lemon/cycle_canceling.h
author kpeter
Sun, 13 Jan 2008 10:26:55 +0000
changeset 2555 a84e52e99f57
parent 2544 5143b01bf1d5
child 2556 74c2c81055e1
permissions -rw-r--r--
Reimplemented MinMeanCycle to be much more efficient.
The new version implements Howard's algorithm instead of Karp's algorithm and
it is at least 10-20 times faster on all the 40-50 random graphs we have tested.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief A cycle-canceling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <lemon/graph_adaptor.h>
    29 #include <lemon/circulation.h>
    30 
    31 /// \brief The used cycle-canceling method.
    32 #define LIMITED_CYCLE_CANCELING
    33 //#define MIN_MEAN_CYCLE_CANCELING
    34 
    35 #ifdef LIMITED_CYCLE_CANCELING
    36   #include <lemon/bellman_ford.h>
    37   /// \brief The maximum number of iterations for the first execution
    38   /// of the \ref lemon::BellmanFord "Bellman-Ford" algorithm.
    39   /// It should be at least 2.
    40   #define STARTING_LIMIT	2
    41   /// \brief The iteration limit for the
    42   /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
    43   /// <tt>ALPHA_MUL / ALPHA_DIV</tt> in every round.
    44   /// <tt>ALPHA_MUL / ALPHA_DIV</tt> must be greater than 1.
    45   #define ALPHA_MUL		3
    46   /// \brief The iteration limit for the
    47   /// \ref lemon::BellmanFord "Bellman-Ford" algorithm is multiplied by
    48   /// <tt>ALPHA_MUL / ALPHA_DIV</tt> in every round.
    49   /// <tt>ALPHA_MUL / ALPHA_DIV</tt> must be greater than 1.
    50   #define ALPHA_DIV		2
    51 
    52 //#define _ONLY_ONE_CYCLE_
    53 //#define _NO_BACK_STEP_
    54 //#define _DEBUG_ITER_
    55 #endif
    56 
    57 #ifdef MIN_MEAN_CYCLE_CANCELING
    58   #include <lemon/min_mean_cycle.h>
    59   #include <lemon/path.h>
    60 #endif
    61 
    62 namespace lemon {
    63 
    64   /// \addtogroup min_cost_flow
    65   /// @{
    66 
    67   /// \brief Implementation of a cycle-canceling algorithm for finding
    68   /// a minimum cost flow.
    69   ///
    70   /// \ref lemon::CycleCanceling "CycleCanceling" implements a
    71   /// cycle-canceling algorithm for finding a minimum cost flow.
    72   ///
    73   /// \param Graph The directed graph type the algorithm runs on.
    74   /// \param LowerMap The type of the lower bound map.
    75   /// \param CapacityMap The type of the capacity (upper bound) map.
    76   /// \param CostMap The type of the cost (length) map.
    77   /// \param SupplyMap The type of the supply map.
    78   ///
    79   /// \warning
    80   /// - Edge capacities and costs should be nonnegative integers.
    81   ///	However \c CostMap::Value should be signed type.
    82   /// - Supply values should be signed integers.
    83   /// - \c LowerMap::Value must be convertible to
    84   ///	\c CapacityMap::Value and \c CapacityMap::Value must be
    85   ///	convertible to \c SupplyMap::Value.
    86   ///
    87   /// \author Peter Kovacs
    88 
    89   template < typename Graph,
    90              typename LowerMap = typename Graph::template EdgeMap<int>,
    91              typename CapacityMap = LowerMap,
    92              typename CostMap = typename Graph::template EdgeMap<int>,
    93              typename SupplyMap = typename Graph::template NodeMap
    94                                   <typename CapacityMap::Value> >
    95   class CycleCanceling
    96   {
    97     typedef typename Graph::Node Node;
    98     typedef typename Graph::NodeIt NodeIt;
    99     typedef typename Graph::Edge Edge;
   100     typedef typename Graph::EdgeIt EdgeIt;
   101     typedef typename Graph::InEdgeIt InEdgeIt;
   102     typedef typename Graph::OutEdgeIt OutEdgeIt;
   103 
   104     typedef typename LowerMap::Value Lower;
   105     typedef typename CapacityMap::Value Capacity;
   106     typedef typename CostMap::Value Cost;
   107     typedef typename SupplyMap::Value Supply;
   108     typedef typename Graph::template EdgeMap<Capacity> CapacityRefMap;
   109     typedef typename Graph::template NodeMap<Supply> SupplyRefMap;
   110 
   111     typedef ResGraphAdaptor< const Graph, Capacity,
   112 			     CapacityRefMap, CapacityRefMap > ResGraph;
   113     typedef typename ResGraph::Node ResNode;
   114     typedef typename ResGraph::NodeIt ResNodeIt;
   115     typedef typename ResGraph::Edge ResEdge;
   116     typedef typename ResGraph::EdgeIt ResEdgeIt;
   117 
   118   public:
   119 
   120     /// \brief The type of the flow map.
   121     typedef CapacityRefMap FlowMap;
   122 
   123   protected:
   124 
   125     /// \brief Map adaptor class for handling residual edge costs.
   126     class ResCostMap : public MapBase<ResEdge, Cost>
   127     {
   128     private:
   129 
   130       const CostMap &cost_map;
   131 
   132     public:
   133 
   134       ResCostMap(const CostMap &_cost) : cost_map(_cost) {}
   135 
   136       Cost operator[](const ResEdge &e) const {
   137 	return ResGraph::forward(e) ? cost_map[e] : -cost_map[e];
   138       }
   139 
   140     }; //class ResCostMap
   141 
   142   protected:
   143 
   144     /// \brief The directed graph the algorithm runs on.
   145     const Graph &graph;
   146     /// \brief The original lower bound map.
   147     const LowerMap *lower;
   148     /// \brief The modified capacity map.
   149     CapacityRefMap capacity;
   150     /// \brief The cost map.
   151     const CostMap &cost;
   152     /// \brief The modified supply map.
   153     SupplyRefMap supply;
   154     /// \brief The sum of supply values equals zero.
   155     bool valid_supply;
   156 
   157     /// \brief The current flow.
   158     FlowMap flow;
   159     /// \brief The residual graph.
   160     ResGraph res_graph;
   161     /// \brief The residual cost map.
   162     ResCostMap res_cost;
   163 
   164   public :
   165 
   166     /// \brief General constructor of the class (with lower bounds).
   167     ///
   168     /// General constructor of the class (with lower bounds).
   169     ///
   170     /// \param _graph The directed graph the algorithm runs on.
   171     /// \param _lower The lower bounds of the edges.
   172     /// \param _capacity The capacities (upper bounds) of the edges.
   173     /// \param _cost The cost (length) values of the edges.
   174     /// \param _supply The supply values of the nodes (signed).
   175     CycleCanceling( const Graph &_graph,
   176 		    const LowerMap &_lower,
   177 		    const CapacityMap &_capacity,
   178 		    const CostMap &_cost,
   179 		    const SupplyMap &_supply ) :
   180       graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
   181       supply(_graph), flow(_graph, 0),
   182       res_graph(_graph, capacity, flow), res_cost(cost)
   183     {
   184       // Removing nonzero lower bounds
   185       capacity = subMap(_capacity, _lower);
   186       Supply sum = 0;
   187       for (NodeIt n(graph); n != INVALID; ++n) {
   188 	Supply s = _supply[n];
   189 	for (InEdgeIt e(graph, n); e != INVALID; ++e)
   190 	  s += _lower[e];
   191 	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
   192 	  s -= _lower[e];
   193 	sum += (supply[n] = s);
   194       }
   195       valid_supply = sum == 0;
   196     }
   197 
   198     /// \brief General constructor of the class (without lower bounds).
   199     ///
   200     /// General constructor of the class (without lower bounds).
   201     ///
   202     /// \param _graph The directed graph the algorithm runs on.
   203     /// \param _capacity The capacities (upper bounds) of the edges.
   204     /// \param _cost The cost (length) values of the edges.
   205     /// \param _supply The supply values of the nodes (signed).
   206     CycleCanceling( const Graph &_graph,
   207 		    const CapacityMap &_capacity,
   208 		    const CostMap &_cost,
   209 		    const SupplyMap &_supply ) :
   210       graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
   211       supply(_supply), flow(_graph, 0),
   212       res_graph(_graph, capacity, flow), res_cost(cost)
   213     {
   214       // Checking the sum of supply values
   215       Supply sum = 0;
   216       for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
   217       valid_supply = sum == 0;
   218     }
   219 
   220 
   221     /// \brief Simple constructor of the class (with lower bounds).
   222     ///
   223     /// Simple constructor of the class (with lower bounds).
   224     ///
   225     /// \param _graph The directed graph the algorithm runs on.
   226     /// \param _lower The lower bounds of the edges.
   227     /// \param _capacity The capacities (upper bounds) of the edges.
   228     /// \param _cost The cost (length) values of the edges.
   229     /// \param _s The source node.
   230     /// \param _t The target node.
   231     /// \param _flow_value The required amount of flow from node \c _s
   232     /// to node \c _t (i.e. the supply of \c _s and the demand of
   233     /// \c _t).
   234     CycleCanceling( const Graph &_graph,
   235 		    const LowerMap &_lower,
   236 		    const CapacityMap &_capacity,
   237 		    const CostMap &_cost,
   238 		    Node _s, Node _t,
   239 		    Supply _flow_value ) :
   240       graph(_graph), lower(&_lower), capacity(_graph), cost(_cost),
   241       supply(_graph), flow(_graph, 0),
   242       res_graph(_graph, capacity, flow), res_cost(cost)
   243     {
   244       // Removing nonzero lower bounds
   245       capacity = subMap(_capacity, _lower);
   246       for (NodeIt n(graph); n != INVALID; ++n) {
   247 	Supply s = 0;
   248 	if (n == _s) s =  _flow_value;
   249 	if (n == _t) s = -_flow_value;
   250 	for (InEdgeIt e(graph, n); e != INVALID; ++e)
   251 	  s += _lower[e];
   252 	for (OutEdgeIt e(graph, n); e != INVALID; ++e)
   253 	  s -= _lower[e];
   254 	supply[n] = s;
   255       }
   256       valid_supply = true;
   257     }
   258 
   259     /// \brief Simple constructor of the class (without lower bounds).
   260     ///
   261     /// Simple constructor of the class (without lower bounds).
   262     ///
   263     /// \param _graph The directed graph the algorithm runs on.
   264     /// \param _capacity The capacities (upper bounds) of the edges.
   265     /// \param _cost The cost (length) values of the edges.
   266     /// \param _s The source node.
   267     /// \param _t The target node.
   268     /// \param _flow_value The required amount of flow from node \c _s
   269     /// to node \c _t (i.e. the supply of \c _s and the demand of
   270     /// \c _t).
   271     CycleCanceling( const Graph &_graph,
   272 		    const CapacityMap &_capacity,
   273 		    const CostMap &_cost,
   274 		    Node _s, Node _t,
   275 		    Supply _flow_value ) :
   276       graph(_graph), lower(NULL), capacity(_capacity), cost(_cost),
   277       supply(_graph, 0), flow(_graph, 0),
   278       res_graph(_graph, capacity, flow), res_cost(cost)
   279     {
   280       supply[_s] =  _flow_value;
   281       supply[_t] = -_flow_value;
   282       valid_supply = true;
   283     }
   284 
   285     /// \brief Returns a const reference to the flow map.
   286     ///
   287     /// Returns a const reference to the flow map.
   288     ///
   289     /// \pre \ref run() must be called before using this function.
   290     const FlowMap& flowMap() const {
   291       return flow;
   292     }
   293 
   294     /// \brief Returns the total cost of the found flow.
   295     ///
   296     /// Returns the total cost of the found flow. The complexity of the
   297     /// function is \f$ O(e) \f$.
   298     ///
   299     /// \pre \ref run() must be called before using this function.
   300     Cost totalCost() const {
   301       Cost c = 0;
   302       for (EdgeIt e(graph); e != INVALID; ++e)
   303 	c += flow[e] * cost[e];
   304       return c;
   305     }
   306 
   307     /// \brief Runs the algorithm.
   308     ///
   309     /// Runs the algorithm.
   310     ///
   311     /// \return \c true if a feasible flow can be found.
   312     bool run() {
   313       return init() && start();
   314     }
   315 
   316   protected:
   317 
   318     /// \brief Initializes the algorithm.
   319     bool init() {
   320       // Checking the sum of supply values
   321       Supply sum = 0;
   322       for (NodeIt n(graph); n != INVALID; ++n) sum += supply[n];
   323       if (sum != 0) return false;
   324 
   325       // Finding a feasible flow
   326       Circulation< Graph, ConstMap<Edge, Capacity>, CapacityRefMap,
   327 		   SupplyMap >
   328 	circulation( graph, constMap<Edge>((Capacity)0), capacity,
   329 		     supply );
   330       circulation.flowMap(flow);
   331       return circulation.run();
   332     }
   333 
   334 #ifdef LIMITED_CYCLE_CANCELING
   335     /// \brief Executes a cycle-canceling algorithm using
   336     /// \ref lemon::BellmanFord "Bellman-Ford" algorithm with limited
   337     /// iteration count.
   338     bool start() {
   339       typename BellmanFord<ResGraph, ResCostMap>::PredMap pred(res_graph);
   340       typename ResGraph::template NodeMap<int> visited(res_graph);
   341       std::vector<ResEdge> cycle;
   342       int node_num = countNodes(graph);
   343 
   344 #ifdef _DEBUG_ITER_
   345       int cycle_num = 0;
   346 #endif
   347       int length_bound = STARTING_LIMIT;
   348       bool optimal = false;
   349       while (!optimal) {
   350 	BellmanFord<ResGraph, ResCostMap> bf(res_graph, res_cost);
   351 	bf.predMap(pred);
   352 	bf.init(0);
   353 	int iter_num = 0;
   354 	bool cycle_found = false;
   355 	while (!cycle_found) {
   356 #ifdef _NO_BACK_STEP_
   357 	  int curr_iter_num = length_bound <= node_num ?
   358 			      length_bound - iter_num : node_num - iter_num;
   359 #else
   360 	  int curr_iter_num = iter_num + length_bound <= node_num ?
   361 			      length_bound : node_num - iter_num;
   362 #endif
   363 	  iter_num += curr_iter_num;
   364 	  int real_iter_num = curr_iter_num;
   365 	  for (int i = 0; i < curr_iter_num; ++i) {
   366 	    if (bf.processNextWeakRound()) {
   367 	      real_iter_num = i;
   368 	      break;
   369 	    }
   370 	  }
   371 	  if (real_iter_num < curr_iter_num) {
   372 	    optimal = true;
   373 	    break;
   374 	  } else {
   375 	    // Searching for node disjoint negative cycles
   376 	    for (ResNodeIt n(res_graph); n != INVALID; ++n)
   377 	      visited[n] = 0;
   378 	    int id = 0;
   379 	    for (ResNodeIt n(res_graph); n != INVALID; ++n) {
   380 	      if (visited[n] > 0) continue;
   381 	      visited[n] = ++id;
   382 	      ResNode u = pred[n] == INVALID ?
   383 			  INVALID : res_graph.source(pred[n]);
   384 	      while (u != INVALID && visited[u] == 0) {
   385 		visited[u] = id;
   386 		u = pred[u] == INVALID ?
   387 		    INVALID : res_graph.source(pred[u]);
   388 	      }
   389 	      if (u != INVALID && visited[u] == id) {
   390 		// Finding the negative cycle
   391 		cycle_found = true;
   392 		cycle.clear();
   393 		ResEdge e = pred[u];
   394 		cycle.push_back(e);
   395 		Capacity d = res_graph.rescap(e);
   396 		while (res_graph.source(e) != u) {
   397 		  cycle.push_back(e = pred[res_graph.source(e)]);
   398 		  if (res_graph.rescap(e) < d)
   399 		    d = res_graph.rescap(e);
   400 		}
   401 #ifdef _DEBUG_ITER_
   402 		++cycle_num;
   403 #endif
   404 		// Augmenting along the cycle
   405 		for (int i = 0; i < cycle.size(); ++i)
   406 		  res_graph.augment(cycle[i], d);
   407 #ifdef _ONLY_ONE_CYCLE_
   408 		break;
   409 #endif
   410 	      }
   411 	    }
   412 	  }
   413 
   414 	  if (!cycle_found)
   415 	    length_bound = length_bound * ALPHA_MUL / ALPHA_DIV;
   416 	}
   417       }
   418 
   419 #ifdef _DEBUG_ITER_
   420       std::cout << "Limited cycle-canceling algorithm finished. "
   421 		<< "Found " << cycle_num << " negative cycles."
   422 		<< std::endl;
   423 #endif
   424 
   425       // Handling nonzero lower bounds
   426       if (lower) {
   427 	for (EdgeIt e(graph); e != INVALID; ++e)
   428 	  flow[e] += (*lower)[e];
   429       }
   430       return true;
   431     }
   432 #endif
   433 
   434 #ifdef MIN_MEAN_CYCLE_CANCELING
   435     /// \brief Executes the minimum mean cycle-canceling algorithm
   436     /// using \ref lemon::MinMeanCycle "MinMeanCycle" class.
   437     bool start() {
   438       typedef Path<ResGraph> ResPath;
   439       MinMeanCycle<ResGraph, ResCostMap> mmc(res_graph, res_cost);
   440       ResPath cycle;
   441 
   442 #ifdef _DEBUG_ITER_
   443       int cycle_num = 0;
   444 #endif
   445       mmc.cyclePath(cycle).init();
   446       if (mmc.findMinMean()) {
   447 	while (mmc.cycleLength() < 0) {
   448 #ifdef _DEBUG_ITER_
   449 	  ++iter;
   450 #endif
   451 	  // Finding the cycle
   452 	  mmc.findCycle();
   453 
   454 	  // Finding the largest flow amount that can be augmented
   455 	  // along the cycle
   456 	  Capacity delta = 0;
   457 	  for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) {
   458 	    if (delta == 0 || res_graph.rescap(e) < delta)
   459 	      delta = res_graph.rescap(e);
   460 	  }
   461 
   462 	  // Augmenting along the cycle
   463 	  for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e)
   464 	    res_graph.augment(e, delta);
   465 
   466 	  // Finding the minimum cycle mean for the modified residual
   467 	  // graph
   468 	  mmc.reset();
   469 	  if (!mmc.findMinMean()) break;
   470 	}
   471       }
   472 
   473 #ifdef _DEBUG_ITER_
   474       std::cout << "Minimum mean cycle-canceling algorithm finished. "
   475 		<< "Found " << cycle_num << " negative cycles."
   476 		<< std::endl;
   477 #endif
   478 
   479       // Handling nonzero lower bounds
   480       if (lower) {
   481 	for (EdgeIt e(graph); e != INVALID; ++e)
   482 	  flow[e] += (*lower)[e];
   483       }
   484       return true;
   485     }
   486 #endif
   487 
   488   }; //class CycleCanceling
   489 
   490   ///@}
   491 
   492 } //namespace lemon
   493 
   494 #endif //LEMON_CYCLE_CANCELING_H