src/work/alpar/dijkstra/fib_heap.h
author alpar
Mon, 22 Mar 2004 10:21:30 +0000
changeset 229 ae5f9ca94be7
parent 222 0c6bd3a98edf
child 242 b255f25ad394
permissions -rw-r--r--
DocFix
     1 // -*- C++ -*-
     2 /*
     3  *template <typename Item, 
     4  *          typename Prio, 
     5  *          typename ItemIntMap, 
     6  *          typename Compare = std::less<Prio> >
     7  * 
     8  *constructors:
     9  *
    10  *FibHeap(ItemIntMap),   FibHeap(ItemIntMap, Compare)
    11  *
    12  *Member functions:
    13  *
    14  *int size() : returns the number of elements in the heap
    15  *
    16  *bool empty() : true iff size()=0
    17  *
    18  *void set(Item, Prio) : calls push(Item, Prio) if Item is not
    19  *     in the heap, and calls decrease/increase(Item, Prio) otherwise
    20  *
    21  *void push(Item, Prio) : pushes Item to the heap with priority Prio. Item
    22  *     mustn't be in the heap.
    23  *
    24  *Item top() : returns the Item with least Prio. 
    25  *     Must be called only if heap is nonempty.
    26  *
    27  *Prio prio() : returns the least Prio
    28  *     Must be called only if heap is nonempty.
    29  *
    30  *Prio get(Item) : returns Prio of Item
    31  *     Must be called only if Item is in heap.
    32  *
    33  *void pop() : deletes the Item with least Prio
    34  *
    35  *void erase(Item) : deletes Item from the heap if it was already there
    36  *
    37  *void decrease(Item, P) : decreases prio of Item to P. 
    38  *     Item must be in the heap with prio at least P.
    39  *
    40  *void increase(Item, P) : sets prio of Item to P. 
    41  *
    42  *state_enum state(Item) : returns PRE_HEAP if Item has not been in the 
    43  *     heap until now, IN_HEAP if it is in the heap at the moment, and 
    44  *     POST_HEAP otherwise. In the latter case it is possible that Item
    45  *     will get back to the heap again. 
    46  *
    47  *In Fibonacci heaps, increase and erase are not efficient, in case of
    48  *many calls to these operations, it is better to use bin_heap.
    49  */
    50 
    51 #ifndef FIB_HEAP_H
    52 #define FIB_HEAP_H
    53 
    54 #include <vector>
    55 #include <functional>
    56 #include <math.h>
    57 
    58 namespace hugo {
    59   
    60   /// A Fibonacci Heap implementation.
    61   template <typename Item, typename Prio, typename ItemIntMap, 
    62 	    typename Compare = std::less<Prio> >
    63   class FibHeap {
    64     
    65     typedef Prio PrioType;
    66     
    67     class store;
    68     
    69     std::vector<store> container;
    70     int minimum;
    71     ItemIntMap &iimap;
    72     Compare comp;
    73     int num_items;
    74 
    75     ///\todo It is use nowhere
    76     ///\todo It doesn't conforms to the naming conventions.
    77   public:
    78     enum state_enum {
    79       IN_HEAP = 0,
    80       PRE_HEAP = -1,
    81       POST_HEAP = -2
    82     };
    83     
    84   public :
    85     
    86     FibHeap(ItemIntMap &_iimap) : minimum(), iimap(_iimap), num_items() {} 
    87     FibHeap(ItemIntMap &_iimap, const Compare &_comp) : minimum(), 
    88       iimap(_iimap), comp(_comp), num_items() {}
    89     
    90     
    91     int size() const {
    92       return num_items; 
    93     }
    94 
    95 
    96     bool empty() const { return num_items==0; }
    97 
    98 
    99     void set (Item const it, PrioType const value) {
   100       int i=iimap[it];
   101       if ( i >= 0 && container[i].in ) {
   102 	if ( comp(value, container[i].prio) ) decrease(it, value); 
   103 	if ( comp(container[i].prio, value) ) increase(it, value); 
   104       } else push(it, value);
   105     }
   106     
   107 
   108     void push (Item const it, PrioType const value) {
   109       int i=iimap[it];      
   110       if ( i < 0 ) {
   111 	int s=container.size();
   112 	iimap.set( it, s );	
   113 	store st;
   114 	st.name=it;
   115 	container.push_back(st);
   116 	i=s;
   117       } else {
   118 	container[i].parent=container[i].child=-1;
   119 	container[i].degree=0;
   120 	container[i].in=true;
   121 	container[i].marked=false;
   122       }
   123 
   124       if ( num_items ) {
   125 	container[container[minimum].right_neighbor].left_neighbor=i;
   126 	container[i].right_neighbor=container[minimum].right_neighbor;
   127 	container[minimum].right_neighbor=i;
   128 	container[i].left_neighbor=minimum;
   129 	if ( comp( value, container[minimum].prio) ) minimum=i; 
   130       } else {
   131 	container[i].right_neighbor=container[i].left_neighbor=i;
   132 	minimum=i;	
   133       }
   134       container[i].prio=value;
   135       ++num_items;
   136     }
   137     
   138 
   139     Item top() const {
   140       return container[minimum].name;
   141     }
   142     
   143     
   144     PrioType prio() const {
   145       return container[minimum].prio;
   146     }
   147     
   148 
   149 
   150 
   151     PrioType& operator[](const Item& it) {
   152       return container[iimap[it]].prio;
   153     }
   154     
   155     const PrioType& operator[](const Item& it) const {
   156       return container[iimap[it]].prio;
   157     }
   158 
   159 //     const PrioType get(const Item& it) const {
   160 //       return container[iimap[it]].prio;
   161 //     }
   162 
   163     void pop() {
   164       /*The first case is that there are only one root.*/
   165       if ( container[minimum].left_neighbor==minimum ) {
   166 	container[minimum].in=false;
   167 	if ( container[minimum].degree!=0 ) { 
   168 	  makeroot(container[minimum].child);
   169 	  minimum=container[minimum].child;
   170 	  balance();
   171 	}
   172       } else {
   173 	int right=container[minimum].right_neighbor;
   174 	unlace(minimum);
   175 	container[minimum].in=false;
   176 	if ( container[minimum].degree > 0 ) {
   177 	  int left=container[minimum].left_neighbor;
   178 	  int child=container[minimum].child;
   179 	  int last_child=container[child].left_neighbor;
   180 	
   181 	  makeroot(child);
   182 	  
   183 	  container[left].right_neighbor=child;
   184 	  container[child].left_neighbor=left;
   185 	  container[right].left_neighbor=last_child;
   186 	  container[last_child].right_neighbor=right;
   187 	}
   188 	minimum=right;
   189 	balance();
   190       } // the case where there are more roots
   191       --num_items;   
   192     }
   193 
   194     
   195     void erase (const Item& it) {
   196       int i=iimap[it];
   197       
   198       if ( i >= 0 && container[i].in ) { 	
   199 	if ( container[i].parent!=-1 ) {
   200 	  int p=container[i].parent;
   201 	  cut(i,p);	    
   202 	  cascade(p);
   203 	}
   204 	minimum=i;     //As if its prio would be -infinity
   205 	pop();
   206       }
   207     }
   208     
   209 
   210     void decrease (Item it, PrioType const value) {
   211       int i=iimap[it];
   212       container[i].prio=value;
   213       int p=container[i].parent;
   214       
   215       if ( p!=-1 && comp(value, container[p].prio) ) {
   216 	cut(i,p);	    
   217 	cascade(p);
   218       }      
   219       if ( comp(value, container[minimum].prio) ) minimum=i; 
   220     }
   221    
   222 
   223     void increase (Item it, PrioType const value) {
   224       erase(it);
   225       push(it, value);
   226     }
   227 
   228 
   229     state_enum state(const Item &it) const {
   230       int i=iimap[it];
   231       if( i>=0 ) {
   232 	if ( container[i].in ) i=0;
   233 	else i=-2; 
   234       }
   235       return state_enum(i);
   236     }
   237 
   238 
   239   private:
   240     
   241     void balance() {      
   242 
   243     int maxdeg=int( floor( 2.08*log(double(container.size()))))+1;
   244   
   245     std::vector<int> A(maxdeg,-1); 
   246     
   247     /*
   248      *Recall that now minimum does not point to the minimum prio element.
   249      *We set minimum to this during balance().
   250      */
   251     int anchor=container[minimum].left_neighbor; 
   252     int next=minimum; 
   253     bool end=false; 
   254     	
   255        do {
   256 	int active=next;
   257 	if ( anchor==active ) end=true;
   258 	int d=container[active].degree;
   259 	next=container[active].right_neighbor;
   260 
   261 	while (A[d]!=-1) {	  
   262 	  if( comp(container[active].prio, container[A[d]].prio) ) {
   263 	    fuse(active,A[d]); 
   264 	  } else { 
   265 	    fuse(A[d],active);
   266 	    active=A[d];
   267 	  } 
   268 	  A[d]=-1;
   269 	  ++d;
   270 	}	
   271 	A[d]=active;
   272        } while ( !end );
   273 
   274 
   275        while ( container[minimum].parent >=0 ) minimum=container[minimum].parent;
   276        int s=minimum;
   277        int m=minimum;
   278        do {  
   279 	 if ( comp(container[s].prio, container[minimum].prio) ) minimum=s;
   280 	 s=container[s].right_neighbor;
   281        } while ( s != m );
   282     }
   283 
   284 
   285     void makeroot (int c) {
   286       int s=c;
   287       do {  
   288 	container[s].parent=-1;
   289 	s=container[s].right_neighbor;
   290       } while ( s != c );
   291     }
   292     
   293 
   294     void cut (int a, int b) {    
   295       /*
   296        *Replacing a from the children of b.
   297        */
   298       --container[b].degree;
   299       
   300       if ( container[b].degree !=0 ) {
   301 	int child=container[b].child;
   302 	if ( child==a ) 
   303 	  container[b].child=container[child].right_neighbor;
   304 	unlace(a);
   305       }
   306       
   307       
   308       /*Lacing a to the roots.*/
   309       int right=container[minimum].right_neighbor;
   310       container[minimum].right_neighbor=a;
   311       container[a].left_neighbor=minimum;
   312       container[a].right_neighbor=right;
   313       container[right].left_neighbor=a;
   314 
   315       container[a].parent=-1;
   316       container[a].marked=false;
   317     }
   318 
   319 
   320     void cascade (int a) 
   321     {
   322       if ( container[a].parent!=-1 ) {
   323 	int p=container[a].parent;
   324 	
   325 	if ( container[a].marked==false ) container[a].marked=true;
   326 	else {
   327 	  cut(a,p);
   328 	  cascade(p);
   329 	}
   330       }
   331     }
   332 
   333 
   334     void fuse (int a, int b) {
   335       unlace(b);
   336       
   337       /*Lacing b under a.*/
   338       container[b].parent=a;
   339 
   340       if (container[a].degree==0) {
   341 	container[b].left_neighbor=b;
   342 	container[b].right_neighbor=b;
   343 	container[a].child=b;	
   344       } else {
   345 	int child=container[a].child;
   346 	int last_child=container[child].left_neighbor;
   347 	container[child].left_neighbor=b;
   348 	container[b].right_neighbor=child;
   349 	container[last_child].right_neighbor=b;
   350 	container[b].left_neighbor=last_child;
   351       }
   352 
   353       ++container[a].degree;
   354       
   355       container[b].marked=false;
   356     }
   357 
   358 
   359     /*
   360      *It is invoked only if a has siblings.
   361      */
   362     void unlace (int a) {      
   363       int leftn=container[a].left_neighbor;
   364       int rightn=container[a].right_neighbor;
   365       container[leftn].right_neighbor=rightn;
   366       container[rightn].left_neighbor=leftn;
   367     }
   368 
   369 
   370     class store {
   371       friend class FibHeap;
   372       
   373       Item name;
   374       int parent;
   375       int left_neighbor;
   376       int right_neighbor;
   377       int child;
   378       int degree;  
   379       bool marked;
   380       bool in;
   381       PrioType prio;
   382 
   383       store() : parent(-1), child(-1), degree(), marked(false), in(true) {} 
   384     };
   385     
   386   };
   387   
   388 } //namespace hugo
   389 #endif