lemon/hao_orlin.h
author kpeter
Sun, 13 Jan 2008 10:26:55 +0000
changeset 2555 a84e52e99f57
parent 2530 f86f7e4eb2ba
child 2624 dc4dd5fc0e25
permissions -rw-r--r--
Reimplemented MinMeanCycle to be much more efficient.
The new version implements Howard's algorithm instead of Karp's algorithm and
it is at least 10-20 times faster on all the 40-50 random graphs we have tested.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_HAO_ORLIN_H
    20 #define LEMON_HAO_ORLIN_H
    21 
    22 #include <vector>
    23 #include <list>
    24 #include <ext/hash_set>
    25 #include <limits>
    26 
    27 #include <lemon/maps.h>
    28 #include <lemon/graph_utils.h>
    29 #include <lemon/graph_adaptor.h>
    30 #include <lemon/iterable_maps.h>
    31 
    32 /// \file
    33 /// \ingroup min_cut
    34 /// \brief Implementation of the Hao-Orlin algorithm.
    35 ///
    36 /// Implementation of the Hao-Orlin algorithm class for testing network 
    37 /// reliability.
    38 
    39 namespace lemon {
    40 
    41   /// \ingroup min_cut
    42   ///
    43   /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs.
    44   ///
    45   /// Hao-Orlin calculates a minimum cut in a directed graph
    46   /// \f$D=(V,A)\f$. It takes a fixed node \f$ source \in V \f$ and
    47   /// consists of two phases: in the first phase it determines a
    48   /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
    49   /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal
    50   /// out-degree) and in the second phase it determines a minimum cut
    51   /// with \f$ source \f$ on the sink-side (i.e. a set 
    52   /// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal
    53   /// out-degree). Obviously, the smaller of these two cuts will be a
    54   /// minimum cut of \f$ D \f$. The algorithm is a modified
    55   /// push-relabel preflow algorithm and our implementation calculates
    56   /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
    57   /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
    58   /// purpose of such algorithm is testing network reliability. For an
    59   /// undirected graph you can run just the first phase of the
    60   /// algorithm or you can use the algorithm of Nagamochi and Ibaraki
    61   /// which solves the undirected problem in 
    62   /// \f$ O(nm + n^2 \log(n)) \f$ time: it is implemented in the
    63   /// NagamochiIbaraki algorithm class.
    64   ///
    65   /// \param _Graph is the graph type of the algorithm.
    66   /// \param _CapacityMap is an edge map of capacities which should
    67   /// be any numreric type. The default type is _Graph::EdgeMap<int>.
    68   /// \param _Tolerance is the handler of the inexact computation. The
    69   /// default type for this is Tolerance<typename CapacityMap::Value>.
    70   ///
    71   /// \author Attila Bernath and Balazs Dezso
    72 #ifdef DOXYGEN
    73   template <typename _Graph, typename _CapacityMap, typename _Tolerance>
    74 #else
    75   template <typename _Graph,
    76 	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
    77             typename _Tolerance = Tolerance<typename _CapacityMap::Value> >
    78 #endif
    79   class HaoOrlin {
    80   private:
    81 
    82     typedef _Graph Graph;
    83     typedef _CapacityMap CapacityMap;
    84     typedef _Tolerance Tolerance;
    85 
    86     typedef typename CapacityMap::Value Value;
    87 
    88     GRAPH_TYPEDEFS(typename Graph);
    89     
    90     const Graph& _graph;
    91     const CapacityMap* _capacity;
    92 
    93     typedef typename Graph::template EdgeMap<Value> FlowMap;
    94     FlowMap* _flow;
    95 
    96     Node _source;
    97 
    98     int _node_num;
    99 
   100     // Bucketing structure
   101     std::vector<Node> _first, _last;
   102     typename Graph::template NodeMap<Node>* _next;
   103     typename Graph::template NodeMap<Node>* _prev;    
   104     typename Graph::template NodeMap<bool>* _active;
   105     typename Graph::template NodeMap<int>* _bucket;
   106     
   107     std::vector<bool> _dormant;
   108 
   109     std::list<std::list<int> > _sets;
   110     std::list<int>::iterator _highest;
   111     
   112     typedef typename Graph::template NodeMap<Value> ExcessMap;
   113     ExcessMap* _excess;
   114 
   115     typedef typename Graph::template NodeMap<bool> SourceSetMap;
   116     SourceSetMap* _source_set;
   117 
   118     Value _min_cut;
   119 
   120     typedef typename Graph::template NodeMap<bool> MinCutMap;
   121     MinCutMap* _min_cut_map;
   122 
   123     Tolerance _tolerance;
   124 
   125   public: 
   126 
   127     /// \brief Constructor
   128     ///
   129     /// Constructor of the algorithm class. 
   130     HaoOrlin(const Graph& graph, const CapacityMap& capacity, 
   131              const Tolerance& tolerance = Tolerance()) :
   132       _graph(graph), _capacity(&capacity), _flow(0), _source(),
   133       _node_num(), _first(), _last(), _next(0), _prev(0), 
   134       _active(0), _bucket(0), _dormant(), _sets(), _highest(),
   135       _excess(0), _source_set(0), _min_cut(), _min_cut_map(0), 
   136       _tolerance(tolerance) {}
   137 
   138     ~HaoOrlin() {
   139       if (_min_cut_map) {
   140         delete _min_cut_map;
   141       } 
   142       if (_source_set) {
   143         delete _source_set;
   144       }
   145       if (_excess) {
   146         delete _excess;
   147       }
   148       if (_next) {
   149 	delete _next;
   150       }
   151       if (_prev) {
   152 	delete _prev;
   153       }
   154       if (_active) {
   155 	delete _active;
   156       }
   157       if (_bucket) {
   158 	delete _bucket;
   159       }
   160       if (_flow) {
   161         delete _flow;
   162       }
   163     }
   164     
   165   private:
   166 
   167     void activate(const Node& i) {
   168       _active->set(i, true);
   169 
   170       int bucket = (*_bucket)[i];
   171 
   172       if ((*_prev)[i] == INVALID || (*_active)[(*_prev)[i]]) return;	    
   173       //unlace
   174       _next->set((*_prev)[i], (*_next)[i]);
   175       if ((*_next)[i] != INVALID) {
   176 	_prev->set((*_next)[i], (*_prev)[i]);
   177       } else {
   178 	_last[bucket] = (*_prev)[i];
   179       }
   180       //lace
   181       _next->set(i, _first[bucket]);
   182       _prev->set(_first[bucket], i);
   183       _prev->set(i, INVALID);
   184       _first[bucket] = i;
   185     }
   186 
   187     void deactivate(const Node& i) {
   188       _active->set(i, false);
   189       int bucket = (*_bucket)[i];
   190 
   191       if ((*_next)[i] == INVALID || !(*_active)[(*_next)[i]]) return;
   192       
   193       //unlace
   194       _prev->set((*_next)[i], (*_prev)[i]);
   195       if ((*_prev)[i] != INVALID) {
   196 	_next->set((*_prev)[i], (*_next)[i]);
   197       } else {
   198 	_first[bucket] = (*_next)[i];
   199       }
   200       //lace
   201       _prev->set(i, _last[bucket]);
   202       _next->set(_last[bucket], i);
   203       _next->set(i, INVALID);
   204       _last[bucket] = i;
   205     }
   206 
   207     void addItem(const Node& i, int bucket) {
   208       (*_bucket)[i] = bucket;
   209       if (_last[bucket] != INVALID) {
   210 	_prev->set(i, _last[bucket]);
   211 	_next->set(_last[bucket], i);
   212 	_next->set(i, INVALID);
   213 	_last[bucket] = i;
   214       } else {
   215 	_prev->set(i, INVALID);
   216 	_first[bucket] = i;
   217 	_next->set(i, INVALID);
   218 	_last[bucket] = i;
   219       }
   220     }
   221     
   222     void findMinCutOut() {
   223 
   224       for (NodeIt n(_graph); n != INVALID; ++n) {
   225 	_excess->set(n, 0);
   226       }
   227 
   228       for (EdgeIt e(_graph); e != INVALID; ++e) {
   229 	_flow->set(e, 0);
   230       }
   231 
   232       int bucket_num = 1;
   233       
   234       {
   235 	typename Graph::template NodeMap<bool> reached(_graph, false);
   236 	
   237 	reached.set(_source, true);
   238 
   239 	bool first_set = true;
   240 
   241 	for (NodeIt t(_graph); t != INVALID; ++t) {
   242 	  if (reached[t]) continue;
   243 	  _sets.push_front(std::list<int>());
   244 	  _sets.front().push_front(bucket_num);
   245 	  _dormant[bucket_num] = !first_set;
   246 
   247 	  _bucket->set(t, bucket_num);
   248 	  _first[bucket_num] = _last[bucket_num] = t;
   249 	  _next->set(t, INVALID);
   250 	  _prev->set(t, INVALID);
   251 
   252 	  ++bucket_num;
   253 	  
   254 	  std::vector<Node> queue;
   255 	  queue.push_back(t);
   256 	  reached.set(t, true);
   257 	  
   258 	  while (!queue.empty()) {
   259 	    _sets.front().push_front(bucket_num);
   260 	    _dormant[bucket_num] = !first_set;
   261 	    _first[bucket_num] = _last[bucket_num] = INVALID;
   262 	    
   263 	    std::vector<Node> nqueue;
   264 	    for (int i = 0; i < int(queue.size()); ++i) {
   265 	      Node n = queue[i];
   266 	      for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   267 		Node u = _graph.source(e);
   268 		if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   269 		  reached.set(u, true);
   270 		  addItem(u, bucket_num);
   271 		  nqueue.push_back(u);
   272 		}
   273 	      }
   274 	    }
   275 	    queue.swap(nqueue);
   276 	    ++bucket_num;
   277 	  }
   278 	  _sets.front().pop_front();
   279 	  --bucket_num;
   280 	  first_set = false;
   281 	}
   282 
   283 	_bucket->set(_source, 0);
   284 	_dormant[0] = true;
   285       }
   286       _source_set->set(_source, true);	  
   287 	  
   288       Node target = _last[_sets.back().back()];
   289       {
   290 	for (OutEdgeIt e(_graph, _source); e != INVALID; ++e) {
   291 	  if (_tolerance.positive((*_capacity)[e])) {
   292 	    Node u = _graph.target(e);
   293 	    _flow->set(e, (*_capacity)[e]);
   294 	    _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
   295 	    if (!(*_active)[u] && u != _source) {
   296 	      activate(u);
   297 	    }
   298 	  }
   299 	}
   300 	if ((*_active)[target]) {
   301 	  deactivate(target);
   302 	}
   303 	
   304 	_highest = _sets.back().begin();
   305 	while (_highest != _sets.back().end() && 
   306 	       !(*_active)[_first[*_highest]]) {
   307 	  ++_highest;
   308 	}
   309       }
   310 
   311 
   312       while (true) {
   313 	while (_highest != _sets.back().end()) {
   314 	  Node n = _first[*_highest];
   315 	  Value excess = (*_excess)[n];
   316 	  int next_bucket = _node_num;
   317 
   318 	  int under_bucket;
   319 	  if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
   320 	    under_bucket = -1;
   321 	  } else {
   322 	    under_bucket = *(++std::list<int>::iterator(_highest));
   323 	  }
   324 
   325 	  for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   326 	    Node v = _graph.target(e);
   327 	    if (_dormant[(*_bucket)[v]]) continue;
   328 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   329 	    if (!_tolerance.positive(rem)) continue;
   330 	    if ((*_bucket)[v] == under_bucket) {
   331 	      if (!(*_active)[v] && v != target) {
   332 		activate(v);
   333 	      }
   334 	      if (!_tolerance.less(rem, excess)) {
   335 		_flow->set(e, (*_flow)[e] + excess);
   336 		_excess->set(v, (*_excess)[v] + excess);
   337 		excess = 0;
   338 		goto no_more_push;
   339 	      } else {
   340 		excess -= rem;
   341 		_excess->set(v, (*_excess)[v] + rem);
   342 		_flow->set(e, (*_capacity)[e]);
   343 	      }
   344 	    } else if (next_bucket > (*_bucket)[v]) {
   345 	      next_bucket = (*_bucket)[v];
   346 	    }
   347 	  }
   348 
   349 	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   350 	    Node v = _graph.source(e);
   351 	    if (_dormant[(*_bucket)[v]]) continue;
   352 	    Value rem = (*_flow)[e];
   353 	    if (!_tolerance.positive(rem)) continue;
   354 	    if ((*_bucket)[v] == under_bucket) {
   355 	      if (!(*_active)[v] && v != target) {
   356 		activate(v);
   357 	      }
   358 	      if (!_tolerance.less(rem, excess)) {
   359 		_flow->set(e, (*_flow)[e] - excess);
   360 		_excess->set(v, (*_excess)[v] + excess);
   361 		excess = 0;
   362 		goto no_more_push;
   363 	      } else {
   364 		excess -= rem;
   365 		_excess->set(v, (*_excess)[v] + rem);
   366 		_flow->set(e, 0);
   367 	      }
   368 	    } else if (next_bucket > (*_bucket)[v]) {
   369 	      next_bucket = (*_bucket)[v];
   370 	    }
   371 	  }
   372 	  
   373 	no_more_push:
   374 	  
   375 	  _excess->set(n, excess);
   376 	  
   377 	  if (excess != 0) {
   378 	    if ((*_next)[n] == INVALID) {
   379 	      typename std::list<std::list<int> >::iterator new_set = 
   380 		_sets.insert(--_sets.end(), std::list<int>());
   381 	      new_set->splice(new_set->end(), _sets.back(), 
   382 			      _sets.back().begin(), ++_highest);
   383 	      for (std::list<int>::iterator it = new_set->begin();
   384 		   it != new_set->end(); ++it) {
   385 		_dormant[*it] = true;
   386 	      }
   387 	      while (_highest != _sets.back().end() && 
   388 		     !(*_active)[_first[*_highest]]) {
   389 		++_highest;
   390 	      }
   391 	    } else if (next_bucket == _node_num) {
   392 	      _first[(*_bucket)[n]] = (*_next)[n];
   393 	      _prev->set((*_next)[n], INVALID);
   394 	      
   395 	      std::list<std::list<int> >::iterator new_set = 
   396 		_sets.insert(--_sets.end(), std::list<int>());
   397 	      
   398 	      new_set->push_front(bucket_num);
   399 	      _bucket->set(n, bucket_num);
   400 	      _first[bucket_num] = _last[bucket_num] = n;
   401 	      _next->set(n, INVALID);
   402 	      _prev->set(n, INVALID);
   403 	      _dormant[bucket_num] = true;
   404 	      ++bucket_num;
   405 
   406 	      while (_highest != _sets.back().end() && 
   407 		     !(*_active)[_first[*_highest]]) {
   408 		++_highest;
   409 	      }
   410 	    } else {
   411 	      _first[*_highest] = (*_next)[n];
   412 	      _prev->set((*_next)[n], INVALID);
   413 	      
   414 	      while (next_bucket != *_highest) {
   415 		--_highest;
   416 	      }
   417 
   418 	      if (_highest == _sets.back().begin()) {
   419 		_sets.back().push_front(bucket_num);
   420 		_dormant[bucket_num] = false;
   421 		_first[bucket_num] = _last[bucket_num] = INVALID;
   422 		++bucket_num;
   423 	      }
   424 	      --_highest;
   425 
   426 	      _bucket->set(n, *_highest);
   427 	      _next->set(n, _first[*_highest]);
   428 	      if (_first[*_highest] != INVALID) {
   429 		_prev->set(_first[*_highest], n);
   430 	      } else {
   431 		_last[*_highest] = n;
   432 	      }
   433 	      _first[*_highest] = n;	      
   434 	    }
   435 	  } else {
   436 
   437 	    deactivate(n);
   438 	    if (!(*_active)[_first[*_highest]]) {
   439 	      ++_highest;
   440 	      if (_highest != _sets.back().end() && 
   441 		  !(*_active)[_first[*_highest]]) {
   442 		_highest = _sets.back().end();
   443 	      }
   444 	    }
   445 	  }
   446 	}
   447 
   448 	if ((*_excess)[target] < _min_cut) {
   449 	  _min_cut = (*_excess)[target];
   450 	  for (NodeIt i(_graph); i != INVALID; ++i) {
   451 	    _min_cut_map->set(i, true);
   452 	  }
   453 	  for (std::list<int>::iterator it = _sets.back().begin();
   454 	       it != _sets.back().end(); ++it) {
   455 	    Node n = _first[*it];
   456 	    while (n != INVALID) {
   457 	      _min_cut_map->set(n, false);
   458 	      n = (*_next)[n];
   459 	    }
   460 	  }
   461 	}
   462 
   463 	{
   464 	  Node new_target;
   465 	  if ((*_prev)[target] != INVALID) {
   466 	    _last[(*_bucket)[target]] = (*_prev)[target];
   467 	    _next->set((*_prev)[target], INVALID);
   468 	    new_target = (*_prev)[target];
   469 	  } else {
   470 	    _sets.back().pop_back();
   471 	    if (_sets.back().empty()) {
   472 	      _sets.pop_back();
   473 	      if (_sets.empty())
   474 		break;
   475 	      for (std::list<int>::iterator it = _sets.back().begin();
   476 		   it != _sets.back().end(); ++it) {
   477 		_dormant[*it] = false;
   478 	      }
   479 	    }
   480 	    new_target = _last[_sets.back().back()];
   481 	  }
   482 
   483 	  _bucket->set(target, 0);
   484 
   485 	  _source_set->set(target, true);	  
   486 	  for (OutEdgeIt e(_graph, target); e != INVALID; ++e) {
   487 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   488 	    if (!_tolerance.positive(rem)) continue;
   489 	    Node v = _graph.target(e);
   490 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   491 	      activate(v);
   492 	    }
   493 	    _excess->set(v, (*_excess)[v] + rem);
   494 	    _flow->set(e, (*_capacity)[e]);
   495 	  }
   496 	  
   497 	  for (InEdgeIt e(_graph, target); e != INVALID; ++e) {
   498 	    Value rem = (*_flow)[e];
   499 	    if (!_tolerance.positive(rem)) continue;
   500 	    Node v = _graph.source(e);
   501 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   502 	      activate(v);
   503 	    }
   504 	    _excess->set(v, (*_excess)[v] + rem);
   505 	    _flow->set(e, 0);
   506 	  }
   507 	  
   508 	  target = new_target;
   509 	  if ((*_active)[target]) {
   510 	    deactivate(target);
   511 	  }
   512 
   513 	  _highest = _sets.back().begin();
   514 	  while (_highest != _sets.back().end() && 
   515 		 !(*_active)[_first[*_highest]]) {
   516 	    ++_highest;
   517 	  }
   518 	}
   519       }
   520     }    
   521 
   522     void findMinCutIn() {
   523 
   524       for (NodeIt n(_graph); n != INVALID; ++n) {
   525 	_excess->set(n, 0);
   526       }
   527 
   528       for (EdgeIt e(_graph); e != INVALID; ++e) {
   529 	_flow->set(e, 0);
   530       }
   531 
   532       int bucket_num = 1;
   533       
   534       {
   535 	typename Graph::template NodeMap<bool> reached(_graph, false);
   536 	
   537 	reached.set(_source, true);
   538 
   539 	bool first_set = true;
   540 
   541 	for (NodeIt t(_graph); t != INVALID; ++t) {
   542 	  if (reached[t]) continue;
   543 	  _sets.push_front(std::list<int>());
   544 	  _sets.front().push_front(bucket_num);
   545 	  _dormant[bucket_num] = !first_set;
   546 
   547 	  _bucket->set(t, bucket_num);
   548 	  _first[bucket_num] = _last[bucket_num] = t;
   549 	  _next->set(t, INVALID);
   550 	  _prev->set(t, INVALID);
   551 
   552 	  ++bucket_num;
   553 	  
   554 	  std::vector<Node> queue;
   555 	  queue.push_back(t);
   556 	  reached.set(t, true);
   557 	  
   558 	  while (!queue.empty()) {
   559 	    _sets.front().push_front(bucket_num);
   560 	    _dormant[bucket_num] = !first_set;
   561 	    _first[bucket_num] = _last[bucket_num] = INVALID;
   562 	    
   563 	    std::vector<Node> nqueue;
   564 	    for (int i = 0; i < int(queue.size()); ++i) {
   565 	      Node n = queue[i];
   566 	      for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   567 		Node u = _graph.target(e);
   568 		if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
   569 		  reached.set(u, true);
   570 		  addItem(u, bucket_num);
   571 		  nqueue.push_back(u);
   572 		}
   573 	      }
   574 	    }
   575 	    queue.swap(nqueue);
   576 	    ++bucket_num;
   577 	  }
   578 	  _sets.front().pop_front();
   579 	  --bucket_num;
   580 	  first_set = false;
   581 	}
   582 
   583 	_bucket->set(_source, 0);
   584 	_dormant[0] = true;
   585       }
   586       _source_set->set(_source, true);	  
   587 	  
   588       Node target = _last[_sets.back().back()];
   589       {
   590 	for (InEdgeIt e(_graph, _source); e != INVALID; ++e) {
   591 	  if (_tolerance.positive((*_capacity)[e])) {
   592 	    Node u = _graph.source(e);
   593 	    _flow->set(e, (*_capacity)[e]);
   594 	    _excess->set(u, (*_excess)[u] + (*_capacity)[e]);
   595 	    if (!(*_active)[u] && u != _source) {
   596 	      activate(u);
   597 	    }
   598 	  }
   599 	}
   600 	if ((*_active)[target]) {
   601 	  deactivate(target);
   602 	}
   603 	
   604 	_highest = _sets.back().begin();
   605 	while (_highest != _sets.back().end() && 
   606 	       !(*_active)[_first[*_highest]]) {
   607 	  ++_highest;
   608 	}
   609       }
   610 
   611 
   612       while (true) {
   613 	while (_highest != _sets.back().end()) {
   614 	  Node n = _first[*_highest];
   615 	  Value excess = (*_excess)[n];
   616 	  int next_bucket = _node_num;
   617 
   618 	  int under_bucket;
   619 	  if (++std::list<int>::iterator(_highest) == _sets.back().end()) {
   620 	    under_bucket = -1;
   621 	  } else {
   622 	    under_bucket = *(++std::list<int>::iterator(_highest));
   623 	  }
   624 
   625 	  for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   626 	    Node v = _graph.source(e);
   627 	    if (_dormant[(*_bucket)[v]]) continue;
   628 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   629 	    if (!_tolerance.positive(rem)) continue;
   630 	    if ((*_bucket)[v] == under_bucket) {
   631 	      if (!(*_active)[v] && v != target) {
   632 		activate(v);
   633 	      }
   634 	      if (!_tolerance.less(rem, excess)) {
   635 		_flow->set(e, (*_flow)[e] + excess);
   636 		_excess->set(v, (*_excess)[v] + excess);
   637 		excess = 0;
   638 		goto no_more_push;
   639 	      } else {
   640 		excess -= rem;
   641 		_excess->set(v, (*_excess)[v] + rem);
   642 		_flow->set(e, (*_capacity)[e]);
   643 	      }
   644 	    } else if (next_bucket > (*_bucket)[v]) {
   645 	      next_bucket = (*_bucket)[v];
   646 	    }
   647 	  }
   648 
   649 	  for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   650 	    Node v = _graph.target(e);
   651 	    if (_dormant[(*_bucket)[v]]) continue;
   652 	    Value rem = (*_flow)[e];
   653 	    if (!_tolerance.positive(rem)) continue;
   654 	    if ((*_bucket)[v] == under_bucket) {
   655 	      if (!(*_active)[v] && v != target) {
   656 		activate(v);
   657 	      }
   658 	      if (!_tolerance.less(rem, excess)) {
   659 		_flow->set(e, (*_flow)[e] - excess);
   660 		_excess->set(v, (*_excess)[v] + excess);
   661 		excess = 0;
   662 		goto no_more_push;
   663 	      } else {
   664 		excess -= rem;
   665 		_excess->set(v, (*_excess)[v] + rem);
   666 		_flow->set(e, 0);
   667 	      }
   668 	    } else if (next_bucket > (*_bucket)[v]) {
   669 	      next_bucket = (*_bucket)[v];
   670 	    }
   671 	  }
   672 	  
   673 	no_more_push:
   674 	  
   675 	  _excess->set(n, excess);
   676 	  
   677 	  if (excess != 0) {
   678 	    if ((*_next)[n] == INVALID) {
   679 	      typename std::list<std::list<int> >::iterator new_set = 
   680 		_sets.insert(--_sets.end(), std::list<int>());
   681 	      new_set->splice(new_set->end(), _sets.back(), 
   682 			      _sets.back().begin(), ++_highest);
   683 	      for (std::list<int>::iterator it = new_set->begin();
   684 		   it != new_set->end(); ++it) {
   685 		_dormant[*it] = true;
   686 	      }
   687 	      while (_highest != _sets.back().end() && 
   688 		     !(*_active)[_first[*_highest]]) {
   689 		++_highest;
   690 	      }
   691 	    } else if (next_bucket == _node_num) {
   692 	      _first[(*_bucket)[n]] = (*_next)[n];
   693 	      _prev->set((*_next)[n], INVALID);
   694 	      
   695 	      std::list<std::list<int> >::iterator new_set = 
   696 		_sets.insert(--_sets.end(), std::list<int>());
   697 	      
   698 	      new_set->push_front(bucket_num);
   699 	      _bucket->set(n, bucket_num);
   700 	      _first[bucket_num] = _last[bucket_num] = n;
   701 	      _next->set(n, INVALID);
   702 	      _prev->set(n, INVALID);
   703 	      _dormant[bucket_num] = true;
   704 	      ++bucket_num;
   705 
   706 	      while (_highest != _sets.back().end() && 
   707 		     !(*_active)[_first[*_highest]]) {
   708 		++_highest;
   709 	      }
   710 	    } else {
   711 	      _first[*_highest] = (*_next)[n];
   712 	      _prev->set((*_next)[n], INVALID);
   713 
   714 	      while (next_bucket != *_highest) {
   715 		--_highest;
   716 	      }
   717 	      if (_highest == _sets.back().begin()) {
   718 		_sets.back().push_front(bucket_num);
   719 		_dormant[bucket_num] = false;
   720 		_first[bucket_num] = _last[bucket_num] = INVALID;
   721 		++bucket_num;
   722 	      }
   723 	      --_highest;
   724 
   725 	      _bucket->set(n, *_highest);
   726 	      _next->set(n, _first[*_highest]);
   727 	      if (_first[*_highest] != INVALID) {
   728 		_prev->set(_first[*_highest], n);
   729 	      } else {
   730 		_last[*_highest] = n;
   731 	      }
   732 	      _first[*_highest] = n;	      
   733 	    }
   734 	  } else {
   735 
   736 	    deactivate(n);
   737 	    if (!(*_active)[_first[*_highest]]) {
   738 	      ++_highest;
   739 	      if (_highest != _sets.back().end() && 
   740 		  !(*_active)[_first[*_highest]]) {
   741 		_highest = _sets.back().end();
   742 	      }
   743 	    }
   744 	  }
   745 	}
   746 
   747 	if ((*_excess)[target] < _min_cut) {
   748 	  _min_cut = (*_excess)[target];
   749 	  for (NodeIt i(_graph); i != INVALID; ++i) {
   750 	    _min_cut_map->set(i, false);
   751 	  }
   752 	  for (std::list<int>::iterator it = _sets.back().begin();
   753 	       it != _sets.back().end(); ++it) {
   754 	    Node n = _first[*it];
   755 	    while (n != INVALID) {
   756 	      _min_cut_map->set(n, true);
   757 	      n = (*_next)[n];
   758 	    }
   759 	  }
   760 	}
   761 
   762 	{
   763 	  Node new_target;
   764 	  if ((*_prev)[target] != INVALID) {
   765 	    _last[(*_bucket)[target]] = (*_prev)[target];
   766 	    _next->set((*_prev)[target], INVALID);
   767 	    new_target = (*_prev)[target];
   768 	  } else {
   769 	    _sets.back().pop_back();
   770 	    if (_sets.back().empty()) {
   771 	      _sets.pop_back();
   772 	      if (_sets.empty())
   773 		break;
   774 	      for (std::list<int>::iterator it = _sets.back().begin();
   775 		   it != _sets.back().end(); ++it) {
   776 		_dormant[*it] = false;
   777 	      }
   778 	    }
   779 	    new_target = _last[_sets.back().back()];
   780 	  }
   781 
   782 	  _bucket->set(target, 0);
   783 
   784 	  _source_set->set(target, true);	  
   785 	  for (InEdgeIt e(_graph, target); e != INVALID; ++e) {
   786 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   787 	    if (!_tolerance.positive(rem)) continue;
   788 	    Node v = _graph.source(e);
   789 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   790 	      activate(v);
   791 	    }
   792 	    _excess->set(v, (*_excess)[v] + rem);
   793 	    _flow->set(e, (*_capacity)[e]);
   794 	  }
   795 	  
   796 	  for (OutEdgeIt e(_graph, target); e != INVALID; ++e) {
   797 	    Value rem = (*_flow)[e];
   798 	    if (!_tolerance.positive(rem)) continue;
   799 	    Node v = _graph.target(e);
   800 	    if (!(*_active)[v] && !(*_source_set)[v]) {
   801 	      activate(v);
   802 	    }
   803 	    _excess->set(v, (*_excess)[v] + rem);
   804 	    _flow->set(e, 0);
   805 	  }
   806 	  
   807 	  target = new_target;
   808 	  if ((*_active)[target]) {
   809 	    deactivate(target);
   810 	  }
   811 
   812 	  _highest = _sets.back().begin();
   813 	  while (_highest != _sets.back().end() && 
   814 		 !(*_active)[_first[*_highest]]) {
   815 	    ++_highest;
   816 	  }
   817 	}
   818       }
   819     }
   820 
   821   public:
   822 
   823     /// \name Execution control
   824     /// The simplest way to execute the algorithm is to use
   825     /// one of the member functions called \c run(...).
   826     /// \n
   827     /// If you need more control on the execution,
   828     /// first you must call \ref init(), then the \ref calculateIn() or
   829     /// \ref calculateIn() functions.
   830 
   831     /// @{
   832 
   833     /// \brief Initializes the internal data structures.
   834     ///
   835     /// Initializes the internal data structures. It creates
   836     /// the maps, residual graph adaptors and some bucket structures
   837     /// for the algorithm. 
   838     void init() {
   839       init(NodeIt(_graph));
   840     }
   841 
   842     /// \brief Initializes the internal data structures.
   843     ///
   844     /// Initializes the internal data structures. It creates
   845     /// the maps, residual graph adaptor and some bucket structures
   846     /// for the algorithm. Node \c source  is used as the push-relabel
   847     /// algorithm's source.
   848     void init(const Node& source) {
   849       _source = source;
   850       
   851       _node_num = countNodes(_graph);
   852       
   853       _first.resize(_node_num);
   854       _last.resize(_node_num);
   855 
   856       _dormant.resize(_node_num);
   857 
   858       if (!_flow) {
   859 	_flow = new FlowMap(_graph);
   860       }
   861       if (!_next) {
   862 	_next = new typename Graph::template NodeMap<Node>(_graph);
   863       }
   864       if (!_prev) {
   865 	_prev = new typename Graph::template NodeMap<Node>(_graph);
   866       }
   867       if (!_active) {
   868 	_active = new typename Graph::template NodeMap<bool>(_graph);
   869       }
   870       if (!_bucket) {
   871 	_bucket = new typename Graph::template NodeMap<int>(_graph);
   872       }
   873       if (!_excess) {
   874 	_excess = new ExcessMap(_graph);
   875       }
   876       if (!_source_set) {
   877 	_source_set = new SourceSetMap(_graph);
   878       }
   879       if (!_min_cut_map) {
   880 	_min_cut_map = new MinCutMap(_graph);
   881       }
   882 
   883       _min_cut = std::numeric_limits<Value>::max();
   884     }
   885 
   886 
   887     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   888     /// source-side.
   889     ///
   890     /// Calculates a minimum cut with \f$ source \f$ on the
   891     /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source
   892     /// \in X \f$ and minimal out-degree).
   893     void calculateOut() {
   894       findMinCutOut();
   895     }
   896 
   897     /// \brief Calculates a minimum cut with \f$ source \f$ on the
   898     /// target-side.
   899     ///
   900     /// Calculates a minimum cut with \f$ source \f$ on the
   901     /// target-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source
   902     /// \in X \f$ and minimal out-degree).
   903     void calculateIn() {
   904       findMinCutIn();
   905     }
   906 
   907 
   908     /// \brief Runs the algorithm.
   909     ///
   910     /// Runs the algorithm. It finds nodes \c source and \c target
   911     /// arbitrarily and then calls \ref init(), \ref calculateOut()
   912     /// and \ref calculateIn().
   913     void run() {
   914       init();
   915       calculateOut();
   916       calculateIn();
   917     }
   918 
   919     /// \brief Runs the algorithm.
   920     ///
   921     /// Runs the algorithm. It uses the given \c source node, finds a
   922     /// proper \c target and then calls the \ref init(), \ref
   923     /// calculateOut() and \ref calculateIn().
   924     void run(const Node& s) {
   925       init(s);
   926       calculateOut();
   927       calculateIn();
   928     }
   929 
   930     /// @}
   931     
   932     /// \name Query Functions 
   933     /// The result of the %HaoOrlin algorithm
   934     /// can be obtained using these functions.
   935     /// \n
   936     /// Before using these functions, either \ref run(), \ref
   937     /// calculateOut() or \ref calculateIn() must be called.
   938     
   939     /// @{
   940 
   941     /// \brief Returns the value of the minimum value cut.
   942     /// 
   943     /// Returns the value of the minimum value cut.
   944     Value minCut() const {
   945       return _min_cut;
   946     }
   947 
   948 
   949     /// \brief Returns a minimum cut.
   950     ///
   951     /// Sets \c nodeMap to the characteristic vector of a minimum
   952     /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$
   953     /// with minimal out-degree (i.e. \c nodeMap will be true exactly
   954     /// for the nodes of \f$ X \f$).  \pre nodeMap should be a
   955     /// bool-valued node-map.
   956     template <typename NodeMap>
   957     Value minCut(NodeMap& nodeMap) const {
   958       for (NodeIt it(_graph); it != INVALID; ++it) {
   959 	nodeMap.set(it, (*_min_cut_map)[it]);
   960       }
   961       return minCut();
   962     }
   963 
   964     /// @}
   965     
   966   }; //class HaoOrlin 
   967 
   968 
   969 } //namespace lemon
   970 
   971 #endif //LEMON_HAO_ORLIN_H