Modify kruskal to work correctly with UndirGraphs.
2 * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_GRAPH_ADAPTOR_H
18 #define LEMON_GRAPH_ADAPTOR_H
20 ///\ingroup graph_adaptors
22 ///\brief Several graph adaptors.
24 ///This file contains several useful graph adaptor functions.
26 ///\author Marton Makai
28 #include <lemon/invalid.h>
29 #include <lemon/maps.h>
30 #include <lemon/bits/iterable_graph_extender.h>
31 #include <lemon/bits/undir_graph_extender.h>
39 \addtogroup graph_adaptors
44 Base type for the Graph Adaptors
46 \warning Graph adaptors are in even more experimental state than the other
47 parts of the lib. Use them at you own risk.
49 This is the base type for most of LEMON graph adaptors.
50 This class implements a trivial graph adaptor i.e. it only wraps the
51 functions and types of the graph. The purpose of this class is to
52 make easier implementing graph adaptors. E.g. if an adaptor is
53 considered which differs from the wrapped graph only in some of its
54 functions or types, then it can be derived from GraphAdaptor, and only the
55 differences should be implemented.
59 template<typename _Graph>
60 class GraphAdaptorBase {
63 /// \todo Is it needed?
64 typedef Graph BaseGraph;
65 typedef Graph ParentGraph;
69 GraphAdaptorBase() : graph(0) { }
70 void setGraph(Graph& _graph) { graph=&_graph; }
73 GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
75 typedef typename Graph::Node Node;
76 typedef typename Graph::Edge Edge;
78 void first(Node& i) const { graph->first(i); }
79 void first(Edge& i) const { graph->first(i); }
80 void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
81 void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
83 void next(Node& i) const { graph->next(i); }
84 void next(Edge& i) const { graph->next(i); }
85 void nextIn(Edge& i) const { graph->nextIn(i); }
86 void nextOut(Edge& i) const { graph->nextOut(i); }
88 Node source(const Edge& e) const { return graph->source(e); }
89 Node target(const Edge& e) const { return graph->target(e); }
91 int nodeNum() const { return graph->nodeNum(); }
92 int edgeNum() const { return graph->edgeNum(); }
94 Node addNode() const { return Node(graph->addNode()); }
95 Edge addEdge(const Node& source, const Node& target) const {
96 return Edge(graph->addEdge(source, target)); }
98 void erase(const Node& i) const { graph->erase(i); }
99 void erase(const Edge& i) const { graph->erase(i); }
101 void clear() const { graph->clear(); }
103 bool forward(const Edge& e) const { return graph->forward(e); }
104 bool backward(const Edge& e) const { return graph->backward(e); }
106 int id(const Node& v) const { return graph->id(v); }
107 int id(const Edge& e) const { return graph->id(e); }
109 Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); }
111 template <typename _Value>
112 class NodeMap : public _Graph::template NodeMap<_Value> {
114 typedef typename _Graph::template NodeMap<_Value> Parent;
115 NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
116 NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
117 : Parent(*gw.graph, value) { }
120 template <typename _Value>
121 class EdgeMap : public _Graph::template EdgeMap<_Value> {
123 typedef typename _Graph::template EdgeMap<_Value> Parent;
124 EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
125 EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
126 : Parent(*gw.graph, value) { }
131 template <typename _Graph>
133 public IterableGraphExtender<GraphAdaptorBase<_Graph> > {
135 typedef _Graph Graph;
136 typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
138 GraphAdaptor() : Parent() { }
141 GraphAdaptor(Graph& _graph) { setGraph(_graph); }
144 template <typename _Graph>
145 class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
147 typedef _Graph Graph;
148 typedef GraphAdaptorBase<_Graph> Parent;
150 RevGraphAdaptorBase() : Parent() { }
152 typedef typename Parent::Node Node;
153 typedef typename Parent::Edge Edge;
155 // using Parent::first;
156 void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
157 void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
159 // using Parent::next;
160 void nextIn(Edge& i) const { Parent::nextOut(i); }
161 void nextOut(Edge& i) const { Parent::nextIn(i); }
163 Node source(const Edge& e) const { return Parent::target(e); }
164 Node target(const Edge& e) const { return Parent::source(e); }
168 /// A graph adaptor which reverses the orientation of the edges.
170 ///\warning Graph adaptors are in even more experimental state than the other
171 ///parts of the lib. Use them at you own risk.
173 /// Let \f$G=(V, A)\f$ be a directed graph and
174 /// suppose that a graph instange \c g of type
175 /// \c ListGraph implements \f$G\f$.
179 /// For each directed edge
180 /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
181 /// reversing its orientation.
182 /// Then RevGraphAdaptor implements the graph structure with node-set
183 /// \f$V\f$ and edge-set
184 /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be
185 /// reversing the orientation of its edges. The following code shows how
186 /// such an instance can be constructed.
188 /// RevGraphAdaptor<ListGraph> gw(g);
190 ///\author Marton Makai
191 template<typename _Graph>
192 class RevGraphAdaptor :
193 public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
195 typedef _Graph Graph;
196 typedef IterableGraphExtender<
197 RevGraphAdaptorBase<_Graph> > Parent;
199 RevGraphAdaptor() { }
201 RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
205 template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
206 class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
208 typedef _Graph Graph;
209 typedef GraphAdaptorBase<_Graph> Parent;
211 NodeFilterMap* node_filter_map;
212 EdgeFilterMap* edge_filter_map;
213 SubGraphAdaptorBase() : Parent(),
214 node_filter_map(0), edge_filter_map(0) { }
216 void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
217 node_filter_map=&_node_filter_map;
219 void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
220 edge_filter_map=&_edge_filter_map;
224 // SubGraphAdaptorBase(Graph& _graph,
225 // NodeFilterMap& _node_filter_map,
226 // EdgeFilterMap& _edge_filter_map) :
228 // node_filter_map(&node_filter_map),
229 // edge_filter_map(&edge_filter_map) { }
231 typedef typename Parent::Node Node;
232 typedef typename Parent::Edge Edge;
234 void first(Node& i) const {
236 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
238 void first(Edge& i) const {
240 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
242 void firstIn(Edge& i, const Node& n) const {
243 Parent::firstIn(i, n);
244 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
246 void firstOut(Edge& i, const Node& n) const {
247 Parent::firstOut(i, n);
248 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
251 void next(Node& i) const {
253 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
255 void next(Edge& i) const {
257 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
259 void nextIn(Edge& i) const {
261 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
263 void nextOut(Edge& i) const {
265 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
268 /// This function hides \c n in the graph, i.e. the iteration
269 /// jumps over it. This is done by simply setting the value of \c n
270 /// to be false in the corresponding node-map.
271 void hide(const Node& n) const { node_filter_map->set(n, false); }
273 /// This function hides \c e in the graph, i.e. the iteration
274 /// jumps over it. This is done by simply setting the value of \c e
275 /// to be false in the corresponding edge-map.
276 void hide(const Edge& e) const { edge_filter_map->set(e, false); }
278 /// The value of \c n is set to be true in the node-map which stores
279 /// hide information. If \c n was hidden previuosly, then it is shown
281 void unHide(const Node& n) const { node_filter_map->set(n, true); }
283 /// The value of \c e is set to be true in the edge-map which stores
284 /// hide information. If \c e was hidden previuosly, then it is shown
286 void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
288 /// Returns true if \c n is hidden.
289 bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
291 /// Returns true if \c n is hidden.
292 bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
294 /// \warning This is a linear time operation and works only if s
295 /// \c Graph::NodeIt is defined.
296 /// \todo assign tags.
297 int nodeNum() const {
300 for (first(n); n!=INVALID; next(n)) ++i;
304 /// \warning This is a linear time operation and works only if
305 /// \c Graph::EdgeIt is defined.
306 /// \todo assign tags.
307 int edgeNum() const {
310 for (first(e); e!=INVALID; next(e)) ++i;
317 /*! \brief A graph adaptor for hiding nodes and edges from a graph.
319 \warning Graph adaptors are in even more experimental state than the other
320 parts of the lib. Use them at you own risk.
322 SubGraphAdaptor shows the graph with filtered node-set and
324 Let \f$G=(V, A)\f$ be a directed graph
325 and suppose that the graph instance \c g of type ListGraph implements
327 Let moreover \f$b_V\f$ and
328 \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set.
329 SubGraphAdaptor<...>::NodeIt iterates
330 on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and
331 SubGraphAdaptor<...>::EdgeIt iterates
332 on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly,
333 SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates
334 only on edges leaving and entering a specific node which have true value.
336 We have to note that this does not mean that an
337 induced subgraph is obtained, the node-iterator cares only the filter
338 on the node-set, and the edge-iterators care only the filter on the
341 typedef ListGraph Graph;
343 typedef Graph::Node Node;
344 typedef Graph::Edge Edge;
345 Node u=g.addNode(); //node of id 0
346 Node v=g.addNode(); //node of id 1
347 Node e=g.addEdge(u, v); //edge of id 0
348 Node f=g.addEdge(v, u); //edge of id 1
349 Graph::NodeMap<bool> nm(g, true);
351 Graph::EdgeMap<bool> em(g, true);
353 typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
355 for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
356 std::cout << ":-)" << std::endl;
357 for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
359 The output of the above code is the following.
365 Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
366 \c Graph::Node that is why \c g.id(n) can be applied.
368 For other examples see also the documentation of NodeSubGraphAdaptor and
373 template<typename _Graph, typename NodeFilterMap,
374 typename EdgeFilterMap>
375 class SubGraphAdaptor :
376 public IterableGraphExtender<
377 SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
379 typedef _Graph Graph;
380 typedef IterableGraphExtender<
381 SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
383 SubGraphAdaptor() { }
385 SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map,
386 EdgeFilterMap& _edge_filter_map) {
388 setNodeFilterMap(_node_filter_map);
389 setEdgeFilterMap(_edge_filter_map);
395 /*! \brief An adaptor for hiding nodes from a graph.
397 \warning Graph adaptors are in even more experimental state than the other
398 parts of the lib. Use them at you own risk.
400 An adaptor for hiding nodes from a graph.
401 This adaptor specializes SubGraphAdaptor in the way that only the node-set
402 can be filtered. Note that this does not mean of considering induced
403 subgraph, the edge-iterators consider the original edge-set.
406 template<typename Graph, typename NodeFilterMap>
407 class NodeSubGraphAdaptor :
408 public SubGraphAdaptor<Graph, NodeFilterMap,
409 ConstMap<typename Graph::Edge,bool> > {
411 typedef SubGraphAdaptor<Graph, NodeFilterMap,
412 ConstMap<typename Graph::Edge,bool> > Parent;
414 ConstMap<typename Graph::Edge, bool> const_true_map;
416 NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) :
417 Parent(), const_true_map(true) {
418 Parent::setGraph(_graph);
419 Parent::setNodeFilterMap(_node_filter_map);
420 Parent::setEdgeFilterMap(const_true_map);
425 /*! \brief An adaptor for hiding edges from a graph.
427 \warning Graph adaptors are in even more experimental state than the other
428 parts of the lib. Use them at you own risk.
430 An adaptor for hiding edges from a graph.
431 This adaptor specializes SubGraphAdaptor in the way that only the edge-set
432 can be filtered. The usefulness of this adaptor is demonstrated in the
433 problem of searching a maximum number of edge-disjoint shortest paths
435 two nodes \c s and \c t. Shortest here means being shortest w.r.t.
436 non-negative edge-lengths. Note that
437 the comprehension of the presented solution
438 need's some elementary knowledge from combinatorial optimization.
440 If a single shortest path is to be
441 searched between \c s and \c t, then this can be done easily by
442 applying the Dijkstra algorithm. What happens, if a maximum number of
443 edge-disjoint shortest paths is to be computed. It can be proved that an
444 edge can be in a shortest path if and only if it is tight with respect to
445 the potential function computed by Dijkstra. Moreover, any path containing
446 only such edges is a shortest one. Thus we have to compute a maximum number
447 of edge-disjoint paths between \c s and \c t in the graph which has edge-set
448 all the tight edges. The computation will be demonstrated on the following
449 graph, which is read from the dimacs file \ref sub_graph_adaptor_demo.dim.
450 The full source code is available in \ref sub_graph_adaptor_demo.cc.
451 If you are interested in more demo programs, you can use
452 \ref dim_to_dot.cc to generate .dot files from dimacs files.
453 The .dot file of the following figure of was generated generated by
454 the demo program \ref dim_to_dot.cc.
457 digraph lemon_dot_example {
458 node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
459 n0 [ label="0 (s)" ];
465 n6 [ label="6 (t)" ];
466 edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
467 n5 -> n6 [ label="9, length:4" ];
468 n4 -> n6 [ label="8, length:2" ];
469 n3 -> n5 [ label="7, length:1" ];
470 n2 -> n5 [ label="6, length:3" ];
471 n2 -> n6 [ label="5, length:5" ];
472 n2 -> n4 [ label="4, length:2" ];
473 n1 -> n4 [ label="3, length:3" ];
474 n0 -> n3 [ label="2, length:1" ];
475 n0 -> n2 [ label="1, length:2" ];
476 n0 -> n1 [ label="0, length:3" ];
485 readDimacs(std::cin, g, length, s, t);
487 cout << "edges with lengths (of form id, source--length->target): " << endl;
488 for(EdgeIt e(g); e!=INVALID; ++e)
489 cout << g.id(e) << ", " << g.id(g.source(e)) << "--"
490 << length[e] << "->" << g.id(g.target(e)) << endl;
492 cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
494 Next, the potential function is computed with Dijkstra.
496 typedef Dijkstra<Graph, LengthMap> Dijkstra;
497 Dijkstra dijkstra(g, length);
500 Next, we consrtruct a map which filters the edge-set to the tight edges.
502 typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap>
504 TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
506 typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
507 SubGW gw(g, tight_edge_filter);
509 Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed
510 with a max flow algorithm Preflow.
512 ConstMap<Edge, int> const_1_map(1);
513 Graph::EdgeMap<int> flow(g, 0);
515 Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> >
516 preflow(gw, s, t, const_1_map, flow);
521 cout << "maximum number of edge-disjoint shortest path: "
522 << preflow.flowValue() << endl;
523 cout << "edges of the maximum number of edge-disjoint shortest s-t paths: "
525 for(EdgeIt e(g); e!=INVALID; ++e)
527 cout << " " << g.id(g.source(e)) << "--"
528 << length[e] << "->" << g.id(g.target(e)) << endl;
530 The program has the following (expected :-)) output:
532 edges with lengths (of form id, source--length->target):
544 maximum number of edge-disjoint shortest path: 2
545 edges of the maximum number of edge-disjoint shortest s-t paths:
556 template<typename Graph, typename EdgeFilterMap>
557 class EdgeSubGraphAdaptor :
558 public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>,
561 typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>,
562 EdgeFilterMap> Parent;
564 ConstMap<typename Graph::Node, bool> const_true_map;
566 EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) :
567 Parent(), const_true_map(true) {
568 Parent::setGraph(_graph);
569 Parent::setNodeFilterMap(const_true_map);
570 Parent::setEdgeFilterMap(_edge_filter_map);
574 template <typename _Graph>
575 class UndirGraphAdaptorBase :
576 public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
578 typedef _Graph Graph;
579 typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
581 UndirGraphAdaptorBase() : Parent() { }
583 typedef typename Parent::UndirEdge UndirEdge;
584 typedef typename Parent::Edge Edge;
586 /// \bug Why cant an edge say that it is forward or not???
587 /// By this, a pointer to the graph have to be stored
588 /// The implementation
589 template <typename T>
592 const UndirGraphAdaptorBase<_Graph>* g;
593 template <typename TT> friend class EdgeMap;
594 typename _Graph::template EdgeMap<T> forward_map, backward_map;
599 EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g),
600 forward_map(*(g->graph)), backward_map(*(g->graph)) { }
602 EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g),
603 forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
605 void set(Edge e, T a) {
607 forward_map.set(e, a);
609 backward_map.set(e, a);
612 T operator[](Edge e) const {
614 return forward_map[e];
616 return backward_map[e];
620 template <typename T>
622 template <typename TT> friend class UndirEdgeMap;
623 typename _Graph::template EdgeMap<T> map;
626 typedef UndirEdge Key;
628 UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) :
631 UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) :
632 map(*(g.graph), a) { }
634 void set(UndirEdge e, T a) {
638 T operator[](UndirEdge e) const {
645 /// \brief An undirected graph is made from a directed graph by an adaptor
647 /// Undocumented, untested!!!
648 /// If somebody knows nice demo application, let's polulate it.
650 /// \author Marton Makai
651 template<typename _Graph>
652 class UndirGraphAdaptor :
653 public IterableUndirGraphExtender<
654 UndirGraphAdaptorBase<_Graph> > {
656 typedef _Graph Graph;
657 typedef IterableUndirGraphExtender<
658 UndirGraphAdaptorBase<_Graph> > Parent;
660 UndirGraphAdaptor() { }
662 UndirGraphAdaptor(_Graph& _graph) {
668 template <typename _Graph,
669 typename ForwardFilterMap, typename BackwardFilterMap>
670 class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
672 typedef _Graph Graph;
673 typedef GraphAdaptorBase<_Graph> Parent;
675 ForwardFilterMap* forward_filter;
676 BackwardFilterMap* backward_filter;
677 SubBidirGraphAdaptorBase() : Parent(),
678 forward_filter(0), backward_filter(0) { }
680 void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
681 forward_filter=&_forward_filter;
683 void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
684 backward_filter=&_backward_filter;
688 // SubGraphAdaptorBase(Graph& _graph,
689 // NodeFilterMap& _node_filter_map,
690 // EdgeFilterMap& _edge_filter_map) :
692 // node_filter_map(&node_filter_map),
693 // edge_filter_map(&edge_filter_map) { }
695 typedef typename Parent::Node Node;
696 typedef typename _Graph::Edge GraphEdge;
697 template <typename T> class EdgeMap;
698 /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from
699 /// _Graph::Edge. It contains an extra bool flag which is true
700 /// if and only if the
701 /// edge is the backward version of the original edge.
702 class Edge : public _Graph::Edge {
703 friend class SubBidirGraphAdaptorBase<
704 Graph, ForwardFilterMap, BackwardFilterMap>;
705 template<typename T> friend class EdgeMap;
707 bool backward; //true, iff backward
710 /// \todo =false is needed, or causes problems?
711 /// If \c _backward is false, then we get an edge corresponding to the
712 /// original one, otherwise its oppositely directed pair is obtained.
713 Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) :
714 _Graph::Edge(e), backward(_backward) { }
715 Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
716 bool operator==(const Edge& v) const {
717 return (this->backward==v.backward &&
718 static_cast<typename _Graph::Edge>(*this)==
719 static_cast<typename _Graph::Edge>(v));
721 bool operator!=(const Edge& v) const {
722 return (this->backward!=v.backward ||
723 static_cast<typename _Graph::Edge>(*this)!=
724 static_cast<typename _Graph::Edge>(v));
728 void first(Node& i) const {
732 void first(Edge& i) const {
735 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
736 !(*forward_filter)[i]) Parent::next(i);
737 if (*static_cast<GraphEdge*>(&i)==INVALID) {
740 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
741 !(*backward_filter)[i]) Parent::next(i);
745 void firstIn(Edge& i, const Node& n) const {
746 Parent::firstIn(i, n);
748 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
749 !(*forward_filter)[i]) Parent::nextIn(i);
750 if (*static_cast<GraphEdge*>(&i)==INVALID) {
751 Parent::firstOut(i, n);
753 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
754 !(*backward_filter)[i]) Parent::nextOut(i);
758 void firstOut(Edge& i, const Node& n) const {
759 Parent::firstOut(i, n);
761 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
762 !(*forward_filter)[i]) Parent::nextOut(i);
763 if (*static_cast<GraphEdge*>(&i)==INVALID) {
764 Parent::firstIn(i, n);
766 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
767 !(*backward_filter)[i]) Parent::nextIn(i);
771 void next(Node& i) const {
775 void next(Edge& i) const {
778 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
779 !(*forward_filter)[i]) Parent::next(i);
780 if (*static_cast<GraphEdge*>(&i)==INVALID) {
783 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
784 !(*backward_filter)[i]) Parent::next(i);
788 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
789 !(*backward_filter)[i]) Parent::next(i);
793 void nextIn(Edge& i) const {
795 Node n=Parent::target(i);
797 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
798 !(*forward_filter)[i]) Parent::nextIn(i);
799 if (*static_cast<GraphEdge*>(&i)==INVALID) {
800 Parent::firstOut(i, n);
802 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
803 !(*backward_filter)[i]) Parent::nextOut(i);
807 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
808 !(*backward_filter)[i]) Parent::nextOut(i);
812 void nextOut(Edge& i) const {
814 Node n=Parent::source(i);
816 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
817 !(*forward_filter)[i]) Parent::nextOut(i);
818 if (*static_cast<GraphEdge*>(&i)==INVALID) {
819 Parent::firstIn(i, n);
821 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
822 !(*backward_filter)[i]) Parent::nextIn(i);
826 while (*static_cast<GraphEdge*>(&i)!=INVALID &&
827 !(*backward_filter)[i]) Parent::nextIn(i);
831 Node source(Edge e) const {
832 return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
833 Node target(Edge e) const {
834 return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
836 /// Gives back the opposite edge.
837 Edge opposite(const Edge& e) const {
839 f.backward=!f.backward;
843 /// \warning This is a linear time operation and works only if
844 /// \c Graph::EdgeIt is defined.
846 int edgeNum() const {
849 for (first(e); e!=INVALID; next(e)) ++i;
853 bool forward(const Edge& e) const { return !e.backward; }
854 bool backward(const Edge& e) const { return e.backward; }
856 template <typename T>
857 /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two
858 /// _Graph::EdgeMap one for the forward edges and
859 /// one for the backward edges.
861 template <typename TT> friend class EdgeMap;
862 typename _Graph::template EdgeMap<T> forward_map, backward_map;
867 EdgeMap(const SubBidirGraphAdaptorBase<_Graph,
868 ForwardFilterMap, BackwardFilterMap>& g) :
869 forward_map(*(g.graph)), backward_map(*(g.graph)) { }
871 EdgeMap(const SubBidirGraphAdaptorBase<_Graph,
872 ForwardFilterMap, BackwardFilterMap>& g, T a) :
873 forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
875 void set(Edge e, T a) {
877 forward_map.set(e, a);
879 backward_map.set(e, a);
882 // typename _Graph::template EdgeMap<T>::ConstReference
883 // operator[](Edge e) const {
885 // return forward_map[e];
887 // return backward_map[e];
890 // typename _Graph::template EdgeMap<T>::Reference
891 T operator[](Edge e) const {
893 return forward_map[e];
895 return backward_map[e];
899 forward_map.update();
900 backward_map.update();
907 ///\brief An adaptor for composing a subgraph of a
908 /// bidirected graph made from a directed one.
910 /// An adaptor for composing a subgraph of a
911 /// bidirected graph made from a directed one.
913 ///\warning Graph adaptors are in even more experimental state than the other
914 ///parts of the lib. Use them at you own risk.
916 /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge
917 /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
918 /// reversing its orientation. We are given moreover two bool valued
919 /// maps on the edge-set,
920 /// \f$forward\_filter\f$, and \f$backward\_filter\f$.
921 /// SubBidirGraphAdaptor implements the graph structure with node-set
922 /// \f$V\f$ and edge-set
923 /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$.
924 /// The purpose of writing + instead of union is because parallel
925 /// edges can arise. (Similarly, antiparallel edges also can arise).
926 /// In other words, a subgraph of the bidirected graph obtained, which
927 /// is given by orienting the edges of the original graph in both directions.
928 /// As the oppositely directed edges are logically different,
929 /// the maps are able to attach different values for them.
931 /// An example for such a construction is \c RevGraphAdaptor where the
932 /// forward_filter is everywhere false and the backward_filter is
933 /// everywhere true. We note that for sake of efficiency,
934 /// \c RevGraphAdaptor is implemented in a different way.
935 /// But BidirGraphAdaptor is obtained from
936 /// SubBidirGraphAdaptor by considering everywhere true
937 /// valued maps both for forward_filter and backward_filter.
939 /// The most important application of SubBidirGraphAdaptor
940 /// is ResGraphAdaptor, which stands for the residual graph in directed
941 /// flow and circulation problems.
942 /// As adaptors usually, the SubBidirGraphAdaptor implements the
943 /// above mentioned graph structure without its physical storage,
944 /// that is the whole stuff is stored in constant memory.
945 template<typename _Graph,
946 typename ForwardFilterMap, typename BackwardFilterMap>
947 class SubBidirGraphAdaptor :
948 public IterableGraphExtender<
949 SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
951 typedef _Graph Graph;
952 typedef IterableGraphExtender<
953 SubBidirGraphAdaptorBase<
954 _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
956 SubBidirGraphAdaptor() { }
958 SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter,
959 BackwardFilterMap& _backward_filter) {
961 setForwardFilterMap(_forward_filter);
962 setBackwardFilterMap(_backward_filter);
968 ///\brief An adaptor for composing bidirected graph from a directed one.
970 ///\warning Graph adaptors are in even more experimental state than the other
971 ///parts of the lib. Use them at you own risk.
973 /// An adaptor for composing bidirected graph from a directed one.
974 /// A bidirected graph is composed over the directed one without physical
975 /// storage. As the oppositely directed edges are logically different ones
976 /// the maps are able to attach different values for them.
977 template<typename Graph>
978 class BidirGraphAdaptor :
979 public SubBidirGraphAdaptor<
981 ConstMap<typename Graph::Edge, bool>,
982 ConstMap<typename Graph::Edge, bool> > {
984 typedef SubBidirGraphAdaptor<
986 ConstMap<typename Graph::Edge, bool>,
987 ConstMap<typename Graph::Edge, bool> > Parent;
989 ConstMap<typename Graph::Edge, bool> cm;
991 BidirGraphAdaptor() : Parent(), cm(true) {
992 Parent::setForwardFilterMap(cm);
993 Parent::setBackwardFilterMap(cm);
996 BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) {
997 Parent::setGraph(_graph);
998 Parent::setForwardFilterMap(cm);
999 Parent::setBackwardFilterMap(cm);
1002 int edgeNum() const {
1003 return 2*this->graph->edgeNum();
1005 // KEEP_MAPS(Parent, BidirGraphAdaptor);
1009 template<typename Graph, typename Number,
1010 typename CapacityMap, typename FlowMap>
1011 class ResForwardFilter {
1012 // const Graph* graph;
1013 const CapacityMap* capacity;
1014 const FlowMap* flow;
1016 ResForwardFilter(/*const Graph& _graph, */
1017 const CapacityMap& _capacity, const FlowMap& _flow) :
1018 /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
1019 ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
1020 void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
1021 void setFlow(const FlowMap& _flow) { flow=&_flow; }
1022 bool operator[](const typename Graph::Edge& e) const {
1023 return (Number((*flow)[e]) < Number((*capacity)[e]));
1027 template<typename Graph, typename Number,
1028 typename CapacityMap, typename FlowMap>
1029 class ResBackwardFilter {
1030 const CapacityMap* capacity;
1031 const FlowMap* flow;
1033 ResBackwardFilter(/*const Graph& _graph,*/
1034 const CapacityMap& _capacity, const FlowMap& _flow) :
1035 /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
1036 ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
1037 void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
1038 void setFlow(const FlowMap& _flow) { flow=&_flow; }
1039 bool operator[](const typename Graph::Edge& e) const {
1040 return (Number(0) < Number((*flow)[e]));
1045 /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
1047 An adaptor for composing the residual graph for directed flow and circulation problems.
1048 Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a
1049 number type. Let moreover
1050 \f$f,c:A\to F\f$, be functions on the edge-set.
1051 In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow
1052 and \f$c\f$ for a capacity function.
1053 Suppose that a graph instange \c g of type
1054 \c ListGraph implements \f$G\f$.
1058 Then RevGraphAdaptor implements the graph structure with node-set
1059 \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where
1060 \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and
1061 \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$,
1062 i.e. the so called residual graph.
1063 When we take the union \f$A_{forward}\cup A_{backward}\f$,
1064 multilicities are counted, i.e. if an edge is in both
1065 \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it
1067 The following code shows how
1068 such an instance can be constructed.
1070 typedef ListGraph Graph;
1071 Graph::EdgeMap<int> f(g);
1072 Graph::EdgeMap<int> c(g);
1073 ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
1075 \author Marton Makai
1077 template<typename Graph, typename Number,
1078 typename CapacityMap, typename FlowMap>
1079 class ResGraphAdaptor :
1080 public SubBidirGraphAdaptor<
1082 ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,
1083 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
1085 typedef SubBidirGraphAdaptor<
1087 ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,
1088 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
1090 const CapacityMap* capacity;
1092 ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
1093 ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
1094 ResGraphAdaptor() : Parent(),
1095 capacity(0), flow(0) { }
1096 void setCapacityMap(const CapacityMap& _capacity) {
1097 capacity=&_capacity;
1098 forward_filter.setCapacity(_capacity);
1099 backward_filter.setCapacity(_capacity);
1101 void setFlowMap(FlowMap& _flow) {
1103 forward_filter.setFlow(_flow);
1104 backward_filter.setFlow(_flow);
1107 ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity,
1109 Parent(), capacity(&_capacity), flow(&_flow),
1110 forward_filter(/*_graph,*/ _capacity, _flow),
1111 backward_filter(/*_graph,*/ _capacity, _flow) {
1112 Parent::setGraph(_graph);
1113 Parent::setForwardFilterMap(forward_filter);
1114 Parent::setBackwardFilterMap(backward_filter);
1117 typedef typename Parent::Edge Edge;
1119 void augment(const Edge& e, Number a) const {
1120 if (Parent::forward(e))
1121 flow->set(e, (*flow)[e]+a);
1123 flow->set(e, (*flow)[e]-a);
1126 /// \brief Residual capacity map.
1128 /// In generic residual graphs the residual capacity can be obtained
1132 const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
1134 typedef Number Value;
1136 ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>&
1137 _res_graph) : res_graph(&_res_graph) { }
1138 Number operator[](const Edge& e) const {
1139 if (res_graph->forward(e))
1140 return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e];
1142 return (*(res_graph->flow))[e];
1146 // KEEP_MAPS(Parent, ResGraphAdaptor);
1151 template <typename _Graph, typename FirstOutEdgesMap>
1152 class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
1154 typedef _Graph Graph;
1155 typedef GraphAdaptorBase<_Graph> Parent;
1157 FirstOutEdgesMap* first_out_edges;
1158 ErasingFirstGraphAdaptorBase() : Parent(),
1159 first_out_edges(0) { }
1161 void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
1162 first_out_edges=&_first_out_edges;
1167 typedef typename Parent::Node Node;
1168 typedef typename Parent::Edge Edge;
1170 void firstOut(Edge& i, const Node& n) const {
1171 i=(*first_out_edges)[n];
1174 void erase(const Edge& e) const {
1178 first_out_edges->set(n, f);
1183 /// For blocking flows.
1185 ///\warning Graph adaptors are in even more experimental state than the other
1186 ///parts of the lib. Use them at you own risk.
1188 /// This graph adaptor is used for on-the-fly
1189 /// Dinits blocking flow computations.
1190 /// For each node, an out-edge is stored which is used when the
1192 /// OutEdgeIt& first(OutEdgeIt&, const Node&)
1196 /// \author Marton Makai
1197 template <typename _Graph, typename FirstOutEdgesMap>
1198 class ErasingFirstGraphAdaptor :
1199 public IterableGraphExtender<
1200 ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
1202 typedef _Graph Graph;
1203 typedef IterableGraphExtender<
1204 ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
1205 ErasingFirstGraphAdaptor(Graph& _graph,
1206 FirstOutEdgesMap& _first_out_edges) {
1208 setFirstOutEdgesMap(_first_out_edges);
1217 #endif //LEMON_GRAPH_ADAPTOR_H