Contains Edmonds' matching algorithm in a plain and in a heuristical form.
2 #ifndef HUGO_DIJKSTRA_H
3 #define HUGO_DIJKSTRA_H
7 ///\brief Dijkstra algorithm.
17 ///%Dijkstra algorithm class.
19 ///This class provides an efficient implementation of %Dijkstra algorithm.
20 ///The edge lengths are passed to the algorithm using a
21 ///\ref ReadMapSkeleton "readable map",
22 ///so it is easy to change it to any kind of length.
24 ///The type of the length is determined by the \c ValueType of the length map.
26 ///It is also possible to change the underlying priority heap.
28 ///\param Graph The graph type the algorithm runs on.
29 ///\param LengthMap This read-only
32 ///lengths of the edges. It is read once for each edge, so the map
33 ///may involve in relatively time consuming process to compute the edge
34 ///length if it is necessary. The default map type is
35 ///\ref GraphSkeleton::EdgeMap "Graph::EdgeMap<int>"
36 ///\param Heap The heap type used by the %Dijkstra
37 ///algorithm. The default
38 ///is using \ref BinHeap "binary heap".
40 ///\author Jacint Szabo
42 template <typename Graph,
46 template <typename Graph,
47 typename LengthMap=typename Graph::template EdgeMap<int>,
48 template <class,class,class,class> class Heap = BinHeap >
52 typedef typename Graph::Node Node;
53 typedef typename Graph::NodeIt NodeIt;
54 typedef typename Graph::Edge Edge;
55 typedef typename Graph::OutEdgeIt OutEdgeIt;
57 typedef typename LengthMap::ValueType ValueType;
58 typedef typename Graph::template NodeMap<Edge> PredMap;
59 typedef typename Graph::template NodeMap<Node> PredNodeMap;
60 typedef typename Graph::template NodeMap<ValueType> DistMap;
64 const LengthMap& length;
66 PredNodeMap pred_node;
71 Dijkstra(const Graph& _G, const LengthMap& _length) :
72 G(_G), length(_length), predecessor(_G), pred_node(_G), distance(_G) { }
76 ///The distance of a node from the root.
78 ///Returns the distance of a node from the root.
79 ///\pre \ref run() must be called before using this function.
80 ///\warning If node \c v in unreachable from the root the return value
81 ///of this funcion is undefined.
82 ValueType dist(Node v) const { return distance[v]; }
84 ///Returns the previous edge of the shortest path tree.
86 ///For a node \c v it returns the previous edge of the shortest path tree,
87 ///i.e. it returns the last edge from a shortest path from the root to \c
88 ///v. It is INVALID if \c v is unreachable from the root or if \c v=s. The
89 ///shortest path tree used here is equal to the shortest path tree used in
90 ///\ref predNode(Node v). \pre \ref run() must be called before using
92 Edge pred(Node v) const { return predecessor[v]; }
94 ///Returns the previous node of the shortest path tree.
96 ///For a node \c v it returns the previous node of the shortest path tree,
97 ///i.e. it returns the last but one node from a shortest path from the
98 ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
99 ///\c v=s. The shortest path tree used here is equal to the shortest path
100 ///tree used in \ref pred(Node v). \pre \ref run() must be called before
101 ///using this function.
102 Node predNode(Node v) const { return pred_node[v]; }
104 ///Returns a reference to the NodeMap of distances.
106 ///Returns a reference to the NodeMap of distances. \pre \ref run() must
107 ///be called before using this function.
108 const DistMap &distMap() const { return distance;}
110 ///Returns a reference to the shortest path tree map.
112 ///Returns a reference to the NodeMap of the edges of the
113 ///shortest path tree.
114 ///\pre \ref run() must be called before using this function.
115 const PredMap &predMap() const { return predecessor;}
117 ///Returns a reference to the map of nodes of shortest paths.
119 ///Returns a reference to the NodeMap of the last but one nodes of the
120 ///shortest path tree.
121 ///\pre \ref run() must be called before using this function.
122 const PredNodeMap &predNodeMap() const { return pred_node;}
124 ///Checks if a node is reachable from the root.
126 ///Returns \c true if \c v is reachable from the root.
127 ///\warning the root node is reported to be unreached!
128 ///\todo Is this what we want?
129 ///\pre \ref run() must be called before using this function.
131 bool reached(Node v) { return G.valid(predecessor[v]); }
136 // **********************************************************************
138 // **********************************************************************
140 ///Runs %Dijkstra algorithm from node the root.
142 ///This method runs the %Dijkstra algorithm from a root node \c s
145 ///shortest path to each node. The algorithm computes
146 ///- The shortest path tree.
147 ///- The distance of each node from the root.
148 template <typename Graph, typename LengthMap,
149 template<class,class,class,class> class Heap >
150 void Dijkstra<Graph,LengthMap,Heap>::run(Node s) {
153 for ( G.first(u) ; G.valid(u) ; G.next(u) ) {
154 predecessor.set(u,INVALID);
155 pred_node.set(u,INVALID);
158 typename Graph::template NodeMap<int> heap_map(G,-1);
160 typedef Heap<Node, ValueType, typename Graph::template NodeMap<int>,
161 std::less<ValueType> >
164 HeapType heap(heap_map);
168 while ( !heap.empty() ) {
171 ValueType oldvalue=heap[v];
173 distance.set(v, oldvalue);
175 { //FIXME this bracket is for e to be local
178 G.valid(e); G.next(e)) {
181 switch(heap.state(w)) {
182 case HeapType::PRE_HEAP:
183 heap.push(w,oldvalue+length[e]);
184 predecessor.set(w,e);
187 case HeapType::IN_HEAP:
188 if ( oldvalue+length[e] < heap[w] ) {
189 heap.decrease(w, oldvalue+length[e]);
190 predecessor.set(w,e);
194 case HeapType::POST_HEAP:
198 } //FIXME tis bracket
204 } //END OF NAMESPACE HUGO