lemon/suurballe.h
author deba
Tue, 31 Oct 2006 14:28:27 +0000
changeset 2283 a877258468e4
parent 1956 a055123339d5
child 2335 27aa03cd3121
permissions -rw-r--r--
Bug fix
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_SUURBALLE_H
    20 #define LEMON_SUURBALLE_H
    21 
    22 ///\ingroup flowalgs
    23 ///\file
    24 ///\brief An algorithm for finding k paths of minimal total length.
    25 
    26 
    27 #include <lemon/maps.h>
    28 #include <vector>
    29 #include <lemon/ssp_min_cost_flow.h>
    30 
    31 namespace lemon {
    32 
    33 /// \addtogroup flowalgs
    34 /// @{
    35 
    36   ///\brief Implementation of an algorithm for finding k edge-disjoint
    37   /// paths between 2 nodes of minimal total length
    38   ///
    39   /// The class \ref lemon::Suurballe implements
    40   /// an algorithm for finding k edge-disjoint paths
    41   /// from a given source node to a given target node in an
    42   /// edge-weighted directed graph having minimal total weight (length).
    43   ///
    44   ///\warning Length values should be nonnegative!
    45   /// 
    46   ///\param Graph The directed graph type the algorithm runs on.
    47   ///\param LengthMap The type of the length map (values should be nonnegative).
    48   ///
    49   ///\note It it questionable whether it is correct to call this method after
    50   ///%Suurballe for it is just a special case of Edmonds' and Karp's algorithm
    51   ///for finding minimum cost flows. In fact, this implementation just
    52   ///wraps the SspMinCostFlow algorithms. The paper of both %Suurballe and
    53   ///Edmonds-Karp published in 1972, therefore it is possibly right to
    54   ///state that they are
    55   ///independent results. Most frequently this special case is referred as
    56   ///%Suurballe method in the literature, especially in communication
    57   ///network context.
    58   ///\author Attila Bernath
    59   template <typename Graph, typename LengthMap>
    60   class Suurballe{
    61 
    62 
    63     typedef typename LengthMap::Value Length;
    64     
    65     typedef typename Graph::Node Node;
    66     typedef typename Graph::NodeIt NodeIt;
    67     typedef typename Graph::Edge Edge;
    68     typedef typename Graph::OutEdgeIt OutEdgeIt;
    69     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    70 
    71     typedef ConstMap<Edge,int> ConstMap;
    72 
    73     const Graph& G;
    74 
    75     Node s;
    76     Node t;
    77 
    78     //Auxiliary variables
    79     //This is the capacity map for the mincostflow problem
    80     ConstMap const1map;
    81     //This MinCostFlow instance will actually solve the problem
    82     SspMinCostFlow<Graph, LengthMap, ConstMap> min_cost_flow;
    83 
    84     //Container to store found paths
    85     std::vector< std::vector<Edge> > paths;
    86 
    87   public :
    88 
    89 
    90     /// \brief The constructor of the class.
    91     ///
    92     /// \param _G The directed graph the algorithm runs on. 
    93     /// \param _length The length (weight or cost) of the edges. 
    94     /// \param _s Source node.
    95     /// \param _t Target node.
    96     Suurballe(Graph& _G, LengthMap& _length, Node _s, Node _t) : 
    97       G(_G), s(_s), t(_t), const1map(1), 
    98       min_cost_flow(_G, _length, const1map, _s, _t) { }
    99 
   100     /// \brief Runs the algorithm.
   101     ///
   102     /// Runs the algorithm.
   103     /// Returns k if there are at least k edge-disjoint paths from s to t.
   104     /// Otherwise it returns the number of edge-disjoint paths found 
   105     /// from s to t.
   106     ///
   107     /// \param k How many paths are we looking for?
   108     ///
   109     int run(int k) {
   110       int i = min_cost_flow.run(k);
   111 
   112       //Let's find the paths
   113       //We put the paths into stl vectors (as an inner representation). 
   114       //In the meantime we lose the information stored in 'reversed'.
   115       //We suppose the lengths to be positive now.
   116 
   117       //We don't want to change the flow of min_cost_flow, so we make a copy
   118       //The name here suggests that the flow has only 0/1 values.
   119       EdgeIntMap reversed(G); 
   120 
   121       for(typename Graph::EdgeIt e(G); e!=INVALID; ++e) 
   122 	reversed[e] = min_cost_flow.getFlow()[e];
   123       
   124       paths.clear();
   125       paths.resize(k);
   126       for (int j=0; j<i; ++j){
   127 	Node n=s;
   128 
   129 	while (n!=t){
   130 
   131 	  OutEdgeIt e(G, n);
   132 	  
   133 	  while (!reversed[e]){
   134 	    ++e;
   135 	  }
   136 	  n = G.target(e);
   137 	  paths[j].push_back(e);
   138 	  reversed[e] = 1-reversed[e];
   139 	}
   140 	
   141       }
   142       return i;
   143     }
   144 
   145     
   146     /// \brief Returns the total length of the paths.
   147     ///
   148     /// This function gives back the total length of the found paths.
   149     Length totalLength(){
   150       return min_cost_flow.totalLength();
   151     }
   152 
   153     /// \brief Returns the found flow.
   154     ///
   155     /// This function returns a const reference to the EdgeMap \c flow.
   156     const EdgeIntMap &getFlow() const { return min_cost_flow.flow;}
   157 
   158     /// \brief Returns the optimal dual solution
   159     ///
   160     /// This function returns a const reference to the NodeMap \c
   161     /// potential (the dual solution).
   162     const EdgeIntMap &getPotential() const { return min_cost_flow.potential;}
   163 
   164     /// \brief Checks whether the complementary slackness holds.
   165     ///
   166     /// This function checks, whether the given solution is optimal.
   167     /// Currently this function only checks optimality, doesn't bother
   168     /// with feasibility.  It is meant for testing purposes.
   169     bool checkComplementarySlackness(){
   170       return min_cost_flow.checkComplementarySlackness();
   171     }
   172 
   173     /// \brief Read the found paths.
   174     ///
   175     /// This function gives back the \c j-th path in argument p.
   176     /// Assumes that \c run() has been run and nothing has changed
   177     /// since then.
   178     ///
   179     /// \warning It is assumed that \c p is constructed to be a path
   180     /// of graph \c G.  If \c j is not less than the result of
   181     /// previous \c run, then the result here will be an empty path
   182     /// (\c j can be 0 as well).
   183     ///
   184     /// \param Path The type of the path structure to put the result
   185     /// to (must meet lemon path concept).
   186     /// \param p The path to put the result to.
   187     /// \param j Which path you want to get from the found paths (in a
   188     /// real application you would get the found paths iteratively).
   189     template<typename Path>
   190     void getPath(Path& p, size_t j){
   191 
   192       p.clear();
   193       if (j>paths.size()-1){
   194 	return;
   195       }
   196       typename Path::Builder B(p);
   197       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   198 	  i!=paths[j].end(); ++i ){
   199 	B.pushBack(*i);
   200       }
   201 
   202       B.commit();
   203     }
   204 
   205   }; //class Suurballe
   206 
   207   ///@}
   208 
   209 } //namespace lemon
   210 
   211 #endif //LEMON_SUURBALLE_H