ref Dijkstra,
   975   /// but it is much simpler to use it.
   976   ///
   977   /// Simplicity means that the way to change the types defined
   978   /// in the traits class is based on functions that returns the new class
   979   /// and not on templatable built-in classes.
   980   /// When using the plain \ref Dijkstra
   981   /// the new class with the modified type comes from
   982   /// the original class by using the ::
   983   /// operator. In the case of \ref DijkstraWizard only
   984   /// a function have to be called and it will
   985   /// return the needed class.
   986   ///
   987   /// It does not have own \ref run method. When its \ref run method is called
   988   /// it initiates a plain \ref Dijkstra class, and calls the \ref 
   989   /// Dijkstra::run method of it.
   990   template<class TR>
   991   class DijkstraWizard : public TR
   992   {
   993     typedef TR Base;
   994 
   995     ///The type of the underlying graph.
   996     typedef typename TR::Graph Graph;
   997     //\e
   998     typedef typename Graph::Node Node;
   999     //\e
  1000     typedef typename Graph::NodeIt NodeIt;
  1001     //\e
  1002     typedef typename Graph::Edge Edge;
  1003     //\e
  1004     typedef typename Graph::OutEdgeIt OutEdgeIt;
  1005     
  1006     ///The type of the map that stores the edge lengths.
  1007     typedef typename TR::LengthMap LengthMap;
  1008     ///The type of the length of the edges.
  1009     typedef typename LengthMap::Value Value;
  1010     ///\brief The type of the map that stores the last
  1011     ///edges of the shortest paths.
  1012     typedef typename TR::PredMap PredMap;
  1013     ///The type of the map that stores the dists of the nodes.
  1014     typedef typename TR::DistMap DistMap;
  1015     ///The heap type used by the dijkstra algorithm.
  1016     typedef typename TR::Heap Heap;
  1017 public:
  1018     /// Constructor.
  1019     DijkstraWizard() : TR() {}
  1020 
  1021     /// Constructor that requires parameters.
  1022 
  1023     /// Constructor that requires parameters.
  1024     /// These parameters will be the default values for the traits class.
  1025     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
  1026       TR(g,l,s) {}
  1027 
  1028     ///Copy constructor
  1029     DijkstraWizard(const TR &b) : TR(b) {}
  1030 
  1031     ~DijkstraWizard() {}
  1032 
  1033     ///Runs Dijkstra algorithm from a given node.
  1034     
  1035     ///Runs Dijkstra algorithm from a given node.
  1036     ///The node can be given by the \ref source function.
  1037     void run()
  1038     {
  1039       if(Base::_source==INVALID) throw UninitializedParameter();
  1040       Dijkstra<Graph,LengthMap,TR> 
  1041 	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
  1042       if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
  1043       if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
  1044       dij.run(Base::_source);
  1045     }
  1046 
  1047     ///Runs Dijkstra algorithm from the given node.
  1048 
  1049     ///Runs Dijkstra algorithm from the given node.
  1050     ///\param s is the given source.
  1051     void run(Node s)
  1052     {
  1053       Base::_source=s;
  1054       run();
  1055     }
  1056 
  1057     template<class T>
  1058     struct DefPredMapBase : public Base {
  1059       typedef T PredMap;
  1060       static PredMap *createPredMap(const Graph &) { return 0; };
  1061       DefPredMapBase(const TR &b) : TR(b) {}
  1062     };
  1063     
  1064     ///\brief \ref named-templ-param "Named parameter"
  1065     ///function for setting PredMap type
  1066     ///
  1067     /// \ref named-templ-param "Named parameter"
  1068     ///function for setting PredMap type
  1069     ///
  1070     template<class T>
  1071     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
  1072     {
  1073       Base::_pred=(void *)&t;
  1074       return DijkstraWizard<DefPredMapBase<T> >(*this);
  1075     }
  1076     
  1077     template<class T>
  1078     struct DefDistMapBase : public Base {
  1079       typedef T DistMap;
  1080       static DistMap *createDistMap(const Graph &) { return 0; };
  1081       DefDistMapBase(const TR &b) : TR(b) {}
  1082     };
  1083     
  1084     ///\brief \ref named-templ-param "Named parameter"
  1085     ///function for setting DistMap type
  1086     ///
  1087     /// \ref named-templ-param "Named parameter"
  1088     ///function for setting DistMap type
  1089     ///
  1090     template<class T>
  1091     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
  1092     {
  1093       Base::_dist=(void *)&t;
  1094       return DijkstraWizard<DefDistMapBase<T> >(*this);
  1095     }
  1096     
  1097     /// Sets the source node, from which the Dijkstra algorithm runs.
  1098 
  1099     /// Sets the source node, from which the Dijkstra algorithm runs.
  1100     /// \param s is the source node.
  1101     DijkstraWizard<TR> &source(Node s) 
  1102     {
  1103       Base::_source=s;
  1104       return *this;
  1105     }
  1106     
  1107   };
  1108   
  1109   ///Function type interface for Dijkstra algorithm.
  1110 
  1111   /// \ingroup flowalgs
  1112   ///Function type interface for Dijkstra algorithm.
  1113   ///
  1114   ///This function also has several
  1115   ///\ref named-templ-func-param "named parameters",
  1116   ///they are declared as the members of class \ref DijkstraWizard.
  1117   ///The following
  1118   ///example shows how to use these parameters.
  1119   ///\code
  1120   ///  dijkstra(g,length,source).predMap(preds).run();
  1121   ///\endcode
  1122   ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1123   ///to the end of the parameter list.
  1124   ///\sa DijkstraWizard
  1125   ///\sa Dijkstra
  1126   template<class GR, class LM>
  1127   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1128   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
  1129   {
  1130     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
  1131   }
  1132 
  1133 } //END OF NAMESPACE LEMON
  1134 
  1135 #endif