Reimplemented MinMeanCycle to be much more efficient.
The new version implements Howard's algorithm instead of Karp's algorithm and
it is at least 10-20 times faster on all the 40-50 random graphs we have tested.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_FIB_HEAP_H
20 #define LEMON_FIB_HEAP_H
24 ///\brief Fibonacci Heap implementation.
34 ///\brief Fibonacci Heap.
36 ///This class implements the \e Fibonacci \e heap data structure. A \e heap
37 ///is a data structure for storing items with specified values called \e
38 ///priorities in such a way that finding the item with minimum priority is
39 ///efficient. \c Compare specifies the ordering of the priorities. In a heap
40 ///one can change the priority of an item, add or erase an item, etc.
42 ///The methods \ref increase and \ref erase are not efficient in a Fibonacci
43 ///heap. In case of many calls to these operations, it is better to use a
44 ///\ref BinHeap "binary heap".
46 ///\param _Prio Type of the priority of the items.
47 ///\param _ItemIntMap A read and writable Item int map, used internally
48 ///to handle the cross references.
49 ///\param _Compare A class for the ordering of the priorities. The
50 ///default is \c std::less<_Prio>.
54 ///\author Jacint Szabo
57 template <typename _Prio,
61 template <typename _Prio,
63 typename _Compare = std::less<_Prio> >
67 typedef _ItemIntMap ItemIntMap;
69 typedef typename ItemIntMap::Key Item;
70 typedef std::pair<Item,Prio> Pair;
71 typedef _Compare Compare;
76 std::vector<store> container;
83 ///Status of the nodes
85 ///The node is in the heap
87 ///The node has never been in the heap
89 ///The node was in the heap but it got out of it
93 /// \brief The constructor
95 /// \c _iimap should be given to the constructor, since it is
96 /// used internally to handle the cross references.
97 explicit FibHeap(ItemIntMap &_iimap)
98 : minimum(0), iimap(_iimap), num_items() {}
100 /// \brief The constructor
102 /// \c _iimap should be given to the constructor, since it is used
103 /// internally to handle the cross references. \c _comp is an
104 /// object for ordering of the priorities.
105 FibHeap(ItemIntMap &_iimap, const Compare &_comp)
106 : minimum(0), iimap(_iimap), comp(_comp), num_items() {}
108 /// \brief The number of items stored in the heap.
110 /// Returns the number of items stored in the heap.
111 int size() const { return num_items; }
113 /// \brief Checks if the heap stores no items.
115 /// Returns \c true if and only if the heap stores no items.
116 bool empty() const { return num_items==0; }
118 /// \brief Make empty this heap.
120 /// Make empty this heap. It does not change the cross reference
121 /// map. If you want to reuse a heap what is not surely empty you
122 /// should first clear the heap and after that you should set the
123 /// cross reference map for each item to \c PRE_HEAP.
125 container.clear(); minimum = 0; num_items = 0;
128 /// \brief \c item gets to the heap with priority \c value independently
129 /// if \c item was already there.
131 /// This method calls \ref push(\c item, \c value) if \c item is not
132 /// stored in the heap and it calls \ref decrease(\c item, \c value) or
133 /// \ref increase(\c item, \c value) otherwise.
134 void set (const Item& item, const Prio& value) {
136 if ( i >= 0 && container[i].in ) {
137 if ( comp(value, container[i].prio) ) decrease(item, value);
138 if ( comp(container[i].prio, value) ) increase(item, value);
139 } else push(item, value);
142 /// \brief Adds \c item to the heap with priority \c value.
144 /// Adds \c item to the heap with priority \c value.
145 /// \pre \c item must not be stored in the heap.
146 void push (const Item& item, const Prio& value) {
149 int s=container.size();
150 iimap.set( item, s );
153 container.push_back(st);
156 container[i].parent=container[i].child=-1;
157 container[i].degree=0;
158 container[i].in=true;
159 container[i].marked=false;
163 container[container[minimum].right_neighbor].left_neighbor=i;
164 container[i].right_neighbor=container[minimum].right_neighbor;
165 container[minimum].right_neighbor=i;
166 container[i].left_neighbor=minimum;
167 if ( comp( value, container[minimum].prio) ) minimum=i;
169 container[i].right_neighbor=container[i].left_neighbor=i;
172 container[i].prio=value;
176 /// \brief Returns the item with minimum priority relative to \c Compare.
178 /// This method returns the item with minimum priority relative to \c
180 /// \pre The heap must be nonempty.
181 Item top() const { return container[minimum].name; }
183 /// \brief Returns the minimum priority relative to \c Compare.
185 /// It returns the minimum priority relative to \c Compare.
186 /// \pre The heap must be nonempty.
187 const Prio& prio() const { return container[minimum].prio; }
189 /// \brief Returns the priority of \c item.
191 /// It returns the priority of \c item.
192 /// \pre \c item must be in the heap.
193 const Prio& operator[](const Item& item) const {
194 return container[iimap[item]].prio;
197 /// \brief Deletes the item with minimum priority relative to \c Compare.
199 /// This method deletes the item with minimum priority relative to \c
200 /// Compare from the heap.
201 /// \pre The heap must be non-empty.
203 /*The first case is that there are only one root.*/
204 if ( container[minimum].left_neighbor==minimum ) {
205 container[minimum].in=false;
206 if ( container[minimum].degree!=0 ) {
207 makeroot(container[minimum].child);
208 minimum=container[minimum].child;
212 int right=container[minimum].right_neighbor;
214 container[minimum].in=false;
215 if ( container[minimum].degree > 0 ) {
216 int left=container[minimum].left_neighbor;
217 int child=container[minimum].child;
218 int last_child=container[child].left_neighbor;
222 container[left].right_neighbor=child;
223 container[child].left_neighbor=left;
224 container[right].left_neighbor=last_child;
225 container[last_child].right_neighbor=right;
229 } // the case where there are more roots
233 /// \brief Deletes \c item from the heap.
235 /// This method deletes \c item from the heap, if \c item was already
236 /// stored in the heap. It is quite inefficient in Fibonacci heaps.
237 void erase (const Item& item) {
240 if ( i >= 0 && container[i].in ) {
241 if ( container[i].parent!=-1 ) {
242 int p=container[i].parent;
246 minimum=i; //As if its prio would be -infinity
251 /// \brief Decreases the priority of \c item to \c value.
253 /// This method decreases the priority of \c item to \c value.
254 /// \pre \c item must be stored in the heap with priority at least \c
255 /// value relative to \c Compare.
256 void decrease (Item item, const Prio& value) {
258 container[i].prio=value;
259 int p=container[i].parent;
261 if ( p!=-1 && comp(value, container[p].prio) ) {
265 if ( comp(value, container[minimum].prio) ) minimum=i;
268 /// \brief Increases the priority of \c item to \c value.
270 /// This method sets the priority of \c item to \c value. Though
271 /// there is no precondition on the priority of \c item, this
272 /// method should be used only if it is indeed necessary to increase
273 /// (relative to \c Compare) the priority of \c item, because this
274 /// method is inefficient.
275 void increase (Item item, const Prio& value) {
281 /// \brief Returns if \c item is in, has already been in, or has never
282 /// been in the heap.
284 /// This method returns PRE_HEAP if \c item has never been in the
285 /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP
286 /// otherwise. In the latter case it is possible that \c item will
287 /// get back to the heap again.
288 State state(const Item &item) const {
291 if ( container[i].in ) i=0;
297 /// \brief Sets the state of the \c item in the heap.
299 /// Sets the state of the \c item in the heap. It can be used to
300 /// manually clear the heap when it is important to achive the
301 /// better time complexity.
302 /// \param i The item.
303 /// \param st The state. It should not be \c IN_HEAP.
304 void state(const Item& i, State st) {
308 if (state(i) == IN_HEAP) {
322 int maxdeg=int( std::floor( 2.08*log(double(container.size()))))+1;
324 std::vector<int> A(maxdeg,-1);
327 *Recall that now minimum does not point to the minimum prio element.
328 *We set minimum to this during balance().
330 int anchor=container[minimum].left_neighbor;
336 if ( anchor==active ) end=true;
337 int d=container[active].degree;
338 next=container[active].right_neighbor;
341 if( comp(container[active].prio, container[A[d]].prio) ) {
354 while ( container[minimum].parent >=0 )
355 minimum=container[minimum].parent;
359 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
360 s=container[s].right_neighbor;
364 void makeroot(int c) {
367 container[s].parent=-1;
368 s=container[s].right_neighbor;
372 void cut(int a, int b) {
374 *Replacing a from the children of b.
376 --container[b].degree;
378 if ( container[b].degree !=0 ) {
379 int child=container[b].child;
381 container[b].child=container[child].right_neighbor;
386 /*Lacing a to the roots.*/
387 int right=container[minimum].right_neighbor;
388 container[minimum].right_neighbor=a;
389 container[a].left_neighbor=minimum;
390 container[a].right_neighbor=right;
391 container[right].left_neighbor=a;
393 container[a].parent=-1;
394 container[a].marked=false;
397 void cascade(int a) {
398 if ( container[a].parent!=-1 ) {
399 int p=container[a].parent;
401 if ( container[a].marked==false ) container[a].marked=true;
409 void fuse(int a, int b) {
412 /*Lacing b under a.*/
413 container[b].parent=a;
415 if (container[a].degree==0) {
416 container[b].left_neighbor=b;
417 container[b].right_neighbor=b;
418 container[a].child=b;
420 int child=container[a].child;
421 int last_child=container[child].left_neighbor;
422 container[child].left_neighbor=b;
423 container[b].right_neighbor=child;
424 container[last_child].right_neighbor=b;
425 container[b].left_neighbor=last_child;
428 ++container[a].degree;
430 container[b].marked=false;
434 *It is invoked only if a has siblings.
437 int leftn=container[a].left_neighbor;
438 int rightn=container[a].right_neighbor;
439 container[leftn].right_neighbor=rightn;
440 container[rightn].left_neighbor=leftn;
445 friend class FibHeap;
457 store() : parent(-1), child(-1), degree(), marked(false), in(true) {}
463 #endif //LEMON_FIB_HEAP_H