lemon/bipartite_matching.h
author kpeter
Sun, 13 Jan 2008 10:26:55 +0000
changeset 2555 a84e52e99f57
parent 2550 f26368148b9c
permissions -rw-r--r--
Reimplemented MinMeanCycle to be much more efficient.
The new version implements Howard's algorithm instead of Karp's algorithm and
it is at least 10-20 times faster on all the 40-50 random graphs we have tested.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_BIPARTITE_MATCHING
    20 #define LEMON_BIPARTITE_MATCHING
    21 
    22 #include <functional>
    23 
    24 #include <lemon/bin_heap.h>
    25 #include <lemon/maps.h>
    26 
    27 #include <iostream>
    28 
    29 ///\ingroup matching
    30 ///\file
    31 ///\brief Maximum matching algorithms in bipartite graphs.
    32 ///
    33 ///\note The pr_bipartite_matching.h file also contains algorithms to
    34 ///solve maximum cardinality bipartite matching problems.
    35 
    36 namespace lemon {
    37 
    38   /// \ingroup matching
    39   ///
    40   /// \brief Bipartite Max Cardinality Matching algorithm
    41   ///
    42   /// Bipartite Max Cardinality Matching algorithm. This class implements
    43   /// the Hopcroft-Karp algorithm which has \f$ O(e\sqrt{n}) \f$ time
    44   /// complexity.
    45   ///
    46   /// \note In several cases the push-relabel based algorithms have
    47   /// better runtime performance than the augmenting path based ones. 
    48   ///
    49   /// \see PrBipartiteMatching
    50   template <typename BpUGraph>
    51   class MaxBipartiteMatching {
    52   protected:
    53 
    54     typedef BpUGraph Graph;
    55 
    56     typedef typename Graph::Node Node;
    57     typedef typename Graph::ANodeIt ANodeIt;
    58     typedef typename Graph::BNodeIt BNodeIt;
    59     typedef typename Graph::UEdge UEdge;
    60     typedef typename Graph::UEdgeIt UEdgeIt;
    61     typedef typename Graph::IncEdgeIt IncEdgeIt;
    62 
    63     typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
    64     typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
    65 
    66 
    67   public:
    68 
    69     /// \brief Constructor.
    70     ///
    71     /// Constructor of the algorithm. 
    72     MaxBipartiteMatching(const BpUGraph& graph) 
    73       : _matching(graph), _rmatching(graph), _reached(graph), _graph(&graph) {}
    74 
    75     /// \name Execution control
    76     /// The simplest way to execute the algorithm is to use
    77     /// one of the member functions called \c run().
    78     /// \n
    79     /// If you need more control on the execution,
    80     /// first you must call \ref init() or one alternative for it.
    81     /// Finally \ref start() will perform the matching computation or
    82     /// with step-by-step execution you can augment the solution.
    83 
    84     /// @{
    85 
    86     /// \brief Initalize the data structures.
    87     ///
    88     /// It initalizes the data structures and creates an empty matching.
    89     void init() {
    90       for (ANodeIt it(*_graph); it != INVALID; ++it) {
    91         _matching.set(it, INVALID);
    92       }
    93       for (BNodeIt it(*_graph); it != INVALID; ++it) {
    94         _rmatching.set(it, INVALID);
    95 	_reached.set(it, -1);
    96       }
    97       _size = 0;
    98       _phase = -1;
    99     }
   100 
   101     /// \brief Initalize the data structures.
   102     ///
   103     /// It initalizes the data structures and creates a greedy
   104     /// matching.  From this matching sometimes it is faster to get
   105     /// the matching than from the initial empty matching.
   106     void greedyInit() {
   107       _size = 0;
   108       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   109         _rmatching.set(it, INVALID);
   110 	_reached.set(it, 0);
   111       }
   112       for (ANodeIt it(*_graph); it != INVALID; ++it) {
   113         _matching[it] = INVALID;
   114         for (IncEdgeIt jt(*_graph, it); jt != INVALID; ++jt) {
   115           if (_rmatching[_graph->bNode(jt)] == INVALID) {
   116             _matching.set(it, jt);
   117 	    _rmatching.set(_graph->bNode(jt), jt);
   118 	    _reached.set(_graph->bNode(jt), -1);
   119             ++_size;
   120             break;
   121           }
   122         }
   123       }
   124       _phase = 0;
   125     }
   126 
   127     /// \brief Initalize the data structures with an initial matching.
   128     ///
   129     /// It initalizes the data structures with an initial matching.
   130     template <typename MatchingMap>
   131     void matchingInit(const MatchingMap& mm) {
   132       for (ANodeIt it(*_graph); it != INVALID; ++it) {
   133         _matching.set(it, INVALID);
   134       }
   135       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   136         _rmatching.set(it, INVALID);
   137 	_reached.set(it, 0);
   138       }
   139       _size = 0;
   140       for (UEdgeIt it(*_graph); it != INVALID; ++it) {
   141         if (mm[it]) {
   142           ++_size;
   143           _matching.set(_graph->aNode(it), it);
   144           _rmatching.set(_graph->bNode(it), it);
   145 	  _reached.set(it, 0);
   146         }
   147       }
   148       _phase = 0;
   149     }
   150 
   151     /// \brief Initalize the data structures with an initial matching.
   152     ///
   153     /// It initalizes the data structures with an initial matching.
   154     /// \return %True when the given map contains really a matching.
   155     template <typename MatchingMap>
   156     bool checkedMatchingInit(const MatchingMap& mm) {
   157       for (ANodeIt it(*_graph); it != INVALID; ++it) {
   158         _matching.set(it, INVALID);
   159       }
   160       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   161         _rmatching.set(it, INVALID);
   162 	_reached.set(it, 0);
   163       }
   164       _size = 0;
   165       for (UEdgeIt it(*_graph); it != INVALID; ++it) {
   166         if (mm[it]) {
   167           ++_size;
   168           if (_matching[_graph->aNode(it)] != INVALID) {
   169             return false;
   170           }
   171           _matching.set(_graph->aNode(it), it);
   172           if (_matching[_graph->bNode(it)] != INVALID) {
   173             return false;
   174           }
   175           _matching.set(_graph->bNode(it), it);
   176 	  _reached.set(_graph->bNode(it), -1);
   177         }
   178       }
   179       _phase = 0;
   180       return true;
   181     }
   182 
   183   private:
   184     
   185     bool _find_path(Node anode, int maxlevel,
   186 		    typename Graph::template BNodeMap<int>& level) {
   187       for (IncEdgeIt it(*_graph, anode); it != INVALID; ++it) {
   188 	Node bnode = _graph->bNode(it); 
   189 	if (level[bnode] == maxlevel) {
   190 	  level.set(bnode, -1);
   191 	  if (maxlevel == 0) {
   192 	    _matching.set(anode, it);
   193 	    _rmatching.set(bnode, it);
   194 	    return true;
   195 	  } else {
   196 	    Node nnode = _graph->aNode(_rmatching[bnode]);
   197 	    if (_find_path(nnode, maxlevel - 1, level)) {
   198 	      _matching.set(anode, it);
   199 	      _rmatching.set(bnode, it);
   200 	      return true;
   201 	    }
   202 	  }
   203 	}
   204       }
   205       return false;
   206     }
   207 
   208   public:
   209 
   210     /// \brief An augmenting phase of the Hopcroft-Karp algorithm
   211     ///
   212     /// It runs an augmenting phase of the Hopcroft-Karp
   213     /// algorithm. This phase finds maximal edge disjoint augmenting
   214     /// paths and augments on these paths. The algorithm consists at
   215     /// most of \f$ O(\sqrt{n}) \f$ phase and one phase is \f$ O(e)
   216     /// \f$ long.
   217     bool augment() {
   218 
   219       ++_phase;
   220       
   221       typename Graph::template BNodeMap<int> _level(*_graph, -1);
   222       typename Graph::template ANodeMap<bool> _found(*_graph, false);
   223 
   224       std::vector<Node> queue, aqueue;
   225       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   226         if (_rmatching[it] == INVALID) {
   227           queue.push_back(it);
   228           _reached.set(it, _phase);
   229 	  _level.set(it, 0);
   230         }
   231       }
   232 
   233       bool success = false;
   234 
   235       int level = 0;
   236       while (!success && !queue.empty()) {
   237         std::vector<Node> nqueue;
   238         for (int i = 0; i < int(queue.size()); ++i) {
   239           Node bnode = queue[i];
   240           for (IncEdgeIt jt(*_graph, bnode); jt != INVALID; ++jt) {
   241             Node anode = _graph->aNode(jt);
   242             if (_matching[anode] == INVALID) {
   243 
   244 	      if (!_found[anode]) {
   245 		if (_find_path(anode, level, _level)) {
   246 		  ++_size;
   247 		}
   248 		_found.set(anode, true);
   249 	      }
   250               success = true;
   251             } else {           
   252               Node nnode = _graph->bNode(_matching[anode]);
   253               if (_reached[nnode] != _phase) {
   254                 _reached.set(nnode, _phase);
   255                 nqueue.push_back(nnode);
   256 		_level.set(nnode, level + 1);
   257               }
   258             }
   259           }
   260         }
   261 	++level;
   262         queue.swap(nqueue);
   263       }
   264       
   265       return success;
   266     }
   267   private:
   268     
   269     void _find_path_bfs(Node anode,
   270 			typename Graph::template ANodeMap<UEdge>& pred) {
   271       while (true) {
   272 	UEdge uedge = pred[anode];
   273 	Node bnode = _graph->bNode(uedge);
   274 
   275 	UEdge nedge = _rmatching[bnode];
   276 
   277 	_matching.set(anode, uedge);
   278 	_rmatching.set(bnode, uedge);
   279 
   280 	if (nedge == INVALID) break;
   281 	anode = _graph->aNode(nedge);
   282       }
   283     }
   284 
   285   public:
   286 
   287     /// \brief An augmenting phase with single path augementing
   288     ///
   289     /// This phase finds only one augmenting paths and augments on
   290     /// these paths. The algorithm consists at most of \f$ O(n) \f$
   291     /// phase and one phase is \f$ O(e) \f$ long.
   292     bool simpleAugment() { 
   293       ++_phase;
   294       
   295       typename Graph::template ANodeMap<UEdge> _pred(*_graph);
   296 
   297       std::vector<Node> queue, aqueue;
   298       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   299         if (_rmatching[it] == INVALID) {
   300           queue.push_back(it);
   301           _reached.set(it, _phase);
   302         }
   303       }
   304 
   305       bool success = false;
   306 
   307       int level = 0;
   308       while (!success && !queue.empty()) {
   309         std::vector<Node> nqueue;
   310         for (int i = 0; i < int(queue.size()); ++i) {
   311           Node bnode = queue[i];
   312           for (IncEdgeIt jt(*_graph, bnode); jt != INVALID; ++jt) {
   313             Node anode = _graph->aNode(jt);
   314             if (_matching[anode] == INVALID) {
   315 	      _pred.set(anode, jt);
   316 	      _find_path_bfs(anode, _pred);
   317 	      ++_size;
   318 	      return true;
   319             } else {           
   320               Node nnode = _graph->bNode(_matching[anode]);
   321               if (_reached[nnode] != _phase) {
   322 		_pred.set(anode, jt);
   323 		_reached.set(nnode, _phase);
   324                 nqueue.push_back(nnode);
   325               }
   326             }
   327           }
   328         }
   329 	++level;
   330         queue.swap(nqueue);
   331       }
   332       
   333       return success;
   334     }
   335 
   336 
   337 
   338     /// \brief Starts the algorithm.
   339     ///
   340     /// Starts the algorithm. It runs augmenting phases until the optimal
   341     /// solution reached.
   342     void start() {
   343       while (augment()) {}
   344     }
   345 
   346     /// \brief Runs the algorithm.
   347     ///
   348     /// It just initalize the algorithm and then start it.
   349     void run() {
   350       greedyInit();
   351       start();
   352     }
   353 
   354     /// @}
   355 
   356     /// \name Query Functions
   357     /// The result of the %Matching algorithm can be obtained using these
   358     /// functions.\n
   359     /// Before the use of these functions,
   360     /// either run() or start() must be called.
   361     
   362     ///@{
   363 
   364     /// \brief Return true if the given uedge is in the matching.
   365     /// 
   366     /// It returns true if the given uedge is in the matching.
   367     bool matchingEdge(const UEdge& edge) const {
   368       return _matching[_graph->aNode(edge)] == edge;
   369     }
   370 
   371     /// \brief Returns the matching edge from the node.
   372     /// 
   373     /// Returns the matching edge from the node. If there is not such
   374     /// edge it gives back \c INVALID.
   375     /// \note If the parameter node is a B-node then the running time is
   376     /// propotional to the degree of the node.
   377     UEdge matchingEdge(const Node& node) const {
   378       if (_graph->aNode(node)) {
   379         return _matching[node];
   380       } else {
   381         return _rmatching[node];
   382       }
   383     }
   384 
   385     /// \brief Set true all matching uedge in the map.
   386     /// 
   387     /// Set true all matching uedge in the map. It does not change the
   388     /// value mapped to the other uedges.
   389     /// \return The number of the matching edges.
   390     template <typename MatchingMap>
   391     int quickMatching(MatchingMap& mm) const {
   392       for (ANodeIt it(*_graph); it != INVALID; ++it) {
   393         if (_matching[it] != INVALID) {
   394           mm.set(_matching[it], true);
   395         }
   396       }
   397       return _size;
   398     }
   399 
   400     /// \brief Set true all matching uedge in the map and the others to false.
   401     /// 
   402     /// Set true all matching uedge in the map and the others to false.
   403     /// \return The number of the matching edges.
   404     template <typename MatchingMap>
   405     int matching(MatchingMap& mm) const {
   406       for (UEdgeIt it(*_graph); it != INVALID; ++it) {
   407         mm.set(it, it == _matching[_graph->aNode(it)]);
   408       }
   409       return _size;
   410     }
   411 
   412     ///Gives back the matching in an ANodeMap.
   413 
   414     ///Gives back the matching in an ANodeMap. The parameter should
   415     ///be a write ANodeMap of UEdge values.
   416     ///\return The number of the matching edges.
   417     template<class MatchingMap>
   418     int aMatching(MatchingMap& mm) const {
   419       for (ANodeIt it(*_graph); it != INVALID; ++it) {
   420         mm.set(it, _matching[it]);
   421       }
   422       return _size;
   423     }
   424 
   425     ///Gives back the matching in a BNodeMap.
   426 
   427     ///Gives back the matching in a BNodeMap. The parameter should
   428     ///be a write BNodeMap of UEdge values.
   429     ///\return The number of the matching edges.
   430     template<class MatchingMap>
   431     int bMatching(MatchingMap& mm) const {
   432       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   433         mm.set(it, _rmatching[it]);
   434       }
   435       return _size;
   436     }
   437 
   438     /// \brief Returns a minimum covering of the nodes.
   439     ///
   440     /// The minimum covering set problem is the dual solution of the
   441     /// maximum bipartite matching. It provides a solution for this
   442     /// problem what is proof of the optimality of the matching.
   443     /// \return The size of the cover set.
   444     template <typename CoverMap>
   445     int coverSet(CoverMap& covering) const {
   446 
   447       int size = 0;
   448       for (ANodeIt it(*_graph); it != INVALID; ++it) {
   449 	bool cn = _matching[it] != INVALID && 
   450 	  _reached[_graph->bNode(_matching[it])] == _phase;
   451         covering.set(it, cn);
   452         if (cn) ++size;
   453       }
   454       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   455 	bool cn = _reached[it] != _phase;
   456         covering.set(it, cn);
   457         if (cn) ++size;
   458       }
   459       return size;
   460     }
   461 
   462     /// \brief Gives back a barrier on the A-nodes
   463     ///    
   464     /// The barrier is s subset of the nodes on the same side of the
   465     /// graph, which size minus its neighbours is exactly the
   466     /// unmatched nodes on the A-side.  
   467     /// \retval barrier A WriteMap on the ANodes with bool value.
   468     template <typename BarrierMap>
   469     void aBarrier(BarrierMap& barrier) const {
   470 
   471       for (ANodeIt it(*_graph); it != INVALID; ++it) {
   472         barrier.set(it, _matching[it] == INVALID || 
   473 		    _reached[_graph->bNode(_matching[it])] != _phase);
   474       }
   475     }
   476 
   477     /// \brief Gives back a barrier on the B-nodes
   478     ///    
   479     /// The barrier is s subset of the nodes on the same side of the
   480     /// graph, which size minus its neighbours is exactly the
   481     /// unmatched nodes on the B-side.  
   482     /// \retval barrier A WriteMap on the BNodes with bool value.
   483     template <typename BarrierMap>
   484     void bBarrier(BarrierMap& barrier) const {
   485 
   486       for (BNodeIt it(*_graph); it != INVALID; ++it) {
   487         barrier.set(it, _reached[it] == _phase);
   488       }
   489     }
   490 
   491     /// \brief Gives back the number of the matching edges.
   492     ///
   493     /// Gives back the number of the matching edges.
   494     int matchingSize() const {
   495       return _size;
   496     }
   497 
   498     /// @}
   499 
   500   private:
   501 
   502     typename BpUGraph::template ANodeMap<UEdge> _matching;
   503     typename BpUGraph::template BNodeMap<UEdge> _rmatching;
   504 
   505     typename BpUGraph::template BNodeMap<int> _reached;
   506 
   507     int _phase;
   508     const Graph *_graph;
   509 
   510     int _size;
   511   
   512   };
   513 
   514   /// \ingroup matching
   515   ///
   516   /// \brief Maximum cardinality bipartite matching
   517   ///
   518   /// This function calculates the maximum cardinality matching
   519   /// in a bipartite graph. It gives back the matching in an undirected
   520   /// edge map.
   521   ///
   522   /// \param graph The bipartite graph.
   523   /// \return The size of the matching.
   524   template <typename BpUGraph>
   525   int maxBipartiteMatching(const BpUGraph& graph) {
   526     MaxBipartiteMatching<BpUGraph> bpmatching(graph);
   527     bpmatching.run();
   528     return bpmatching.matchingSize();
   529   }
   530 
   531   /// \ingroup matching
   532   ///
   533   /// \brief Maximum cardinality bipartite matching
   534   ///
   535   /// This function calculates the maximum cardinality matching
   536   /// in a bipartite graph. It gives back the matching in an undirected
   537   /// edge map.
   538   ///
   539   /// \param graph The bipartite graph.
   540   /// \retval matching The ANodeMap of UEdges which will be set to covered
   541   /// matching undirected edge.
   542   /// \return The size of the matching.
   543   template <typename BpUGraph, typename MatchingMap>
   544   int maxBipartiteMatching(const BpUGraph& graph, MatchingMap& matching) {
   545     MaxBipartiteMatching<BpUGraph> bpmatching(graph);
   546     bpmatching.run();
   547     bpmatching.aMatching(matching);
   548     return bpmatching.matchingSize();
   549   }
   550 
   551   /// \ingroup matching
   552   ///
   553   /// \brief Maximum cardinality bipartite matching
   554   ///
   555   /// This function calculates the maximum cardinality matching
   556   /// in a bipartite graph. It gives back the matching in an undirected
   557   /// edge map.
   558   ///
   559   /// \param graph The bipartite graph.
   560   /// \retval matching The ANodeMap of UEdges which will be set to covered
   561   /// matching undirected edge.
   562   /// \retval barrier The BNodeMap of bools which will be set to a barrier
   563   /// of the BNode-set.
   564   /// \return The size of the matching.
   565   template <typename BpUGraph, typename MatchingMap, typename BarrierMap>
   566   int maxBipartiteMatching(const BpUGraph& graph, 
   567 			   MatchingMap& matching, BarrierMap& barrier) {
   568     MaxBipartiteMatching<BpUGraph> bpmatching(graph);
   569     bpmatching.run();
   570     bpmatching.aMatching(matching);
   571     bpmatching.bBarrier(barrier);
   572     return bpmatching.matchingSize();
   573   }
   574 
   575   /// \brief Default traits class for weighted bipartite matching algoritms.
   576   ///
   577   /// Default traits class for weighted bipartite matching algoritms.
   578   /// \param _BpUGraph The bipartite undirected graph type.
   579   /// \param _WeightMap Type of weight map.
   580   template <typename _BpUGraph, typename _WeightMap>
   581   struct MaxWeightedBipartiteMatchingDefaultTraits {
   582     /// \brief The type of the weight of the undirected edges.
   583     typedef typename _WeightMap::Value Value;
   584 
   585     /// The undirected bipartite graph type the algorithm runs on. 
   586     typedef _BpUGraph BpUGraph;
   587 
   588     /// The map of the edges weights
   589     typedef _WeightMap WeightMap;
   590 
   591     /// \brief The cross reference type used by heap.
   592     ///
   593     /// The cross reference type used by heap.
   594     /// Usually it is \c Graph::ANodeMap<int>.
   595     typedef typename BpUGraph::template ANodeMap<int> HeapCrossRef;
   596 
   597     /// \brief Instantiates a HeapCrossRef.
   598     ///
   599     /// This function instantiates a \ref HeapCrossRef. 
   600     /// \param graph is the graph, to which we would like to define the 
   601     /// HeapCrossRef.
   602     static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
   603       return new HeapCrossRef(graph);
   604     }
   605     
   606     /// \brief The heap type used by weighted matching algorithms.
   607     ///
   608     /// The heap type used by weighted matching algorithms. It should
   609     /// minimize the priorities and the heap's key type is the graph's
   610     /// anode graph's node.
   611     ///
   612     /// \sa BinHeap
   613     typedef BinHeap<Value, HeapCrossRef> Heap;
   614     
   615     /// \brief Instantiates a Heap.
   616     ///
   617     /// This function instantiates a \ref Heap. 
   618     /// \param crossref The cross reference of the heap.
   619     static Heap *createHeap(HeapCrossRef& crossref) {
   620       return new Heap(crossref);
   621     }
   622 
   623   };
   624 
   625 
   626   /// \ingroup matching
   627   ///
   628   /// \brief Bipartite Max Weighted Matching algorithm
   629   ///
   630   /// This class implements the bipartite Max Weighted Matching
   631   /// algorithm.  It uses the successive shortest path algorithm to
   632   /// calculate the maximum weighted matching in the bipartite
   633   /// graph. The algorithm can be used also to calculate the maximum
   634   /// cardinality maximum weighted matching. The time complexity
   635   /// of the algorithm is \f$ O(ne\log(n)) \f$ with the default binary
   636   /// heap implementation but this can be improved to 
   637   /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
   638   ///
   639   /// The algorithm also provides a potential function on the nodes
   640   /// which a dual solution of the matching algorithm and it can be
   641   /// used to proof the optimality of the given pimal solution.
   642 #ifdef DOXYGEN
   643   template <typename _BpUGraph, typename _WeightMap, typename _Traits>
   644 #else
   645   template <typename _BpUGraph, 
   646             typename _WeightMap = typename _BpUGraph::template UEdgeMap<int>,
   647             typename _Traits = 
   648 	    MaxWeightedBipartiteMatchingDefaultTraits<_BpUGraph, _WeightMap> >
   649 #endif
   650   class MaxWeightedBipartiteMatching {
   651   public:
   652 
   653     typedef _Traits Traits;
   654     typedef typename Traits::BpUGraph BpUGraph;
   655     typedef typename Traits::WeightMap WeightMap;
   656     typedef typename Traits::Value Value;
   657 
   658   protected:
   659 
   660     typedef typename Traits::HeapCrossRef HeapCrossRef;
   661     typedef typename Traits::Heap Heap; 
   662 
   663     
   664     typedef typename BpUGraph::Node Node;
   665     typedef typename BpUGraph::ANodeIt ANodeIt;
   666     typedef typename BpUGraph::BNodeIt BNodeIt;
   667     typedef typename BpUGraph::UEdge UEdge;
   668     typedef typename BpUGraph::UEdgeIt UEdgeIt;
   669     typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
   670 
   671     typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
   672     typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
   673 
   674     typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
   675     typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
   676 
   677 
   678   public:
   679 
   680     /// \brief \ref Exception for uninitialized parameters.
   681     ///
   682     /// This error represents problems in the initialization
   683     /// of the parameters of the algorithms.
   684     class UninitializedParameter : public lemon::UninitializedParameter {
   685     public:
   686       virtual const char* what() const throw() {
   687 	return "lemon::MaxWeightedBipartiteMatching::UninitializedParameter";
   688       }
   689     };
   690 
   691     ///\name Named template parameters
   692 
   693     ///@{
   694 
   695     template <class H, class CR>
   696     struct DefHeapTraits : public Traits {
   697       typedef CR HeapCrossRef;
   698       typedef H Heap;
   699       static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
   700 	throw UninitializedParameter();
   701       }
   702       static Heap *createHeap(HeapCrossRef &) {
   703 	throw UninitializedParameter();
   704       }
   705     };
   706 
   707     /// \brief \ref named-templ-param "Named parameter" for setting heap 
   708     /// and cross reference type
   709     ///
   710     /// \ref named-templ-param "Named parameter" for setting heap and cross 
   711     /// reference type
   712     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
   713     struct DefHeap
   714       : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   715                                             DefHeapTraits<H, CR> > { 
   716       typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   717                                            DefHeapTraits<H, CR> > Create;
   718     };
   719 
   720     template <class H, class CR>
   721     struct DefStandardHeapTraits : public Traits {
   722       typedef CR HeapCrossRef;
   723       typedef H Heap;
   724       static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
   725 	return new HeapCrossRef(graph);
   726       }
   727       static Heap *createHeap(HeapCrossRef &crossref) {
   728 	return new Heap(crossref);
   729       }
   730     };
   731 
   732     /// \brief \ref named-templ-param "Named parameter" for setting heap and 
   733     /// cross reference type with automatic allocation
   734     ///
   735     /// \ref named-templ-param "Named parameter" for setting heap and cross 
   736     /// reference type. It can allocate the heap and the cross reference 
   737     /// object if the cross reference's constructor waits for the graph as 
   738     /// parameter and the heap's constructor waits for the cross reference.
   739     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
   740     struct DefStandardHeap
   741       : public MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   742                                             DefStandardHeapTraits<H, CR> > { 
   743       typedef MaxWeightedBipartiteMatching<BpUGraph, WeightMap, 
   744                                            DefStandardHeapTraits<H, CR> > 
   745       Create;
   746     };
   747 
   748     ///@}
   749 
   750 
   751     /// \brief Constructor.
   752     ///
   753     /// Constructor of the algorithm. 
   754     MaxWeightedBipartiteMatching(const BpUGraph& _graph, 
   755                                  const WeightMap& _weight) 
   756       : graph(&_graph), weight(&_weight),
   757         anode_matching(_graph), bnode_matching(_graph),
   758         anode_potential(_graph), bnode_potential(_graph),
   759         _heap_cross_ref(0), local_heap_cross_ref(false),
   760         _heap(0), local_heap(0) {}
   761 
   762     /// \brief Destructor.
   763     ///
   764     /// Destructor of the algorithm.
   765     ~MaxWeightedBipartiteMatching() {
   766       destroyStructures();
   767     }
   768 
   769     /// \brief Sets the heap and the cross reference used by algorithm.
   770     ///
   771     /// Sets the heap and the cross reference used by algorithm.
   772     /// If you don't use this function before calling \ref run(),
   773     /// it will allocate one. The destuctor deallocates this
   774     /// automatically allocated map, of course.
   775     /// \return \c (*this)
   776     MaxWeightedBipartiteMatching& heap(Heap& hp, HeapCrossRef &cr) {
   777       if(local_heap_cross_ref) {
   778 	delete _heap_cross_ref;
   779 	local_heap_cross_ref = false;
   780       }
   781       _heap_cross_ref = &cr;
   782       if(local_heap) {
   783 	delete _heap;
   784 	local_heap = false;
   785       }
   786       _heap = &hp;
   787       return *this;
   788     }
   789 
   790     /// \name Execution control
   791     /// The simplest way to execute the algorithm is to use
   792     /// one of the member functions called \c run().
   793     /// \n
   794     /// If you need more control on the execution,
   795     /// first you must call \ref init() or one alternative for it.
   796     /// Finally \ref start() will perform the matching computation or
   797     /// with step-by-step execution you can augment the solution.
   798 
   799     /// @{
   800 
   801     /// \brief Initalize the data structures.
   802     ///
   803     /// It initalizes the data structures and creates an empty matching.
   804     void init() {
   805       initStructures();
   806       for (ANodeIt it(*graph); it != INVALID; ++it) {
   807         anode_matching[it] = INVALID;
   808         anode_potential[it] = 0;
   809       }
   810       for (BNodeIt it(*graph); it != INVALID; ++it) {
   811         bnode_matching[it] = INVALID;
   812         bnode_potential[it] = 0;
   813         for (IncEdgeIt jt(*graph, it); jt != INVALID; ++jt) {
   814           if ((*weight)[jt] > bnode_potential[it]) {
   815             bnode_potential[it] = (*weight)[jt];
   816           }
   817         }
   818       }
   819       matching_value = 0;
   820       matching_size = 0;
   821     }
   822 
   823 
   824     /// \brief An augmenting phase of the weighted matching algorithm
   825     ///
   826     /// It runs an augmenting phase of the weighted matching 
   827     /// algorithm. This phase finds the best augmenting path and 
   828     /// augments only on this paths. 
   829     ///
   830     /// The algorithm consists at most 
   831     /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ 
   832     /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long 
   833     /// with binary heap.
   834     /// \param decrease If the given parameter true the matching value
   835     /// can be decreased in the augmenting phase. If we would like
   836     /// to calculate the maximum cardinality maximum weighted matching
   837     /// then we should let the algorithm to decrease the matching
   838     /// value in order to increase the number of the matching edges.
   839     bool augment(bool decrease = false) {
   840 
   841       typename BpUGraph::template BNodeMap<Value> bdist(*graph);
   842       typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
   843 
   844       Node bestNode = INVALID;
   845       Value bestValue = 0;
   846 
   847       _heap->clear();
   848       for (ANodeIt it(*graph); it != INVALID; ++it) {
   849         (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
   850       }
   851 
   852       for (ANodeIt it(*graph); it != INVALID; ++it) {
   853         if (anode_matching[it] == INVALID) {
   854           _heap->push(it, 0);
   855         }
   856       }
   857 
   858       Value bdistMax = 0;
   859       while (!_heap->empty()) {
   860         Node anode = _heap->top();
   861         Value avalue = _heap->prio();
   862         _heap->pop();
   863         for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
   864           if (jt == anode_matching[anode]) continue;
   865           Node bnode = graph->bNode(jt);
   866           Value bvalue = avalue  - (*weight)[jt] +
   867             anode_potential[anode] + bnode_potential[bnode];
   868           if (bvalue > bdistMax) {
   869             bdistMax = bvalue;
   870           }
   871           if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
   872             bdist[bnode] = bvalue;
   873             bpred[bnode] = jt;
   874           } else continue;
   875           if (bnode_matching[bnode] != INVALID) {
   876             Node newanode = graph->aNode(bnode_matching[bnode]);
   877             switch (_heap->state(newanode)) {
   878             case Heap::PRE_HEAP:
   879               _heap->push(newanode, bvalue);
   880               break;
   881             case Heap::IN_HEAP:
   882               if (bvalue < (*_heap)[newanode]) {
   883                 _heap->decrease(newanode, bvalue);
   884               }
   885               break;
   886             case Heap::POST_HEAP:
   887               break;
   888             }
   889           } else {
   890             if (bestNode == INVALID || 
   891                 bnode_potential[bnode] - bvalue > bestValue) {
   892               bestValue = bnode_potential[bnode] - bvalue;
   893               bestNode = bnode;
   894             }
   895           }
   896         }
   897       }
   898 
   899       if (bestNode == INVALID || (!decrease && bestValue < 0)) {
   900         return false;
   901       }
   902 
   903       matching_value += bestValue;
   904       ++matching_size;
   905 
   906       for (BNodeIt it(*graph); it != INVALID; ++it) {
   907         if (bpred[it] != INVALID) {
   908           bnode_potential[it] -= bdist[it];
   909         } else {
   910           bnode_potential[it] -= bdistMax;
   911         }
   912       }
   913       for (ANodeIt it(*graph); it != INVALID; ++it) {
   914         if (anode_matching[it] != INVALID) {
   915           Node bnode = graph->bNode(anode_matching[it]);
   916           if (bpred[bnode] != INVALID) {
   917             anode_potential[it] += bdist[bnode];
   918           } else {
   919             anode_potential[it] += bdistMax;
   920           }
   921         }
   922       }
   923 
   924       while (bestNode != INVALID) {
   925         UEdge uedge = bpred[bestNode];
   926         Node anode = graph->aNode(uedge);
   927         
   928         bnode_matching[bestNode] = uedge;
   929         if (anode_matching[anode] != INVALID) {
   930           bestNode = graph->bNode(anode_matching[anode]);
   931         } else {
   932           bestNode = INVALID;
   933         }
   934         anode_matching[anode] = uedge;
   935       }
   936 
   937 
   938       return true;
   939     }
   940 
   941     /// \brief Starts the algorithm.
   942     ///
   943     /// Starts the algorithm. It runs augmenting phases until the
   944     /// optimal solution reached.
   945     ///
   946     /// \param maxCardinality If the given value is true it will
   947     /// calculate the maximum cardinality maximum matching instead of
   948     /// the maximum matching.
   949     void start(bool maxCardinality = false) {
   950       while (augment(maxCardinality)) {}
   951     }
   952 
   953     /// \brief Runs the algorithm.
   954     ///
   955     /// It just initalize the algorithm and then start it.
   956     ///
   957     /// \param maxCardinality If the given value is true it will
   958     /// calculate the maximum cardinality maximum matching instead of
   959     /// the maximum matching.
   960     void run(bool maxCardinality = false) {
   961       init();
   962       start(maxCardinality);
   963     }
   964 
   965     /// @}
   966 
   967     /// \name Query Functions
   968     /// The result of the %Matching algorithm can be obtained using these
   969     /// functions.\n
   970     /// Before the use of these functions,
   971     /// either run() or start() must be called.
   972     
   973     ///@{
   974 
   975     /// \brief Gives back the potential in the NodeMap
   976     ///
   977     /// Gives back the potential in the NodeMap. The matching is optimal
   978     /// with the current number of edges if \f$ \pi(a) + \pi(b) - w(ab) = 0 \f$
   979     /// for each matching edges and \f$ \pi(a) + \pi(b) - w(ab) \ge 0 \f$
   980     /// for each edges. 
   981     template <typename PotentialMap>
   982     void potential(PotentialMap& pt) const {
   983       for (ANodeIt it(*graph); it != INVALID; ++it) {
   984         pt.set(it, anode_potential[it]);
   985       }
   986       for (BNodeIt it(*graph); it != INVALID; ++it) {
   987         pt.set(it, bnode_potential[it]);
   988       }
   989     }
   990 
   991     /// \brief Set true all matching uedge in the map.
   992     /// 
   993     /// Set true all matching uedge in the map. It does not change the
   994     /// value mapped to the other uedges.
   995     /// \return The number of the matching edges.
   996     template <typename MatchingMap>
   997     int quickMatching(MatchingMap& mm) const {
   998       for (ANodeIt it(*graph); it != INVALID; ++it) {
   999         if (anode_matching[it] != INVALID) {
  1000           mm.set(anode_matching[it], true);
  1001         }
  1002       }
  1003       return matching_size;
  1004     }
  1005 
  1006     /// \brief Set true all matching uedge in the map and the others to false.
  1007     /// 
  1008     /// Set true all matching uedge in the map and the others to false.
  1009     /// \return The number of the matching edges.
  1010     template <typename MatchingMap>
  1011     int matching(MatchingMap& mm) const {
  1012       for (UEdgeIt it(*graph); it != INVALID; ++it) {
  1013         mm.set(it, it == anode_matching[graph->aNode(it)]);
  1014       }
  1015       return matching_size;
  1016     }
  1017 
  1018     ///Gives back the matching in an ANodeMap.
  1019 
  1020     ///Gives back the matching in an ANodeMap. The parameter should
  1021     ///be a write ANodeMap of UEdge values.
  1022     ///\return The number of the matching edges.
  1023     template<class MatchingMap>
  1024     int aMatching(MatchingMap& mm) const {
  1025       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1026         mm.set(it, anode_matching[it]);
  1027       }
  1028       return matching_size;
  1029     }
  1030 
  1031     ///Gives back the matching in a BNodeMap.
  1032 
  1033     ///Gives back the matching in a BNodeMap. The parameter should
  1034     ///be a write BNodeMap of UEdge values.
  1035     ///\return The number of the matching edges.
  1036     template<class MatchingMap>
  1037     int bMatching(MatchingMap& mm) const {
  1038       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1039         mm.set(it, bnode_matching[it]);
  1040       }
  1041       return matching_size;
  1042     }
  1043 
  1044 
  1045     /// \brief Return true if the given uedge is in the matching.
  1046     /// 
  1047     /// It returns true if the given uedge is in the matching.
  1048     bool matchingEdge(const UEdge& edge) const {
  1049       return anode_matching[graph->aNode(edge)] == edge;
  1050     }
  1051 
  1052     /// \brief Returns the matching edge from the node.
  1053     /// 
  1054     /// Returns the matching edge from the node. If there is not such
  1055     /// edge it gives back \c INVALID.
  1056     UEdge matchingEdge(const Node& node) const {
  1057       if (graph->aNode(node)) {
  1058         return anode_matching[node];
  1059       } else {
  1060         return bnode_matching[node];
  1061       }
  1062     }
  1063 
  1064     /// \brief Gives back the sum of weights of the matching edges.
  1065     ///
  1066     /// Gives back the sum of weights of the matching edges.
  1067     Value matchingValue() const {
  1068       return matching_value;
  1069     }
  1070 
  1071     /// \brief Gives back the number of the matching edges.
  1072     ///
  1073     /// Gives back the number of the matching edges.
  1074     int matchingSize() const {
  1075       return matching_size;
  1076     }
  1077 
  1078     /// @}
  1079 
  1080   private:
  1081 
  1082     void initStructures() {
  1083       if (!_heap_cross_ref) {
  1084 	local_heap_cross_ref = true;
  1085 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
  1086       }
  1087       if (!_heap) {
  1088 	local_heap = true;
  1089 	_heap = Traits::createHeap(*_heap_cross_ref);
  1090       }
  1091     }
  1092 
  1093     void destroyStructures() {
  1094       if (local_heap_cross_ref) delete _heap_cross_ref;
  1095       if (local_heap) delete _heap;
  1096     }
  1097 
  1098 
  1099   private:
  1100     
  1101     const BpUGraph *graph;
  1102     const WeightMap* weight;
  1103 
  1104     ANodeMatchingMap anode_matching;
  1105     BNodeMatchingMap bnode_matching;
  1106 
  1107     ANodePotentialMap anode_potential;
  1108     BNodePotentialMap bnode_potential;
  1109 
  1110     Value matching_value;
  1111     int matching_size;
  1112 
  1113     HeapCrossRef *_heap_cross_ref;
  1114     bool local_heap_cross_ref;
  1115 
  1116     Heap *_heap;
  1117     bool local_heap;
  1118   
  1119   };
  1120 
  1121   /// \ingroup matching
  1122   ///
  1123   /// \brief Maximum weighted bipartite matching
  1124   ///
  1125   /// This function calculates the maximum weighted matching
  1126   /// in a bipartite graph. It gives back the matching in an undirected
  1127   /// edge map.
  1128   ///
  1129   /// \param graph The bipartite graph.
  1130   /// \param weight The undirected edge map which contains the weights.
  1131   /// \retval matching The undirected edge map which will be set to 
  1132   /// the matching.
  1133   /// \return The value of the matching.
  1134   template <typename BpUGraph, typename WeightMap, typename MatchingMap>
  1135   typename WeightMap::Value 
  1136   maxWeightedBipartiteMatching(const BpUGraph& graph, const WeightMap& weight,
  1137                                MatchingMap& matching) {
  1138     MaxWeightedBipartiteMatching<BpUGraph, WeightMap> 
  1139       bpmatching(graph, weight);
  1140     bpmatching.run();
  1141     bpmatching.matching(matching);
  1142     return bpmatching.matchingValue();
  1143   }
  1144 
  1145   /// \ingroup matching
  1146   ///
  1147   /// \brief Maximum weighted maximum cardinality bipartite matching
  1148   ///
  1149   /// This function calculates the maximum weighted of the maximum cardinality
  1150   /// matchings of a bipartite graph. It gives back the matching in an 
  1151   /// undirected edge map.
  1152   ///
  1153   /// \param graph The bipartite graph.
  1154   /// \param weight The undirected edge map which contains the weights.
  1155   /// \retval matching The undirected edge map which will be set to 
  1156   /// the matching.
  1157   /// \return The value of the matching.
  1158   template <typename BpUGraph, typename WeightMap, typename MatchingMap>
  1159   typename WeightMap::Value 
  1160   maxWeightedMaxBipartiteMatching(const BpUGraph& graph, 
  1161                                   const WeightMap& weight,
  1162                                   MatchingMap& matching) {
  1163     MaxWeightedBipartiteMatching<BpUGraph, WeightMap> 
  1164       bpmatching(graph, weight);
  1165     bpmatching.run(true);
  1166     bpmatching.matching(matching);
  1167     return bpmatching.matchingValue();
  1168   }
  1169 
  1170   /// \brief Default traits class for minimum cost bipartite matching
  1171   /// algoritms.
  1172   ///
  1173   /// Default traits class for minimum cost bipartite matching
  1174   /// algoritms.  
  1175   ///
  1176   /// \param _BpUGraph The bipartite undirected graph
  1177   /// type.  
  1178   ///
  1179   /// \param _CostMap Type of cost map.
  1180   template <typename _BpUGraph, typename _CostMap>
  1181   struct MinCostMaxBipartiteMatchingDefaultTraits {
  1182     /// \brief The type of the cost of the undirected edges.
  1183     typedef typename _CostMap::Value Value;
  1184 
  1185     /// The undirected bipartite graph type the algorithm runs on. 
  1186     typedef _BpUGraph BpUGraph;
  1187 
  1188     /// The map of the edges costs
  1189     typedef _CostMap CostMap;
  1190 
  1191     /// \brief The cross reference type used by heap.
  1192     ///
  1193     /// The cross reference type used by heap.
  1194     /// Usually it is \c Graph::NodeMap<int>.
  1195     typedef typename BpUGraph::template NodeMap<int> HeapCrossRef;
  1196 
  1197     /// \brief Instantiates a HeapCrossRef.
  1198     ///
  1199     /// This function instantiates a \ref HeapCrossRef. 
  1200     /// \param graph is the graph, to which we would like to define the 
  1201     /// HeapCrossRef.
  1202     static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
  1203       return new HeapCrossRef(graph);
  1204     }
  1205     
  1206     /// \brief The heap type used by costed matching algorithms.
  1207     ///
  1208     /// The heap type used by costed matching algorithms. It should
  1209     /// minimize the priorities and the heap's key type is the graph's
  1210     /// anode graph's node.
  1211     ///
  1212     /// \sa BinHeap
  1213     typedef BinHeap<Value, HeapCrossRef> Heap;
  1214     
  1215     /// \brief Instantiates a Heap.
  1216     ///
  1217     /// This function instantiates a \ref Heap. 
  1218     /// \param crossref The cross reference of the heap.
  1219     static Heap *createHeap(HeapCrossRef& crossref) {
  1220       return new Heap(crossref);
  1221     }
  1222 
  1223   };
  1224 
  1225 
  1226   /// \ingroup matching
  1227   ///
  1228   /// \brief Bipartite Min Cost Matching algorithm
  1229   ///
  1230   /// This class implements the bipartite Min Cost Matching algorithm.
  1231   /// It uses the successive shortest path algorithm to calculate the
  1232   /// minimum cost maximum matching in the bipartite graph. The time
  1233   /// complexity of the algorithm is \f$ O(ne\log(n)) \f$ with the
  1234   /// default binary heap implementation but this can be improved to
  1235   /// \f$ O(n^2\log(n)+ne) \f$ if we use fibonacci heaps.
  1236   ///
  1237   /// The algorithm also provides a potential function on the nodes
  1238   /// which a dual solution of the matching algorithm and it can be
  1239   /// used to proof the optimality of the given pimal solution.
  1240 #ifdef DOXYGEN
  1241   template <typename _BpUGraph, typename _CostMap, typename _Traits>
  1242 #else
  1243   template <typename _BpUGraph, 
  1244             typename _CostMap = typename _BpUGraph::template UEdgeMap<int>,
  1245             typename _Traits = 
  1246 	    MinCostMaxBipartiteMatchingDefaultTraits<_BpUGraph, _CostMap> >
  1247 #endif
  1248   class MinCostMaxBipartiteMatching {
  1249   public:
  1250 
  1251     typedef _Traits Traits;
  1252     typedef typename Traits::BpUGraph BpUGraph;
  1253     typedef typename Traits::CostMap CostMap;
  1254     typedef typename Traits::Value Value;
  1255 
  1256   protected:
  1257 
  1258     typedef typename Traits::HeapCrossRef HeapCrossRef;
  1259     typedef typename Traits::Heap Heap; 
  1260 
  1261     
  1262     typedef typename BpUGraph::Node Node;
  1263     typedef typename BpUGraph::ANodeIt ANodeIt;
  1264     typedef typename BpUGraph::BNodeIt BNodeIt;
  1265     typedef typename BpUGraph::UEdge UEdge;
  1266     typedef typename BpUGraph::UEdgeIt UEdgeIt;
  1267     typedef typename BpUGraph::IncEdgeIt IncEdgeIt;
  1268 
  1269     typedef typename BpUGraph::template ANodeMap<UEdge> ANodeMatchingMap;
  1270     typedef typename BpUGraph::template BNodeMap<UEdge> BNodeMatchingMap;
  1271 
  1272     typedef typename BpUGraph::template ANodeMap<Value> ANodePotentialMap;
  1273     typedef typename BpUGraph::template BNodeMap<Value> BNodePotentialMap;
  1274 
  1275 
  1276   public:
  1277 
  1278     /// \brief \ref Exception for uninitialized parameters.
  1279     ///
  1280     /// This error represents problems in the initialization
  1281     /// of the parameters of the algorithms.
  1282     class UninitializedParameter : public lemon::UninitializedParameter {
  1283     public:
  1284       virtual const char* what() const throw() {
  1285 	return "lemon::MinCostMaxBipartiteMatching::UninitializedParameter";
  1286       }
  1287     };
  1288 
  1289     ///\name Named template parameters
  1290 
  1291     ///@{
  1292 
  1293     template <class H, class CR>
  1294     struct DefHeapTraits : public Traits {
  1295       typedef CR HeapCrossRef;
  1296       typedef H Heap;
  1297       static HeapCrossRef *createHeapCrossRef(const BpUGraph &) {
  1298 	throw UninitializedParameter();
  1299       }
  1300       static Heap *createHeap(HeapCrossRef &) {
  1301 	throw UninitializedParameter();
  1302       }
  1303     };
  1304 
  1305     /// \brief \ref named-templ-param "Named parameter" for setting heap 
  1306     /// and cross reference type
  1307     ///
  1308     /// \ref named-templ-param "Named parameter" for setting heap and cross 
  1309     /// reference type
  1310     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
  1311     struct DefHeap
  1312       : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1313                                             DefHeapTraits<H, CR> > { 
  1314       typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1315                                            DefHeapTraits<H, CR> > Create;
  1316     };
  1317 
  1318     template <class H, class CR>
  1319     struct DefStandardHeapTraits : public Traits {
  1320       typedef CR HeapCrossRef;
  1321       typedef H Heap;
  1322       static HeapCrossRef *createHeapCrossRef(const BpUGraph &graph) {
  1323 	return new HeapCrossRef(graph);
  1324       }
  1325       static Heap *createHeap(HeapCrossRef &crossref) {
  1326 	return new Heap(crossref);
  1327       }
  1328     };
  1329 
  1330     /// \brief \ref named-templ-param "Named parameter" for setting heap and 
  1331     /// cross reference type with automatic allocation
  1332     ///
  1333     /// \ref named-templ-param "Named parameter" for setting heap and cross 
  1334     /// reference type. It can allocate the heap and the cross reference 
  1335     /// object if the cross reference's constructor waits for the graph as 
  1336     /// parameter and the heap's constructor waits for the cross reference.
  1337     template <class H, class CR = typename BpUGraph::template NodeMap<int> >
  1338     struct DefStandardHeap
  1339       : public MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1340                                             DefStandardHeapTraits<H, CR> > { 
  1341       typedef MinCostMaxBipartiteMatching<BpUGraph, CostMap, 
  1342                                            DefStandardHeapTraits<H, CR> > 
  1343       Create;
  1344     };
  1345 
  1346     ///@}
  1347 
  1348 
  1349     /// \brief Constructor.
  1350     ///
  1351     /// Constructor of the algorithm. 
  1352     MinCostMaxBipartiteMatching(const BpUGraph& _graph, 
  1353                                  const CostMap& _cost) 
  1354       : graph(&_graph), cost(&_cost),
  1355         anode_matching(_graph), bnode_matching(_graph),
  1356         anode_potential(_graph), bnode_potential(_graph),
  1357         _heap_cross_ref(0), local_heap_cross_ref(false),
  1358         _heap(0), local_heap(0) {}
  1359 
  1360     /// \brief Destructor.
  1361     ///
  1362     /// Destructor of the algorithm.
  1363     ~MinCostMaxBipartiteMatching() {
  1364       destroyStructures();
  1365     }
  1366 
  1367     /// \brief Sets the heap and the cross reference used by algorithm.
  1368     ///
  1369     /// Sets the heap and the cross reference used by algorithm.
  1370     /// If you don't use this function before calling \ref run(),
  1371     /// it will allocate one. The destuctor deallocates this
  1372     /// automatically allocated map, of course.
  1373     /// \return \c (*this)
  1374     MinCostMaxBipartiteMatching& heap(Heap& hp, HeapCrossRef &cr) {
  1375       if(local_heap_cross_ref) {
  1376 	delete _heap_cross_ref;
  1377 	local_heap_cross_ref = false;
  1378       }
  1379       _heap_cross_ref = &cr;
  1380       if(local_heap) {
  1381 	delete _heap;
  1382 	local_heap = false;
  1383       }
  1384       _heap = &hp;
  1385       return *this;
  1386     }
  1387 
  1388     /// \name Execution control
  1389     /// The simplest way to execute the algorithm is to use
  1390     /// one of the member functions called \c run().
  1391     /// \n
  1392     /// If you need more control on the execution,
  1393     /// first you must call \ref init() or one alternative for it.
  1394     /// Finally \ref start() will perform the matching computation or
  1395     /// with step-by-step execution you can augment the solution.
  1396 
  1397     /// @{
  1398 
  1399     /// \brief Initalize the data structures.
  1400     ///
  1401     /// It initalizes the data structures and creates an empty matching.
  1402     void init() {
  1403       initStructures();
  1404       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1405         anode_matching[it] = INVALID;
  1406         anode_potential[it] = 0;
  1407       }
  1408       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1409         bnode_matching[it] = INVALID;
  1410         bnode_potential[it] = 0;
  1411       }
  1412       matching_cost = 0;
  1413       matching_size = 0;
  1414     }
  1415 
  1416 
  1417     /// \brief An augmenting phase of the costed matching algorithm
  1418     ///
  1419     /// It runs an augmenting phase of the matching algorithm. The
  1420     /// phase finds the best augmenting path and augments only on this
  1421     /// paths.
  1422     ///
  1423     /// The algorithm consists at most 
  1424     /// of \f$ O(n) \f$ phase and one phase is \f$ O(n\log(n)+e) \f$ 
  1425     /// long with Fibonacci heap or \f$ O((n+e)\log(n)) \f$ long 
  1426     /// with binary heap.
  1427     bool augment() {
  1428 
  1429       typename BpUGraph::template BNodeMap<Value> bdist(*graph);
  1430       typename BpUGraph::template BNodeMap<UEdge> bpred(*graph, INVALID);
  1431 
  1432       Node bestNode = INVALID;
  1433       Value bestValue = 0;
  1434 
  1435       _heap->clear();
  1436       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1437         (*_heap_cross_ref)[it] = Heap::PRE_HEAP;
  1438       }
  1439 
  1440       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1441         if (anode_matching[it] == INVALID) {
  1442           _heap->push(it, 0);
  1443         }
  1444       }
  1445       Value bdistMax = 0;
  1446 
  1447       while (!_heap->empty()) {
  1448         Node anode = _heap->top();
  1449         Value avalue = _heap->prio();
  1450         _heap->pop();
  1451         for (IncEdgeIt jt(*graph, anode); jt != INVALID; ++jt) {
  1452           if (jt == anode_matching[anode]) continue;
  1453           Node bnode = graph->bNode(jt);
  1454           Value bvalue = avalue + (*cost)[jt] + 
  1455             anode_potential[anode] - bnode_potential[bnode];
  1456           if (bvalue > bdistMax) {
  1457             bdistMax = bvalue;
  1458           }
  1459           if (bpred[bnode] == INVALID || bvalue < bdist[bnode]) {
  1460             bdist[bnode] = bvalue;
  1461             bpred[bnode] = jt;
  1462           } else continue;
  1463           if (bnode_matching[bnode] != INVALID) {
  1464             Node newanode = graph->aNode(bnode_matching[bnode]);
  1465             switch (_heap->state(newanode)) {
  1466             case Heap::PRE_HEAP:
  1467               _heap->push(newanode, bvalue);
  1468               break;
  1469             case Heap::IN_HEAP:
  1470               if (bvalue < (*_heap)[newanode]) {
  1471                 _heap->decrease(newanode, bvalue);
  1472               }
  1473               break;
  1474             case Heap::POST_HEAP:
  1475               break;
  1476             }
  1477           } else {
  1478             if (bestNode == INVALID || 
  1479                 bvalue + bnode_potential[bnode] < bestValue) {
  1480               bestValue = bvalue + bnode_potential[bnode];
  1481               bestNode = bnode;
  1482             }
  1483           }
  1484         }
  1485       }
  1486 
  1487       if (bestNode == INVALID) {
  1488         return false;
  1489       }
  1490 
  1491       matching_cost += bestValue;
  1492       ++matching_size;
  1493 
  1494       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1495         if (bpred[it] != INVALID) {
  1496           bnode_potential[it] += bdist[it];
  1497         } else {
  1498           bnode_potential[it] += bdistMax;
  1499         }
  1500       }
  1501       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1502         if (anode_matching[it] != INVALID) {
  1503           Node bnode = graph->bNode(anode_matching[it]);
  1504           if (bpred[bnode] != INVALID) {
  1505             anode_potential[it] += bdist[bnode];
  1506           } else {
  1507             anode_potential[it] += bdistMax;
  1508           }
  1509         }
  1510       }
  1511 
  1512       while (bestNode != INVALID) {
  1513         UEdge uedge = bpred[bestNode];
  1514         Node anode = graph->aNode(uedge);
  1515         
  1516         bnode_matching[bestNode] = uedge;
  1517         if (anode_matching[anode] != INVALID) {
  1518           bestNode = graph->bNode(anode_matching[anode]);
  1519         } else {
  1520           bestNode = INVALID;
  1521         }
  1522         anode_matching[anode] = uedge;
  1523       }
  1524 
  1525 
  1526       return true;
  1527     }
  1528 
  1529     /// \brief Starts the algorithm.
  1530     ///
  1531     /// Starts the algorithm. It runs augmenting phases until the
  1532     /// optimal solution reached.
  1533     void start() {
  1534       while (augment()) {}
  1535     }
  1536 
  1537     /// \brief Runs the algorithm.
  1538     ///
  1539     /// It just initalize the algorithm and then start it.
  1540     void run() {
  1541       init();
  1542       start();
  1543     }
  1544 
  1545     /// @}
  1546 
  1547     /// \name Query Functions
  1548     /// The result of the %Matching algorithm can be obtained using these
  1549     /// functions.\n
  1550     /// Before the use of these functions,
  1551     /// either run() or start() must be called.
  1552     
  1553     ///@{
  1554 
  1555     /// \brief Gives back the potential in the NodeMap
  1556     ///
  1557     /// Gives back the potential in the NodeMap. The matching is optimal
  1558     /// with the current number of edges if \f$ \pi(a) + \pi(b) - w(ab) = 0 \f$
  1559     /// for each matching edges and \f$ \pi(a) + \pi(b) - w(ab) \ge 0 \f$
  1560     /// for each edges. 
  1561     template <typename PotentialMap>
  1562     void potential(PotentialMap& pt) const {
  1563       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1564         pt.set(it, anode_potential[it]);
  1565       }
  1566       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1567         pt.set(it, bnode_potential[it]);
  1568       }
  1569     }
  1570 
  1571     /// \brief Set true all matching uedge in the map.
  1572     /// 
  1573     /// Set true all matching uedge in the map. It does not change the
  1574     /// value mapped to the other uedges.
  1575     /// \return The number of the matching edges.
  1576     template <typename MatchingMap>
  1577     int quickMatching(MatchingMap& mm) const {
  1578       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1579         if (anode_matching[it] != INVALID) {
  1580           mm.set(anode_matching[it], true);
  1581         }
  1582       }
  1583       return matching_size;
  1584     }
  1585 
  1586     /// \brief Set true all matching uedge in the map and the others to false.
  1587     /// 
  1588     /// Set true all matching uedge in the map and the others to false.
  1589     /// \return The number of the matching edges.
  1590     template <typename MatchingMap>
  1591     int matching(MatchingMap& mm) const {
  1592       for (UEdgeIt it(*graph); it != INVALID; ++it) {
  1593         mm.set(it, it == anode_matching[graph->aNode(it)]);
  1594       }
  1595       return matching_size;
  1596     }
  1597 
  1598     /// \brief Gives back the matching in an ANodeMap.
  1599     ///
  1600     /// Gives back the matching in an ANodeMap. The parameter should
  1601     /// be a write ANodeMap of UEdge values.
  1602     /// \return The number of the matching edges.
  1603     template<class MatchingMap>
  1604     int aMatching(MatchingMap& mm) const {
  1605       for (ANodeIt it(*graph); it != INVALID; ++it) {
  1606         mm.set(it, anode_matching[it]);
  1607       }
  1608       return matching_size;
  1609     }
  1610 
  1611     /// \brief Gives back the matching in a BNodeMap.
  1612     ///
  1613     /// Gives back the matching in a BNodeMap. The parameter should
  1614     /// be a write BNodeMap of UEdge values.
  1615     /// \return The number of the matching edges.
  1616     template<class MatchingMap>
  1617     int bMatching(MatchingMap& mm) const {
  1618       for (BNodeIt it(*graph); it != INVALID; ++it) {
  1619         mm.set(it, bnode_matching[it]);
  1620       }
  1621       return matching_size;
  1622     }
  1623 
  1624     /// \brief Return true if the given uedge is in the matching.
  1625     /// 
  1626     /// It returns true if the given uedge is in the matching.
  1627     bool matchingEdge(const UEdge& edge) const {
  1628       return anode_matching[graph->aNode(edge)] == edge;
  1629     }
  1630 
  1631     /// \brief Returns the matching edge from the node.
  1632     /// 
  1633     /// Returns the matching edge from the node. If there is not such
  1634     /// edge it gives back \c INVALID.
  1635     UEdge matchingEdge(const Node& node) const {
  1636       if (graph->aNode(node)) {
  1637         return anode_matching[node];
  1638       } else {
  1639         return bnode_matching[node];
  1640       }
  1641     }
  1642 
  1643     /// \brief Gives back the sum of costs of the matching edges.
  1644     ///
  1645     /// Gives back the sum of costs of the matching edges.
  1646     Value matchingCost() const {
  1647       return matching_cost;
  1648     }
  1649 
  1650     /// \brief Gives back the number of the matching edges.
  1651     ///
  1652     /// Gives back the number of the matching edges.
  1653     int matchingSize() const {
  1654       return matching_size;
  1655     }
  1656 
  1657     /// @}
  1658 
  1659   private:
  1660 
  1661     void initStructures() {
  1662       if (!_heap_cross_ref) {
  1663 	local_heap_cross_ref = true;
  1664 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
  1665       }
  1666       if (!_heap) {
  1667 	local_heap = true;
  1668 	_heap = Traits::createHeap(*_heap_cross_ref);
  1669       }
  1670     }
  1671 
  1672     void destroyStructures() {
  1673       if (local_heap_cross_ref) delete _heap_cross_ref;
  1674       if (local_heap) delete _heap;
  1675     }
  1676 
  1677 
  1678   private:
  1679     
  1680     const BpUGraph *graph;
  1681     const CostMap* cost;
  1682 
  1683     ANodeMatchingMap anode_matching;
  1684     BNodeMatchingMap bnode_matching;
  1685 
  1686     ANodePotentialMap anode_potential;
  1687     BNodePotentialMap bnode_potential;
  1688 
  1689     Value matching_cost;
  1690     int matching_size;
  1691 
  1692     HeapCrossRef *_heap_cross_ref;
  1693     bool local_heap_cross_ref;
  1694 
  1695     Heap *_heap;
  1696     bool local_heap;
  1697   
  1698   };
  1699 
  1700   /// \ingroup matching
  1701   ///
  1702   /// \brief Minimum cost maximum cardinality bipartite matching
  1703   ///
  1704   /// This function calculates the maximum cardinality matching with
  1705   /// minimum cost of a bipartite graph. It gives back the matching in
  1706   /// an undirected edge map.
  1707   ///
  1708   /// \param graph The bipartite graph.
  1709   /// \param cost The undirected edge map which contains the costs.
  1710   /// \retval matching The undirected edge map which will be set to 
  1711   /// the matching.
  1712   /// \return The cost of the matching.
  1713   template <typename BpUGraph, typename CostMap, typename MatchingMap>
  1714   typename CostMap::Value 
  1715   minCostMaxBipartiteMatching(const BpUGraph& graph, 
  1716                               const CostMap& cost,
  1717                               MatchingMap& matching) {
  1718     MinCostMaxBipartiteMatching<BpUGraph, CostMap> 
  1719       bpmatching(graph, cost);
  1720     bpmatching.run();
  1721     bpmatching.matching(matching);
  1722     return bpmatching.matchingCost();
  1723   }
  1724 
  1725 }
  1726 
  1727 #endif