src/work/akos/simann.h
author alpar
Thu, 18 Nov 2004 10:17:19 +0000
changeset 1006 aa8c2f05b9ab
parent 966 5e865c5c8a87
child 1018 68beae6758a7
permissions -rw-r--r--
(none)
     1 #ifndef LEMON_SIMANN_H
     2 #define LEMON_SIMANN_H
     3 
     4 #include <cstdlib>
     5 #include <cmath>
     6 #include <sys/time.h>
     7 
     8 namespace lemon {
     9 
    10   const double INFTY = 1e24;
    11 
    12   class SimAnnBase {
    13   public:
    14     class Controller;
    15   private:
    16     Controller *controller;
    17   protected:
    18     double curr_cost;
    19     double prev_cost;
    20     double best_cost;
    21 
    22     virtual void mutate() = 0;
    23     virtual void revert() = 0;
    24     virtual void saveAsBest() = 0;
    25   public:
    26     SimAnnBase() {
    27       curr_cost = prev_cost = best_cost = INFTY;
    28     }
    29     void setController(Controller &_controller) {
    30       controller = &_controller;
    31       controller->setBase(this);
    32     }
    33     double getCurrCost() { return curr_cost; }
    34     double getPrevCost() { return prev_cost; }
    35     double getBestCost() { return best_cost; }
    36     void run() {
    37       controller->init();
    38       while (controller->next()) {
    39         mutate();
    40         if (controller->accept()) {
    41           controller->acceptEvent();
    42           if (curr_cost < best_cost) {
    43             saveAsBest();
    44             controller->improveEvent();
    45           }
    46         }
    47         else {
    48           revert();
    49           controller->rejectEvent();
    50         }
    51       }
    52     }
    53 
    54     /*! \brief A base class for controllers. */
    55     class Controller {
    56     public:
    57       SimAnnBase *base;
    58       virtual void init() {}
    59       /*! \brief This is called when a neighbouring state gets accepted. */
    60       virtual void acceptEvent() {}
    61       /*! \brief This is called when the accepted neighbouring state's cost is
    62        *  less than the best found one's.
    63        */
    64       virtual void improveEvent() {}
    65       /*! \brief This is called when a neighbouring state gets rejected. */
    66       virtual void rejectEvent() {}
    67       virtual void setBase(SimAnnBase *_base) { base = _base; }
    68       /*! */
    69       virtual bool next() = 0;
    70       /*! */
    71       virtual bool accept() = 0;
    72     };
    73   };
    74 
    75   template <typename E>
    76   class SimAnn : public SimAnnBase {
    77   private:
    78     E *curr_ent;
    79     E *best_ent;
    80   public:
    81     SimAnn() : SimAnnBase() {}
    82     void setEntity(E &ent) {
    83       curr_ent = new E(ent);
    84       best_ent = new E(ent);
    85     }
    86     E getBestEntity() { return *best_ent; }
    87     void mutate() {
    88       curr_ent->mutate();
    89     }
    90     void revert() {
    91       curr_ent->revert();
    92     }
    93     void saveAsBest() {
    94       *best_ent = *curr_ent;
    95       best_cost = curr_cost;
    96     }
    97   };
    98 
    99   class EntitySkeleton {
   100   public:
   101     /*! \brief Makes a minor change to the entity.
   102      *  \return the new cost
   103      */
   104     double mutate() { return 0.0; }
   105     /*! \brief Restores the entity to its previous state i.e. reverts the
   106      *  effects of the last mutate.
   107      */
   108     void revert() {}
   109   };
   110 
   111   /*! \brief A simple controller for the simulated annealing class.
   112    *  \todo Find a way to set the various parameters.
   113    */
   114   class SimpleController : public SimAnnBase::Controller {
   115   public:
   116     long iter, last_impr, max_iter, max_no_impr;
   117     double temp, ann_fact;
   118     /*! \param _max_iter maximum number of iterations
   119      *  \param _max_no_impr maximum number of consecutive iterations which do
   120      *         not yield a better solution
   121      *  \param _temp initial temperature
   122      *  \param _ann_fact annealing factor
   123      */
   124     SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
   125     double _temp = 1000, double _ann_fact = 0.9999) : iter(0), last_impr(0),
   126     max_iter(_max_iter), max_no_impr(_max_no_impr), temp(_temp),
   127     ann_fact(_ann_fact) {}
   128     void acceptEvent() {
   129       iter++;
   130     }
   131     void improveEvent() {
   132       last_impr = iter;
   133     }
   134     void rejectEvent() {
   135       iter++;
   136     }
   137     bool next() {
   138       temp *= ann_fact;
   139       bool quit = (iter > max_iter) || (iter - last_impr > max_no_impr);
   140       return !quit;
   141     }
   142     bool accept() {
   143       return (drand48() <= exp(base->getPrevCost() - base->getCurrCost() /
   144         temp));
   145     }
   146   };
   147 
   148   /*! \brief A controller with preset running time for the simulated annealing
   149    *  class.
   150    *  \todo Find a better name.
   151    */
   152   class AdvancedController : public SimAnnBase::Controller {
   153   private:
   154     /*! \param time the elapsed time in seconds */
   155     double threshold(double time) { return 0.0; }
   156   public:
   157     double alpha, beta, gamma;
   158     double end_time, start_time;
   159     double avg_cost;
   160     double temp, ann_fact;
   161     /*! \param _end_time running_time
   162      *  \param _alpha parameter used to calculate the running average
   163      *  \param _beta parameter used to decrease the annealing factor
   164      *  \param _gamma parameter used to increase the temperature
   165      */
   166     AdvancedController(double _end_time, double _alpha = 0.2,
   167     double _beta = 0.9, double _gamma = 1.2) : alpha(_alpha), beta(_beta),
   168     gamma(_gamma), end_time(_end_time) {}
   169     void init() {
   170       timeval tv;
   171       gettimeofday(&tv, 0);
   172       start_time = tv.tv_sec + double(tv.tv_usec) / 1e6;
   173     }
   174     void acceptEvent() {
   175       avg_cost = alpha * base->getCurrCost() + (1.0 - alpha) * avg_cost;
   176     }
   177     void improveEvent() {
   178     }
   179     void rejectEvent() {
   180     }
   181     bool next() {
   182       timeval tv;
   183       gettimeofday(&tv, 0);
   184       double elapsed_time = tv.tv_sec + double(tv.tv_usec) / 1e6 - start_time;
   185       if (fabs(avg_cost - base->getBestCost()) > threshold(elapsed_time)) {
   186 	// decrease the annealing factor
   187         ann_fact *= beta;
   188       }
   189       else {
   190         // increase the temperature
   191         temp *= gamma;
   192       }
   193       temp *= ann_fact;
   194       return elapsed_time < end_time;
   195     }
   196     bool accept() {
   197       return (drand48() <= exp(base->getPrevCost() - base->getCurrCost() /
   198         temp));
   199     }
   200   };
   201 
   202 }
   203 
   204 #endif