Reimplemented MinMeanCycle to be much more efficient.
The new version implements Howard's algorithm instead of Karp's algorithm and
it is at least 10-20 times faster on all the 40-50 random graphs we have tested.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2008
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_JOHNSON_H
20 #define LEMON_JOHNSON_H
22 ///\ingroup shortest_path
24 /// \brief Johnson algorithm.
27 #include <lemon/list_graph.h>
28 #include <lemon/graph_utils.h>
29 #include <lemon/dijkstra.h>
30 #include <lemon/bellman_ford.h>
31 #include <lemon/bits/path_dump.h>
32 #include <lemon/bits/invalid.h>
33 #include <lemon/error.h>
34 #include <lemon/maps.h>
35 #include <lemon/matrix_maps.h>
41 /// \brief Default OperationTraits for the Johnson algorithm class.
43 /// It defines all computational operations and constants which are
44 /// used in the Floyd-Warshall algorithm. The default implementation
45 /// is based on the numeric_limits class. If the numeric type does not
46 /// have infinity value then the maximum value is used as extremal
50 bool has_infinity = std::numeric_limits<Value>::has_infinity>
51 struct JohnsonDefaultOperationTraits {
52 /// \brief Gives back the zero value of the type.
54 return static_cast<Value>(0);
56 /// \brief Gives back the positive infinity value of the type.
57 static Value infinity() {
58 return std::numeric_limits<Value>::infinity();
60 /// \brief Gives back the sum of the given two elements.
61 static Value plus(const Value& left, const Value& right) {
64 /// \brief Gives back true only if the first value less than the second.
65 static bool less(const Value& left, const Value& right) {
70 template <typename Value>
71 struct JohnsonDefaultOperationTraits<Value, false> {
73 return static_cast<Value>(0);
75 static Value infinity() {
76 return std::numeric_limits<Value>::max();
78 static Value plus(const Value& left, const Value& right) {
79 if (left == infinity() || right == infinity()) return infinity();
82 static bool less(const Value& left, const Value& right) {
87 /// \brief Default traits class of Johnson class.
89 /// Default traits class of Johnson class.
90 /// \param _Graph Graph type.
91 /// \param _LegthMap Type of length map.
92 template<class _Graph, class _LengthMap>
93 struct JohnsonDefaultTraits {
94 /// The graph type the algorithm runs on.
97 /// \brief The type of the map that stores the edge lengths.
99 /// The type of the map that stores the edge lengths.
100 /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
101 typedef _LengthMap LengthMap;
103 // The type of the length of the edges.
104 typedef typename _LengthMap::Value Value;
106 /// \brief Operation traits for bellman-ford algorithm.
108 /// It defines the infinity type on the given Value type
109 /// and the used operation.
110 /// \see JohnsonDefaultOperationTraits
111 typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
113 /// The cross reference type used by heap.
115 /// The cross reference type used by heap.
116 /// Usually it is \c Graph::NodeMap<int>.
117 typedef typename Graph::template NodeMap<int> HeapCrossRef;
119 ///Instantiates a HeapCrossRef.
121 ///This function instantiates a \ref HeapCrossRef.
122 /// \param graph is the graph, to which we would like to define the
124 static HeapCrossRef *createHeapCrossRef(const Graph& graph) {
125 return new HeapCrossRef(graph);
128 ///The heap type used by Dijkstra algorithm.
130 ///The heap type used by Dijkstra algorithm.
134 typedef BinHeap<typename LengthMap::Value,
135 HeapCrossRef, std::less<Value> > Heap;
137 ///Instantiates a Heap.
139 ///This function instantiates a \ref Heap.
140 /// \param crossRef The cross reference for the heap.
141 static Heap *createHeap(HeapCrossRef& crossRef) {
142 return new Heap(crossRef);
145 /// \brief The type of the matrix map that stores the last edges of the
148 /// The type of the map that stores the last edges of the shortest paths.
149 /// It must be a matrix map with \c Graph::Edge value type.
151 typedef DynamicMatrixMap<Graph, typename Graph::Node,
152 typename Graph::Edge> PredMap;
154 /// \brief Instantiates a PredMap.
156 /// This function instantiates a \ref PredMap.
157 /// \param graph is the graph, to which we would like to define the PredMap.
158 /// \todo The graph alone may be insufficient for the initialization
159 static PredMap *createPredMap(const Graph& graph) {
160 return new PredMap(graph);
163 /// \brief The type of the matrix map that stores the dists of the nodes.
165 /// The type of the matrix map that stores the dists of the nodes.
166 /// It must meet the \ref concepts::WriteMatrixMap "WriteMatrixMap" concept.
168 typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
170 /// \brief Instantiates a DistMap.
172 /// This function instantiates a \ref DistMap.
173 /// \param graph is the graph, to which we would like to define the
175 static DistMap *createDistMap(const _Graph& graph) {
176 return new DistMap(graph);
181 /// \brief %Johnson algorithm class.
183 /// \ingroup shortest_path
184 /// This class provides an efficient implementation of \c %Johnson
185 /// algorithm. The edge lengths are passed to the algorithm using a
186 /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
189 /// The algorithm solves the shortest path problem for each pair
190 /// of node when the edges can have negative length but the graph should
191 /// not contain cycles with negative sum of length. If we can assume
192 /// that all edge is non-negative in the graph then the dijkstra algorithm
193 /// should be used from each node.
195 /// The complexity of this algorithm is \f$ O(n^2\log(n)+n\log(n)e) \f$ or
196 /// with fibonacci heap \f$ O(n^2\log(n)+ne) \f$. Usually the fibonacci heap
197 /// implementation is slower than either binary heap implementation or the
198 /// Floyd-Warshall algorithm.
200 /// The type of the length is determined by the
201 /// \ref concepts::ReadMap::Value "Value" of the length map.
203 /// \param _Graph The graph type the algorithm runs on. The default value
204 /// is \ref ListGraph. The value of _Graph is not used directly by
205 /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
206 /// \param _LengthMap This read-only EdgeMap determines the lengths of the
207 /// edges. It is read once for each edge, so the map may involve in
208 /// relatively time consuming process to compute the edge length if
209 /// it is necessary. The default map type is \ref
210 /// concepts::Graph::EdgeMap "Graph::EdgeMap<int>". The value
211 /// of _LengthMap is not used directly by Johnson, it is only passed
212 /// to \ref JohnsonDefaultTraits. \param _Traits Traits class to set
213 /// various data types used by the algorithm. The default traits
214 /// class is \ref JohnsonDefaultTraits
215 /// "JohnsonDefaultTraits<_Graph,_LengthMap>". See \ref
216 /// JohnsonDefaultTraits for the documentation of a Johnson traits
219 /// \author Balazs Dezso
222 template <typename _Graph, typename _LengthMap, typename _Traits>
224 template <typename _Graph=ListGraph,
225 typename _LengthMap=typename _Graph::template EdgeMap<int>,
226 typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
231 /// \brief \ref Exception for uninitialized parameters.
233 /// This error represents problems in the initialization
234 /// of the parameters of the algorithms.
236 class UninitializedParameter : public lemon::UninitializedParameter {
238 virtual const char* what() const throw() {
239 return "lemon::Johnson::UninitializedParameter";
243 typedef _Traits Traits;
244 ///The type of the underlying graph.
245 typedef typename _Traits::Graph Graph;
247 typedef typename Graph::Node Node;
248 typedef typename Graph::NodeIt NodeIt;
249 typedef typename Graph::Edge Edge;
250 typedef typename Graph::EdgeIt EdgeIt;
252 /// \brief The type of the length of the edges.
253 typedef typename _Traits::LengthMap::Value Value;
254 /// \brief The type of the map that stores the edge lengths.
255 typedef typename _Traits::LengthMap LengthMap;
256 /// \brief The type of the map that stores the last
257 /// edges of the shortest paths. The type of the PredMap
258 /// is a matrix map for Edges
259 typedef typename _Traits::PredMap PredMap;
260 /// \brief The type of the map that stores the dists of the nodes.
261 /// The type of the DistMap is a matrix map for Values
262 typedef typename _Traits::DistMap DistMap;
263 /// \brief The operation traits.
264 typedef typename _Traits::OperationTraits OperationTraits;
265 ///The cross reference type used for the current heap.
266 typedef typename _Traits::HeapCrossRef HeapCrossRef;
267 ///The heap type used by the dijkstra algorithm.
268 typedef typename _Traits::Heap Heap;
270 /// Pointer to the underlying graph.
272 /// Pointer to the length map
273 const LengthMap *length;
274 ///Pointer to the map of predecessors edges.
276 ///Indicates if \ref _pred is locally allocated (\c true) or not.
278 ///Pointer to the map of distances.
280 ///Indicates if \ref _dist is locally allocated (\c true) or not.
282 ///Pointer to the heap cross references.
283 HeapCrossRef *_heap_cross_ref;
284 ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
285 bool local_heap_cross_ref;
286 ///Pointer to the heap.
288 ///Indicates if \ref _heap is locally allocated (\c true) or not.
291 /// Creates the maps if necessary.
295 _pred = Traits::createPredMap(*graph);
299 _dist = Traits::createDistMap(*graph);
301 if (!_heap_cross_ref) {
302 local_heap_cross_ref = true;
303 _heap_cross_ref = Traits::createHeapCrossRef(*graph);
307 _heap = Traits::createHeap(*_heap_cross_ref);
313 /// \name Named template parameters
318 struct DefPredMapTraits : public Traits {
320 static PredMap *createPredMap(const Graph& graph) {
321 throw UninitializedParameter();
325 /// \brief \ref named-templ-param "Named parameter" for setting PredMap
327 /// \ref named-templ-param "Named parameter" for setting PredMap type
331 : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
332 typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
336 struct DefDistMapTraits : public Traits {
338 static DistMap *createDistMap(const Graph& graph) {
339 throw UninitializedParameter();
342 /// \brief \ref named-templ-param "Named parameter" for setting DistMap
345 /// \ref named-templ-param "Named parameter" for setting DistMap type
349 : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
350 typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
354 struct DefOperationTraitsTraits : public Traits {
355 typedef T OperationTraits;
358 /// \brief \ref named-templ-param "Named parameter" for setting
359 /// OperationTraits type
361 /// \ref named-templ-param "Named parameter" for setting
362 /// OperationTraits type
364 struct DefOperationTraits
365 : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
366 typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
369 template <class H, class CR>
370 struct DefHeapTraits : public Traits {
371 typedef CR HeapCrossRef;
373 static HeapCrossRef *createHeapCrossRef(const Graph &) {
374 throw UninitializedParameter();
376 static Heap *createHeap(HeapCrossRef &)
378 throw UninitializedParameter();
381 ///\brief \ref named-templ-param "Named parameter" for setting heap and
382 ///cross reference type
384 ///\ref named-templ-param "Named parameter" for setting heap and cross
387 template <class H, class CR = typename Graph::template NodeMap<int> >
389 : public Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > {
390 typedef Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
393 template <class H, class CR>
394 struct DefStandardHeapTraits : public Traits {
395 typedef CR HeapCrossRef;
397 static HeapCrossRef *createHeapCrossRef(const Graph &G) {
398 return new HeapCrossRef(G);
400 static Heap *createHeap(HeapCrossRef &R)
405 ///\brief \ref named-templ-param "Named parameter" for setting
406 ///heap and cross reference type with automatic allocation
408 ///\ref named-templ-param "Named parameter" for setting heap and cross
409 ///reference type. It can allocate the heap and the cross reference
410 ///object if the cross reference's constructor waits for the graph as
411 ///parameter and the heap's constructor waits for the cross reference.
412 template <class H, class CR = typename Graph::template NodeMap<int> >
413 struct DefStandardHeap
414 : public Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > {
415 typedef Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> >
427 typedef Johnson Create;
429 /// \brief Constructor.
431 /// \param _graph the graph the algorithm will run on.
432 /// \param _length the length map used by the algorithm.
433 Johnson(const Graph& _graph, const LengthMap& _length) :
434 graph(&_graph), length(&_length),
435 _pred(0), local_pred(false),
436 _dist(0), local_dist(false),
437 _heap_cross_ref(0), local_heap_cross_ref(false),
438 _heap(0), local_heap(false) {}
442 if (local_pred) delete _pred;
443 if (local_dist) delete _dist;
444 if (local_heap_cross_ref) delete _heap_cross_ref;
445 if (local_heap) delete _heap;
448 /// \brief Sets the length map.
450 /// Sets the length map.
451 /// \return \c (*this)
452 Johnson &lengthMap(const LengthMap &m) {
457 /// \brief Sets the map storing the predecessor edges.
459 /// Sets the map storing the predecessor edges.
460 /// If you don't use this function before calling \ref run(),
461 /// it will allocate one. The destuctor deallocates this
462 /// automatically allocated map, of course.
463 /// \return \c (*this)
464 Johnson &predMap(PredMap &m) {
473 /// \brief Sets the map storing the distances calculated by the algorithm.
475 /// Sets the map storing the distances calculated by the algorithm.
476 /// If you don't use this function before calling \ref run(),
477 /// it will allocate one. The destuctor deallocates this
478 /// automatically allocated map, of course.
479 /// \return \c (*this)
480 Johnson &distMap(DistMap &m) {
491 ///\name Execution control
492 /// The simplest way to execute the algorithm is to use
493 /// one of the member functions called \c run(...).
495 /// If you need more control on the execution,
496 /// Finally \ref start() will perform the actual path
501 /// \brief Initializes the internal data structures.
503 /// Initializes the internal data structures.
508 /// \brief Executes the algorithm with own potential map.
510 /// This method runs the %Johnson algorithm in order to compute
511 /// the shortest path to each node pairs. The potential map
512 /// can be given for this algorithm which usually calculated
513 /// by the Bellman-Ford algorithm. If the graph does not have
514 /// negative length edge then this start function can be used
515 /// with constMap<Node, int>(0) parameter to omit the running time of
516 /// the Bellman-Ford.
517 /// The algorithm computes
518 /// - The shortest path tree for each node.
519 /// - The distance between each node pairs.
520 template <typename PotentialMap>
521 void shiftedStart(const PotentialMap& potential) {
522 typename Graph::template EdgeMap<Value> shiftlen(*graph);
523 for (EdgeIt it(*graph); it != INVALID; ++it) {
524 shiftlen[it] = (*length)[it]
525 + potential[graph->source(it)]
526 - potential[graph->target(it)];
529 typename Dijkstra<Graph, typename Graph::template EdgeMap<Value> >::
530 template DefHeap<Heap, HeapCrossRef>::
531 Create dijkstra(*graph, shiftlen);
533 dijkstra.heap(*_heap, *_heap_cross_ref);
535 for (NodeIt it(*graph); it != INVALID; ++it) {
537 for (NodeIt jt(*graph); jt != INVALID; ++jt) {
538 if (dijkstra.reached(jt)) {
539 _dist->set(it, jt, dijkstra.dist(jt) +
540 potential[jt] - potential[it]);
541 _pred->set(it, jt, dijkstra.predEdge(jt));
543 _dist->set(it, jt, OperationTraits::infinity());
544 _pred->set(it, jt, INVALID);
550 /// \brief Executes the algorithm.
552 /// This method runs the %Johnson algorithm in order to compute
553 /// the shortest path to each node pairs. The algorithm
555 /// - The shortest path tree for each node.
556 /// - The distance between each node pairs.
559 typedef typename BellmanFord<Graph, LengthMap>::
560 template DefOperationTraits<OperationTraits>::
561 template DefPredMap<NullMap<Node, Edge> >::
562 Create BellmanFordType;
564 BellmanFordType bellmanford(*graph, *length);
566 NullMap<Node, Edge> pm;
568 bellmanford.predMap(pm);
570 bellmanford.init(OperationTraits::zero());
573 shiftedStart(bellmanford.distMap());
576 /// \brief Executes the algorithm and checks the negatvie cycles.
578 /// This method runs the %Johnson algorithm in order to compute
579 /// the shortest path to each node pairs. If the graph contains
580 /// negative cycle it gives back false. The algorithm
582 /// - The shortest path tree for each node.
583 /// - The distance between each node pairs.
584 bool checkedStart() {
586 typedef typename BellmanFord<Graph, LengthMap>::
587 template DefOperationTraits<OperationTraits>::
588 template DefPredMap<NullMap<Node, Edge> >::
589 Create BellmanFordType;
591 BellmanFordType bellmanford(*graph, *length);
593 NullMap<Node, Edge> pm;
595 bellmanford.predMap(pm);
597 bellmanford.init(OperationTraits::zero());
598 if (!bellmanford.checkedStart()) return false;
600 shiftedStart(bellmanford.distMap());
605 /// \brief Runs %Johnson algorithm.
607 /// This method runs the %Johnson algorithm from a each node
608 /// in order to compute the shortest path to each node pairs.
609 /// The algorithm computes
610 /// - The shortest path tree for each node.
611 /// - The distance between each node pairs.
613 /// \note d.run(s) is just a shortcut of the following code.
625 /// \name Query Functions
626 /// The result of the %Johnson algorithm can be obtained using these
628 /// Before the use of these functions,
629 /// either run() or start() must be called.
633 typedef PredMatrixMapPath<Graph, PredMap> Path;
635 ///Gives back the shortest path.
637 ///Gives back the shortest path.
638 ///\pre The \c t should be reachable from the \c t.
639 Path path(Node s, Node t)
641 return Path(*graph, *_pred, s, t);
644 /// \brief The distance between two nodes.
646 /// Returns the distance between two nodes.
647 /// \pre \ref run() must be called before using this function.
648 /// \warning If node \c v in unreachable from the root the return value
649 /// of this funcion is undefined.
650 Value dist(Node source, Node target) const {
651 return (*_dist)(source, target);
654 /// \brief Returns the 'previous edge' of the shortest path tree.
656 /// For the node \c node it returns the 'previous edge' of the shortest
657 /// path tree to direction of the node \c root
658 /// i.e. it returns the last edge of a shortest path from the node \c root
659 /// to \c node. It is \ref INVALID if \c node is unreachable from the root
660 /// or if \c node=root. The shortest path tree used here is equal to the
661 /// shortest path tree used in \ref predNode().
662 /// \pre \ref run() must be called before using this function.
663 Edge predEdge(Node root, Node node) const {
664 return (*_pred)(root, node);
667 /// \brief Returns the 'previous node' of the shortest path tree.
669 /// For a node \c node it returns the 'previous node' of the shortest path
670 /// tree to direction of the node \c root, i.e. it returns the last but
671 /// one node from a shortest path from the \c root to \c node. It is
672 /// INVALID if \c node is unreachable from the root or if \c node=root.
673 /// The shortest path tree used here is equal to the
674 /// shortest path tree used in \ref predEdge().
675 /// \pre \ref run() must be called before using this function.
676 Node predNode(Node root, Node node) const {
677 return (*_pred)(root, node) == INVALID ?
678 INVALID : graph->source((*_pred)(root, node));
681 /// \brief Returns a reference to the matrix node map of distances.
683 /// Returns a reference to the matrix node map of distances.
685 /// \pre \ref run() must be called before using this function.
686 const DistMap &distMap() const { return *_dist;}
688 /// \brief Returns a reference to the shortest path tree map.
690 /// Returns a reference to the matrix node map of the edges of the
691 /// shortest path tree.
692 /// \pre \ref run() must be called before using this function.
693 const PredMap &predMap() const { return *_pred;}
695 /// \brief Checks if a node is reachable from the root.
697 /// Returns \c true if \c v is reachable from the root.
698 /// \pre \ref run() must be called before using this function.
700 bool connected(Node source, Node target) {
701 return (*_dist)(source, target) != OperationTraits::infinity();
707 } //END OF NAMESPACE LEMON