lemon/dinitz_sleator_tarjan.h
author kpeter
Sun, 13 Jan 2008 10:26:55 +0000
changeset 2555 a84e52e99f57
parent 2527 10f3b3286e63
permissions -rw-r--r--
Reimplemented MinMeanCycle to be much more efficient.
The new version implements Howard's algorithm instead of Karp's algorithm and
it is at least 10-20 times faster on all the 40-50 random graphs we have tested.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DINITZ_SLEATOR_TARJAN_H
    20 #define LEMON_DINITZ_SLEATOR_TARJAN_H
    21 
    22 /// \file 
    23 /// \ingroup max_flow 
    24 /// \brief Implementation the dynamic tree data structure of Sleator
    25 /// and Tarjan.
    26 
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/tolerance.h>
    29 #include <lemon/dynamic_tree.h>
    30 
    31 #include <vector>
    32 #include <limits>
    33 #include <fstream>
    34 
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default traits class of DinitzSleatorTarjan class.
    39   ///
    40   /// Default traits class of DinitzSleatorTarjan class.
    41   /// \param _Graph Graph type.
    42   /// \param _CapacityMap Type of capacity map.
    43   template <typename _Graph, typename _CapacityMap>
    44   struct DinitzSleatorTarjanDefaultTraits {
    45 
    46     /// \brief The graph type the algorithm runs on. 
    47     typedef _Graph Graph;
    48 
    49     /// \brief The type of the map that stores the edge capacities.
    50     ///
    51     /// The type of the map that stores the edge capacities.
    52     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    53     typedef _CapacityMap CapacityMap;
    54 
    55     /// \brief The type of the length of the edges.
    56     typedef typename CapacityMap::Value Value;
    57 
    58     /// \brief The map type that stores the flow values.
    59     ///
    60     /// The map type that stores the flow values. 
    61     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    62     typedef typename Graph::template EdgeMap<Value> FlowMap;
    63 
    64     /// \brief Instantiates a FlowMap.
    65     ///
    66     /// This function instantiates a \ref FlowMap. 
    67     /// \param graph The graph, to which we would like to define the flow map.
    68     static FlowMap* createFlowMap(const Graph& graph) {
    69       return new FlowMap(graph);
    70     }
    71 
    72     /// \brief The tolerance used by the algorithm
    73     ///
    74     /// The tolerance used by the algorithm to handle inexact computation.
    75     typedef Tolerance<Value> Tolerance;
    76 
    77   };
    78 
    79   /// \ingroup max_flow
    80   ///
    81   /// \brief Dinitz-Sleator-Tarjan algorithms class.
    82   ///
    83   /// This class provides an implementation of the \e
    84   /// Dinitz-Sleator-Tarjan \e algorithm producing a flow of maximum
    85   /// value in a directed graph. The DinitzSleatorTarjan algorithm is
    86   /// the fastest known max flow algorithms wich using blocking
    87   /// flow. It is an improvement of the Dinitz algorithm by using the
    88   /// \ref DynamicTree "dynamic tree" data structure of Sleator and
    89   /// Tarjan.
    90   ///
    91   /// This blocking flow algorithms builds a layered graph according
    92   /// to \ref Bfs "breadth-first search" distance from the target node
    93   /// in the reversed residual graph. The layered graph contains each
    94   /// residual edge which steps one level down. After that the
    95   /// algorithm constructs a blocking flow on the layered graph and
    96   /// augments the overall flow with it. The number of the levels in
    97   /// the layered graph is strictly increasing in each augmenting
    98   /// phase therefore the number of the augmentings is at most
    99   /// \f$n-1\f$.  The length of each phase is at most
   100   /// \f$O(m\log(n))\f$, that the overall time complexity is
   101   /// \f$O(nm\log(n))\f$.
   102   ///
   103   /// \param _Graph The directed graph type the algorithm runs on.
   104   /// \param _CapacityMap The capacity map type.
   105   /// \param _Traits Traits class to set various data types used by
   106   /// the algorithm.  The default traits class is \ref
   107   /// DinitzSleatorTarjanDefaultTraits.  See \ref
   108   /// DinitzSleatorTarjanDefaultTraits for the documentation of a
   109   /// Dinitz-Sleator-Tarjan traits class.
   110   ///
   111   /// \author Tamas Hamori and Balazs Dezso
   112 #ifdef DOXYGEN
   113   template <typename _Graph, typename _CapacityMap, typename _Traits>
   114 #else
   115   template <typename _Graph, 
   116 	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
   117 	    typename _Traits = 
   118 	    DinitzSleatorTarjanDefaultTraits<_Graph, _CapacityMap> >
   119 #endif
   120   class DinitzSleatorTarjan {
   121   public:
   122 
   123     typedef _Traits Traits;
   124     typedef typename Traits::Graph Graph;
   125     typedef typename Traits::CapacityMap CapacityMap;
   126     typedef typename Traits::Value Value; 
   127 
   128     typedef typename Traits::FlowMap FlowMap;
   129     typedef typename Traits::Tolerance Tolerance;
   130 
   131 
   132   private:
   133 
   134     GRAPH_TYPEDEFS(typename Graph);
   135 
   136 
   137     typedef typename Graph::template NodeMap<int> LevelMap;
   138     typedef typename Graph::template NodeMap<int> IntNodeMap;
   139     typedef typename Graph::template NodeMap<Edge> EdgeNodeMap;
   140     typedef DynamicTree<Value, IntNodeMap, Tolerance, false> DynTree;
   141 
   142   private:
   143     
   144     const Graph& _graph;
   145     const CapacityMap* _capacity;
   146 
   147     Node _source, _target;
   148 
   149     FlowMap* _flow;
   150     bool _local_flow;
   151 
   152     IntNodeMap* _level;
   153     EdgeNodeMap* _dt_edges;
   154     
   155     IntNodeMap* _dt_index;
   156     DynTree* _dt;
   157 
   158     std::vector<Node> _queue;
   159 
   160     Tolerance _tolerance;
   161     
   162     Value _flow_value;
   163     Value _max_value;
   164 
   165 
   166   public:
   167 
   168     typedef DinitzSleatorTarjan Create;
   169 
   170     ///\name Named template parameters
   171 
   172     ///@{
   173 
   174     template <typename _FlowMap>
   175     struct DefFlowMapTraits : public Traits {
   176       typedef _FlowMap FlowMap;
   177       static FlowMap *createFlowMap(const Graph&) {
   178 	throw UninitializedParameter();
   179       }
   180     };
   181 
   182     /// \brief \ref named-templ-param "Named parameter" for setting
   183     /// FlowMap type
   184     ///
   185     /// \ref named-templ-param "Named parameter" for setting FlowMap
   186     /// type
   187     template <typename _FlowMap>
   188     struct DefFlowMap 
   189       : public DinitzSleatorTarjan<Graph, CapacityMap, 
   190 			      DefFlowMapTraits<_FlowMap> > {
   191       typedef DinitzSleatorTarjan<Graph, CapacityMap, 
   192 			     DefFlowMapTraits<_FlowMap> > Create;
   193     };
   194 
   195     template <typename _Elevator>
   196     struct DefElevatorTraits : public Traits {
   197       typedef _Elevator Elevator;
   198       static Elevator *createElevator(const Graph&, int) {
   199 	throw UninitializedParameter();
   200       }
   201     };
   202 
   203     /// @}
   204 
   205     /// \brief \ref Exception for the case when the source equals the target.
   206     ///
   207     /// \ref Exception for the case when the source equals the target.
   208     ///
   209     class InvalidArgument : public lemon::LogicError {
   210     public:
   211       virtual const char* what() const throw() {
   212 	return "lemon::DinitzSleatorTarjan::InvalidArgument";
   213       }
   214     };
   215 
   216   protected:
   217     
   218     DinitzSleatorTarjan() {}
   219 
   220   public:
   221 
   222     /// \brief The constructor of the class.
   223     ///
   224     /// The constructor of the class. 
   225     /// \param graph The directed graph the algorithm runs on. 
   226     /// \param capacity The capacity of the edges. 
   227     /// \param source The source node.
   228     /// \param target The target node.
   229     DinitzSleatorTarjan(const Graph& graph, const CapacityMap& capacity,
   230 			Node source, Node target)
   231       : _graph(graph), _capacity(&capacity),
   232 	_source(source), _target(target),
   233 	_flow(0), _local_flow(false),
   234 	_level(0), _dt_edges(0),
   235 	_dt_index(0), _dt(0), _queue(),
   236 	_tolerance(), _flow_value(), _max_value()
   237     {
   238       if (_source == _target) {
   239 	throw InvalidArgument();
   240       }
   241     }
   242 
   243     /// \brief Destrcutor.
   244     ///
   245     /// Destructor.
   246     ~DinitzSleatorTarjan() {
   247       destroyStructures();
   248     }
   249 
   250     /// \brief Sets the capacity map.
   251     ///
   252     /// Sets the capacity map.
   253     /// \return \c (*this)
   254     DinitzSleatorTarjan& capacityMap(const CapacityMap& map) {
   255       _capacity = &map;
   256       return *this;
   257     }
   258 
   259     /// \brief Sets the flow map.
   260     ///
   261     /// Sets the flow map.
   262     /// \return \c (*this)
   263     DinitzSleatorTarjan& flowMap(FlowMap& map) {
   264       if (_local_flow) {
   265 	delete _flow;
   266 	_local_flow = false;
   267       }
   268       _flow = &map;
   269       return *this;
   270     }
   271 
   272     /// \brief Returns the flow map.
   273     ///
   274     /// \return The flow map.
   275     const FlowMap& flowMap() {
   276       return *_flow;
   277     }
   278 
   279     /// \brief Sets the source node.
   280     ///
   281     /// Sets the source node.
   282     /// \return \c (*this)
   283     DinitzSleatorTarjan& source(const Node& node) {
   284       _source = node;
   285       return *this;
   286     }
   287 
   288     /// \brief Sets the target node.
   289     ///
   290     /// Sets the target node.
   291     /// \return \c (*this)
   292     DinitzSleatorTarjan& target(const Node& node) {
   293       _target = node;
   294       return *this;
   295     }
   296 
   297     /// \brief Sets the tolerance used by algorithm.
   298     ///
   299     /// Sets the tolerance used by algorithm.
   300     DinitzSleatorTarjan& tolerance(const Tolerance& tolerance) const {
   301       _tolerance = tolerance;
   302       if (_dt) {
   303 	_dt.tolerance(_tolerance);
   304       }
   305       return *this;
   306     } 
   307 
   308     /// \brief Returns the tolerance used by algorithm.
   309     ///
   310     /// Returns the tolerance used by algorithm.
   311     const Tolerance& tolerance() const {
   312       return tolerance;
   313     } 
   314 
   315   private:
   316         
   317     void createStructures() {
   318       if (!_flow) {
   319 	_flow = Traits::createFlowMap(_graph);
   320 	_local_flow = true;
   321       }
   322       if (!_level) {
   323 	_level = new LevelMap(_graph);
   324       }
   325       if (!_dt_index && !_dt) {
   326 	_dt_index = new IntNodeMap(_graph);
   327 	_dt = new DynTree(*_dt_index, _tolerance);
   328       }
   329       if (!_dt_edges) {
   330 	_dt_edges = new EdgeNodeMap(_graph);
   331       }
   332       _queue.resize(countNodes(_graph));
   333       _max_value = _dt->maxValue();
   334     }
   335 
   336     void destroyStructures() {
   337       if (_local_flow) {
   338 	delete _flow;
   339       }
   340       if (_level) {
   341 	delete _level;
   342       }
   343       if (_dt) {
   344 	delete _dt;
   345       }
   346       if (_dt_index) {
   347 	delete _dt_index;
   348       }
   349       if (_dt_edges) {
   350 	delete _dt_edges;
   351       }
   352     }
   353 
   354     bool createLayeredGraph() {
   355 
   356       for (NodeIt n(_graph); n != INVALID; ++n) {
   357 	_level->set(n, -2);
   358       }
   359       
   360       int level = 0;
   361 
   362       _queue[0] = _target;
   363       _level->set(_target, level);
   364 
   365       int first = 0, last = 1, limit = 0;
   366       
   367       while (first != last && (*_level)[_source] == -2) {
   368 	if (first == limit) {
   369 	  limit = last;
   370 	  ++level;
   371 	}
   372 	
   373 	Node n = _queue[first++];
   374 	  
   375 	for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   376 	  Node v = _graph.target(e);
   377 	  if ((*_level)[v] != -2) continue;
   378 	  Value rem = (*_flow)[e];
   379 	  if (!_tolerance.positive(rem)) continue;
   380 	  _level->set(v, level);
   381 	  _queue[last++] = v;
   382 	}
   383 	
   384 	for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   385 	  Node v = _graph.source(e);
   386 	  if ((*_level)[v] != -2) continue;
   387 	  Value rem = (*_capacity)[e] - (*_flow)[e];
   388 	  if (!_tolerance.positive(rem)) continue;
   389 	  _level->set(v, level);
   390 	  _queue[last++] = v;
   391 	}
   392       }
   393       return (*_level)[_source] != -2;
   394     }
   395 
   396     void initEdges() {
   397       for (NodeIt n(_graph); n != INVALID; ++n) {
   398 	_graph.firstOut((*_dt_edges)[n], n);
   399       }
   400     }
   401         
   402     
   403     void augmentPath() {
   404       Value rem;
   405       Node n = _dt->findCost(_source, rem);
   406       _flow_value += rem;
   407       _dt->addCost(_source, - rem);
   408 
   409       _dt->cut(n);
   410       _dt->addCost(n, _max_value);
   411 
   412       Edge e = (*_dt_edges)[n];
   413       if (_graph.source(e) == n) {
   414 	_flow->set(e, (*_capacity)[e]);
   415 	
   416 	_graph.nextOut(e);
   417 	if (e == INVALID) {
   418 	  _graph.firstIn(e, n);
   419 	}
   420       } else {
   421 	_flow->set(e, 0);
   422 	_graph.nextIn(e);
   423       }
   424       _dt_edges->set(n, e);
   425 
   426     }
   427 
   428     bool advance(Node n) {
   429       Edge e = (*_dt_edges)[n];
   430       if (e == INVALID) return false;
   431 
   432       Node u;
   433       Value rem;      
   434       if (_graph.source(e) == n) {
   435 	u = _graph.target(e);
   436 	while ((*_level)[n] != (*_level)[u] + 1 || 
   437 	       !_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
   438 	  _graph.nextOut(e);
   439 	  if (e == INVALID) break;
   440 	  u = _graph.target(e);
   441 	}
   442 	if (e != INVALID) {
   443 	  rem = (*_capacity)[e] - (*_flow)[e];
   444 	} else {
   445 	  _graph.firstIn(e, n);
   446 	  if (e == INVALID) {
   447 	    _dt_edges->set(n, INVALID);
   448 	    return false;
   449 	  }
   450 	  u = _graph.source(e);
   451 	  while ((*_level)[n] != (*_level)[u] + 1 ||
   452 		 !_tolerance.positive((*_flow)[e])) {
   453 	    _graph.nextIn(e);
   454 	    if (e == INVALID) {
   455 	      _dt_edges->set(n, INVALID);
   456 	      return false;
   457 	    }
   458 	    u = _graph.source(e);
   459 	  }
   460 	  rem = (*_flow)[e];
   461 	}
   462       } else {
   463 	u = _graph.source(e);
   464 	while ((*_level)[n] != (*_level)[u] + 1 ||
   465 	       !_tolerance.positive((*_flow)[e])) {
   466 	  _graph.nextIn(e);
   467 	  if (e == INVALID) {
   468 	    _dt_edges->set(n, INVALID);
   469 	    return false;
   470 	  }
   471 	  u = _graph.source(e);
   472 	}
   473 	rem = (*_flow)[e];
   474       }
   475 
   476       _dt->addCost(n, - std::numeric_limits<Value>::max());
   477       _dt->addCost(n, rem);
   478       _dt->link(n, u);
   479       _dt_edges->set(n, e);
   480       return true;
   481     }
   482 
   483     void retreat(Node n) {
   484       _level->set(n, -1);
   485       
   486       for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   487 	Node u = _graph.target(e);
   488 	if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) {
   489 	  Value rem;
   490 	  _dt->findCost(u, rem);
   491 	  _flow->set(e, rem);
   492 	  _dt->cut(u);
   493 	  _dt->addCost(u, - rem);
   494 	  _dt->addCost(u, _max_value);
   495 	}
   496       }
   497       for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   498 	Node u = _graph.source(e);
   499 	if ((*_dt_edges)[u] == e && _dt->findRoot(u) == n) {
   500 	  Value rem;
   501 	  _dt->findCost(u, rem);
   502 	  _flow->set(e, (*_capacity)[e] - rem);
   503 	  _dt->cut(u);
   504 	  _dt->addCost(u, - rem);
   505 	  _dt->addCost(u, _max_value);
   506 	}
   507       }
   508     }
   509 
   510     void extractTrees() {
   511       for (NodeIt n(_graph); n != INVALID; ++n) {
   512 	
   513 	Node w = _dt->findRoot(n);
   514       
   515 	while (w != n) {
   516       
   517 	  Value rem;      
   518 	  Node u = _dt->findCost(n, rem);
   519 
   520 	  _dt->cut(u);
   521 	  _dt->addCost(u, - rem);
   522 	  _dt->addCost(u, _max_value);
   523 	  
   524 	  Edge e = (*_dt_edges)[u];
   525 	  _dt_edges->set(u, INVALID);
   526 	  
   527 	  if (u == _graph.source(e)) {
   528 	    _flow->set(e, (*_capacity)[e] - rem);
   529 	  } else {
   530 	    _flow->set(e, rem);
   531 	  }
   532 	  
   533 	  w = _dt->findRoot(n);
   534 	}      
   535       }
   536     }
   537 
   538 
   539   public:
   540     
   541     /// \name Execution control The simplest way to execute the
   542     /// algorithm is to use the \c run() member functions.
   543     /// \n
   544     /// If you need more control on initial solution or
   545     /// execution then you have to call one \ref init() function and then
   546     /// the start() or multiple times the \c augment() member function.  
   547     
   548     ///@{
   549 
   550     /// \brief Initializes the algorithm
   551     /// 
   552     /// It sets the flow to empty flow.
   553     void init() {
   554       createStructures();
   555 
   556       _dt->clear();
   557       for (NodeIt n(_graph); n != INVALID; ++n) {
   558         _dt->makeTree(n);
   559         _dt->addCost(n, _max_value);
   560       }
   561 
   562       for (EdgeIt it(_graph); it != INVALID; ++it) {
   563         _flow->set(it, 0);
   564       }
   565       _flow_value = 0;
   566     }
   567     
   568     /// \brief Initializes the algorithm
   569     /// 
   570     /// Initializes the flow to the \c flowMap. The \c flowMap should
   571     /// contain a feasible flow, ie. in each node excluding the source
   572     /// and the target the incoming flow should be equal to the
   573     /// outgoing flow.
   574     template <typename FlowMap>
   575     void flowInit(const FlowMap& flowMap) {
   576       createStructures();
   577 
   578       _dt->clear();
   579       for (NodeIt n(_graph); n != INVALID; ++n) {
   580         _dt->makeTree(n);
   581         _dt->addCost(n, _max_value);
   582       }
   583 
   584       for (EdgeIt e(_graph); e != INVALID; ++e) {
   585 	_flow->set(e, flowMap[e]);
   586       }
   587       _flow_value = 0;
   588       for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   589         _flow_value += (*_flow)[jt];
   590       }
   591       for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   592         _flow_value -= (*_flow)[jt];
   593       }
   594     }
   595 
   596     /// \brief Initializes the algorithm
   597     /// 
   598     /// Initializes the flow to the \c flowMap. The \c flowMap should
   599     /// contain a feasible flow, ie. in each node excluding the source
   600     /// and the target the incoming flow should be equal to the
   601     /// outgoing flow.  
   602     /// \return %False when the given flowMap does not contain
   603     /// feasible flow.
   604     template <typename FlowMap>
   605     bool checkedFlowInit(const FlowMap& flowMap) {
   606       createStructures();
   607 
   608       _dt->clear();
   609       for (NodeIt n(_graph); n != INVALID; ++n) {
   610         _dt->makeTree(n);
   611         _dt->addCost(n, _max_value);
   612       }
   613 
   614       for (EdgeIt e(_graph); e != INVALID; ++e) {
   615 	_flow->set(e, flowMap[e]);
   616       }
   617       for (NodeIt it(_graph); it != INVALID; ++it) {
   618         if (it == _source || it == _target) continue;
   619         Value outFlow = 0;
   620         for (OutEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
   621           outFlow += (*_flow)[jt];
   622         }
   623         Value inFlow = 0;
   624         for (InEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
   625           inFlow += (*_flow)[jt];
   626         }
   627         if (_tolerance.different(outFlow, inFlow)) {
   628           return false;
   629         }
   630       }
   631       for (EdgeIt it(_graph); it != INVALID; ++it) {
   632         if (_tolerance.less((*_flow)[it], 0)) return false;
   633         if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
   634       }
   635       _flow_value = 0;
   636       for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   637         _flow_value += (*_flow)[jt];
   638       }
   639       for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   640         _flow_value -= (*_flow)[jt];
   641       }
   642       return true;
   643     }
   644 
   645     /// \brief Executes the algorithm
   646     ///
   647     /// It runs augmenting phases by adding blocking flow until the
   648     /// optimal solution is reached.
   649     void start() {
   650       while (augment());
   651     }
   652 
   653     /// \brief Augments the flow with a blocking flow on a layered
   654     /// graph.
   655     /// 
   656     /// This function builds a layered graph and then find a blocking
   657     /// flow on this graph. The number of the levels in the layered
   658     /// graph is strictly increasing in each augmenting phase
   659     /// therefore the number of the augmentings is at most \f$ n-1
   660     /// \f$.  The length of each phase is at most \f$ O(m \log(n))
   661     /// \f$, that the overall time complexity is \f$ O(nm \log(n)) \f$.
   662     /// \return %False when there is not residual path between the
   663     /// source and the target so the current flow is a feasible and
   664     /// optimal solution.
   665     bool augment() {
   666       Node n;
   667 
   668       if (createLayeredGraph()) {
   669 	
   670 	Timer bf_timer;
   671 	initEdges();
   672 
   673 	n = _dt->findRoot(_source);
   674 	while (true) {
   675 	  Edge e;
   676 	  if (n == _target) {
   677 	    augmentPath();
   678 	  } else if (!advance(n)) {
   679 	    if (n != _source) {
   680 	      retreat(n);
   681 	    } else {
   682 	      break;
   683 	    }
   684 	  }
   685 	  n = _dt->findRoot(_source);
   686 	}     
   687 	extractTrees();
   688 
   689 	return true;
   690       } else {
   691 	return false;
   692       }
   693     }
   694     
   695     /// \brief runs the algorithm.
   696     /// 
   697     /// It is just a shorthand for:
   698     ///
   699     ///\code 
   700     /// ek.init();
   701     /// ek.start();
   702     ///\endcode
   703     void run() {
   704       init();
   705       start();
   706     }
   707 
   708     /// @}
   709 
   710     /// \name Query Functions 
   711     /// The result of the Dinitz-Sleator-Tarjan algorithm can be
   712     /// obtained using these functions.
   713     /// \n
   714     /// Before the use of these functions,
   715     /// either run() or start() must be called.
   716     
   717     ///@{
   718 
   719     /// \brief Returns the value of the maximum flow.
   720     ///
   721     /// Returns the value of the maximum flow by returning the excess
   722     /// of the target node \c t. This value equals to the value of
   723     /// the maximum flow already after the first phase.
   724     Value flowValue() const {
   725       return _flow_value;
   726     }
   727 
   728 
   729     /// \brief Returns the flow on the edge.
   730     ///
   731     /// Sets the \c flowMap to the flow on the edges. This method can
   732     /// be called after the second phase of algorithm.
   733     Value flow(const Edge& edge) const {
   734       return (*_flow)[edge];
   735     }
   736 
   737     /// \brief Returns true when the node is on the source side of minimum cut.
   738     ///
   739 
   740     /// Returns true when the node is on the source side of minimum
   741     /// cut. This method can be called both after running \ref
   742     /// startFirstPhase() and \ref startSecondPhase().
   743     bool minCut(const Node& node) const {
   744       return (*_level)[node] == -2;
   745     }
   746 
   747     /// \brief Returns a minimum value cut.
   748     ///
   749     /// Sets \c cut to the characteristic vector of a minimum value cut
   750     /// It simply calls the minMinCut member.
   751     /// \retval cut Write node bool map. 
   752     template <typename CutMap>
   753     void minCutMap(CutMap& cutMap) const {
   754       for (NodeIt n(_graph); n != INVALID; ++n) {
   755 	cutMap.set(n, (*_level)[n] == -2);
   756       }
   757       cutMap.set(_source, true);
   758     }    
   759 
   760     /// @}
   761 
   762   };
   763 }
   764 
   765 #endif