lemon/elevator.h
author deba
Wed, 07 Mar 2007 12:00:59 +0000
changeset 2400 b199ded24c19
parent 2373 134639e6ea45
child 2512 371cf309fc3c
permissions -rw-r--r--
Steiner 2-approximation demo
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_ELEVATOR_H
    20 #define LEMON_ELEVATOR_H
    21 
    22 ///\ingroup auxdat
    23 ///\file
    24 ///\brief Elevator class
    25 ///
    26 ///Elevator class implements an efficient data structure
    27 ///for labeling items in push-relabel type algorithms.
    28 ///
    29 
    30 #include <test/test_tools.h>
    31 namespace lemon {
    32 
    33   ///Class for handling "labels" in push-relabel type algorithms.
    34   
    35   ///A class for handling "labels" in push-relabel type algorithms.
    36   ///
    37   ///\ingroup auxdat
    38   ///Using this class you can assign "labels" (nonnegative integer numbers)
    39   ///to the edges or nodes of a graph, manipulate and query them through
    40   ///operations typically arising in "push-relabel" type algorithms.
    41   ///
    42   ///Each item is either \em active or not, and you can also choose a
    43   ///highest level active item.
    44   ///
    45   ///\param Graph the underlying graph type
    46   ///\param Item Type of the items the data is assigned to (Graph::Node,
    47   ///Graph::Edge, Graph::UEdge)
    48   template<class Graph, class Item>
    49   class Elevator 
    50   {
    51   public:
    52     typedef typename std::vector<Item>::iterator Vit;
    53     typedef DefaultMap<Graph,Item,Vit> VitMap;
    54     typedef DefaultMap<Graph,Item,int> IntMap;
    55 
    56     const Graph &_g;
    57     int _max_level;
    58     int _item_num;
    59     VitMap _where;
    60     IntMap _level;
    61     std::vector<Item> _items;
    62     std::vector<Vit> _first;
    63     std::vector<Vit> _last_active;
    64 
    65     int _highest_active;
    66 
    67     void copy(Item i, Vit p)
    68     {
    69       _where[*p=i]=p;
    70     }
    71     void copy(Vit s, Vit p)
    72     {
    73       if(s!=p) 
    74 	{
    75 	  Item i=*s;
    76 	  *p=i;
    77 	  _where[i]=p;
    78 	}
    79     }
    80     void swap(Vit i, Vit j)
    81     {
    82       Item ti=*i;
    83       Vit ct = _where[ti];
    84       _where[ti]=_where[*i=*j];
    85       _where[*j]=ct;
    86       *j=ti;
    87     }
    88     
    89     void checkDs() const
    90     {
    91       for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
    92 	{
    93 	  Vit w=_where[i];
    94 	  int l=_level[i];
    95 	  check(*w==i,"GEBASZ: CORRUPT DS");
    96 	  check(_first[l]<=w,"GEBASZ: CORRUPT DS");
    97 	  check(_first[l+1]>w,"GEBASZ: CORRUPT DS");
    98 	}
    99       for(int l=0;l<=_max_level;++l) 
   100 	{
   101 	  check(_first[l]<=_last_active[l]+1,"GEBASZ: CORRUPT DS");
   102 	  check(_last_active[l]<_first[l+1],"GEBASZ: CORRUPT DS");
   103 	  check(_first[l]<=_first[l+1],"GEBASZ: CORRUPT DS");
   104 	}
   105       check(_highest_active<0 ||
   106 	    _first[_highest_active]<=_last_active[_highest_active],
   107 	    "GEBASZ: CORRUPT DS");
   108     }
   109 
   110   public:
   111     ///Constructor with given maximum level.
   112 
   113     ///Constructor with given maximum level.
   114     ///
   115     ///\param g The underlying graph
   116     ///\param max_level Set the range of the possible labels to
   117     ///[0...\c max_level]
   118     Elevator(const Graph &g,int max_level) :
   119       _g(g),
   120       _max_level(max_level),
   121       _item_num(_max_level),
   122       _where(g),
   123       _level(g,0),
   124       _items(_max_level),
   125       _first(_max_level+2),
   126       _last_active(_max_level+2),
   127       _highest_active(-1) {}
   128     ///Constructor.
   129 
   130     ///Constructor.
   131     ///
   132     ///\param g The underlying graph
   133     ///The range of the possible labels is [0...\c max_level],
   134     ///where \c max_level is equal to the number of labeled items in the graph.
   135     Elevator(const Graph &g) :
   136       _g(g),
   137       _max_level(countItems<Graph, Item>(g)),
   138       _item_num(_max_level),
   139       _where(g),
   140       _level(g,0),
   141       _items(_max_level),
   142       _first(_max_level+2),
   143       _last_active(_max_level+2),
   144       _highest_active(-1)
   145     {
   146     }
   147   
   148     ///Activate item \c i.
   149 
   150     ///Activate item \c i.
   151     ///\pre Item \c i shouldn't be active before.
   152     void activate(Item i)
   153     {
   154       const int l=_level[i];
   155       swap(_where[i],++_last_active[l]);
   156       if(l>_highest_active) _highest_active=l;
   157     }
   158   
   159     ///Deactivate item \c i.
   160 
   161     ///Deactivate item \c i.
   162     ///\pre Item \c i must be active before.
   163     void deactivate(Item i)  
   164     {
   165       swap(_where[i],_last_active[_level[i]]--);
   166       while(_highest_active>=0 &&
   167 	    _last_active[_highest_active]<_first[_highest_active])
   168 	_highest_active--;
   169     }
   170 
   171     ///Query whether item \c i is active
   172     bool active(Item i) const { return _where[i]<=_last_active[_level[i]]; }
   173     
   174     ///Return the level of item \c i.
   175     int operator[](Item i) const { return _level[i]; }
   176 
   177     ///Returns an active item on level \c l.
   178 
   179     ///Returns an active item on level \c l.
   180     ///
   181     ///Returns an active item on level \c l or \ref INVALID if there is no such
   182     ///an item. (\c l must be from the range [0...\c max_level].
   183     Item operator[](int l) const
   184     { 
   185       return _last_active[l]>=_first[l]?*_last_active[l]:INVALID;
   186     }
   187 
   188     ///Return the number of items on level \c l.
   189     int onLevel(int l) const
   190     {
   191       return _first[l+1]-_first[l];
   192     }
   193     ///Return the number of items above level \c l.
   194     int aboveLevel(int l) const
   195     {
   196       return _first[_max_level+1]-_first[l+1];
   197     }
   198     ///Return the number of active items on level \c l.
   199     int activesOnLevel(int l) const
   200     {
   201       return _last_active[l]-_first[l]+1;
   202     }
   203     ///Return the maximum allowed level.
   204     int maxLevel() const 
   205     {
   206       return _max_level;
   207     }    
   208 
   209     ///\name Highest Active Item
   210     ///Functions for working with the highest level
   211     ///active item.
   212 
   213     ///@{
   214 
   215     ///Return a highest level active item.
   216   
   217     ///Return a highest level active item.
   218     ///
   219     ///\return the highest level active item or INVALID if there is no active
   220     ///item.
   221     Item highestActive() const 
   222     {
   223       return _highest_active>=0?*_last_active[_highest_active]:INVALID;
   224     }
   225 
   226     ///Return a highest active level.
   227 
   228     ///Return a highest active level.
   229     ///
   230     ///\return the level of the highest active item or -1 if there is no active
   231     ///item.
   232     int highestActiveLevel() const 
   233     {
   234       return _highest_active;
   235     }
   236 
   237     ///Lift the highest active item by one.
   238 
   239     ///Lift the item returned by highestActive() by one.
   240     ///
   241     void liftHighestActive() 
   242     {
   243       ++_level[*_last_active[_highest_active]];
   244       swap(_last_active[_highest_active]--,_last_active[_highest_active+1]);
   245       --_first[++_highest_active];
   246     }
   247 
   248     ///Lift the highest active item.
   249 
   250     ///Lift the item returned by highestActive() to level \c new_level.
   251     ///
   252     ///\warning \c new_level must be strictly higher
   253     ///than the current level.
   254     ///
   255     void liftHighestActiveTo(int new_level) 
   256     {
   257       const Item li = *_last_active[_highest_active];
   258       
   259       copy(--_first[_highest_active+1],_last_active[_highest_active]--);
   260       for(int l=_highest_active+1;l<new_level;l++)
   261 	{
   262 	  copy(--_first[l+1],_first[l]);
   263 	  --_last_active[l];
   264 	}
   265       copy(li,_first[new_level]);
   266       _level[li]=new_level;
   267       _highest_active=new_level;
   268     }
   269     
   270     ///@}
   271     
   272     ///Lift an active item to a higher level.
   273 
   274     ///Lift an active item to a higher level.
   275     ///\param i The item to be lifted. It must be active.
   276     ///\param new_level The new level of \c i. It must be strictly higher
   277     ///than the current level.
   278     ///
   279     void liftTo(Item i, int new_level) 
   280     {
   281       const int lo = _level[i];
   282       const Vit w = _where[i];
   283 
   284       copy(_last_active[lo],w);
   285       copy(--_first[lo+1],_last_active[lo]--);
   286       for(int l=lo+1;l<new_level;l++)
   287 	{
   288 	  copy(_last_active[l],_first[l]);
   289 	  copy(--_first[l+1],_last_active[l]--);
   290 	}
   291       copy(i,_first[new_level]);
   292       _level[i]=new_level;
   293       if(new_level>_highest_active) _highest_active=new_level;
   294     }
   295 
   296 //     void liftToTop(int l) 
   297 //     {
   298 //       const Vit f=_first[l];
   299 //       for(int i=l;i<=_max_level;i++)
   300 // 	{
   301 // 	  _first[i]=f;
   302 // 	  _last_active[i]=f-1;
   303 // 	}
   304 //       for(Vit i=f;i!=_items.end();++i)
   305 // 	_level[*i]=_max_level;
   306 //       for(_highest_active=l-1;
   307 // 	  _highest_active>=0 &&
   308 // 	    _last_active[_highest_active]<_first[_highest_active];
   309 // 	  _highest_active--) ;
   310 //     }
   311     
   312     ///Lift all nodes on and above a level to the top (and deactivate them).
   313 
   314     ///This function lifts all nodes on and above level \c l to \c maxLevel(),
   315     ///and
   316     ///also deactivates them.
   317     void liftToTop(int l) 
   318     {
   319       const Vit f=_first[l];
   320       const Vit tl=_first[_max_level];
   321       for(Vit i=f;i!=tl;++i)
   322 	_level[*i]=_max_level;
   323       for(int i=l;i<=_max_level;i++)
   324 	{
   325 	  _first[i]=f;
   326 	  _last_active[i]=f-1;
   327 	}
   328       for(_highest_active=l-1;
   329 	  _highest_active>=0 &&
   330 	    _last_active[_highest_active]<_first[_highest_active];
   331 	  _highest_active--) ;
   332     }
   333     
   334   private:
   335     int _init_lev;
   336     Vit _init_num;
   337 
   338   public:
   339 
   340     ///\name Initialization
   341     ///Using this function you can initialize the levels of the item.
   342     ///\n
   343     ///This initializatios is started with calling \c initStart().
   344     ///Then the
   345     ///items should be listed levels by levels statring with the lowest one
   346     ///(with level 0). This is done by using \c initAddItem()
   347     ///and \c initNewLevel(). Finally \c initFinish() must be called.
   348     ///The items not listed will be put on the highest level.
   349     ///@{
   350 
   351     ///Start the initialization process.
   352 
   353     void initStart() 
   354     {
   355       _init_lev=0;
   356       _init_num=_items.begin();
   357       _first[0]=_items.begin();
   358       _last_active[0]=_items.begin()-1;
   359       Vit n=_items.begin();
   360       for(typename ItemSetTraits<Graph,Item>::ItemIt i(_g);i!=INVALID;++i)
   361 	{
   362 	  *n=i;
   363 	  _where[i]=n;
   364 	  _level[i]=_max_level;
   365 	  ++n;
   366 	}
   367     }
   368 
   369     ///Add an item to the current level.
   370 
   371     void initAddItem(Item i)
   372     { 
   373      swap(_where[i],_init_num);
   374       _level[i]=_init_lev;
   375       ++_init_num;
   376     }
   377 
   378     ///Start a new level.
   379 
   380     ///Start a new level.
   381     ///It shouldn't be used before the items on level 0 are listed.
   382     void initNewLevel() 
   383     {
   384       _init_lev++;
   385       _first[_init_lev]=_init_num;
   386       _last_active[_init_lev]=_init_num-1;
   387     }
   388 
   389     ///Finalize the initialization process.
   390 
   391     void initFinish()
   392     {
   393       for(_init_lev++;_init_lev<=_max_level;_init_lev++)
   394 	{
   395 	  _first[_init_lev]=_init_num;
   396 	  _last_active[_init_lev]=_init_num-1;
   397 	}
   398       _first[_max_level+1]=_items.begin()+_item_num;
   399       _last_active[_max_level+1]=_items.begin()+_item_num-1;
   400     }
   401 
   402     ///@}
   403 
   404   };
   405 
   406 } //END OF NAMESPACE LEMON
   407 
   408 #endif
   409