Query functions have been implemented for GLPK (CPLEX breaks at the moment, I guess): These functions include:
retrieving one element of the coeff. matrix
retrieving one element of the obj function
lower bd for a variable
upper bound for a variable
lower and upper bounds for a row (these can not be handled separately at the moment)
direction of the optimization (is_max() function)
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_SIMANN_H
20 #define LEMON_SIMANN_H
22 /// \ingroup experimental
24 /// \brief Simulated annealing framework.
26 /// \todo A test and some demo should be added
27 /// \todo Doc should be improved
28 /// \author Akos Ladanyi
33 #include <lemon/time_measure.h>
34 #include <lemon/random.h>
38 /// \addtogroup experimental
43 /// \brief A base class for controllers.
44 class ControllerBase {
46 friend class SimAnnBase;
47 /// \brief Pointer to the simulated annealing base class.
49 /// \brief Initializes the controller.
50 virtual void init() {}
51 /// \brief This is called by the simulated annealing class when a
52 /// neighbouring state gets accepted.
53 virtual void acceptEvent() {}
54 /// \brief This is called by the simulated annealing class when the
55 /// accepted neighbouring state's cost is less than the best found one's.
56 virtual void improveEvent() {}
57 /// \brief This is called by the simulated annealing class when a
58 /// neighbouring state gets rejected.
59 virtual void rejectEvent() {}
60 /// \brief Decides whether to continue the annealing process or not.
61 virtual bool next() = 0;
62 /// \brief Decides whether to accept the current solution or not.
63 virtual bool accept() = 0;
64 /// \brief Destructor.
65 virtual ~ControllerBase() {}
68 /// \brief Skeleton of an entity class.
71 /// \brief Makes a minor change to the entity.
72 /// \return the new cost
73 virtual double mutate() = 0;
74 /// \brief Restores the entity to its previous state i.e. reverts the
75 /// effects of the last mutate().
76 virtual void revert() = 0;
77 /// \brief Makes a copy of the entity.
78 virtual EntityBase* clone() = 0;
79 /// \brief Makes a major change to the entity.
80 virtual void randomize() = 0;
81 /// \brief Destructor.
82 virtual ~EntityBase() {}
85 /// \brief Simulated annealing abstract base class.
87 /// Can be used to derive a custom simulated annealing class if \ref SimAnn
88 /// doesn't fit your needs.
91 /// \brief Pointer to the controller.
92 ControllerBase *controller;
93 /// \brief Cost of the current solution.
95 /// \brief Cost of the best solution.
97 /// \brief Cost of the previous solution.
99 /// \brief Cost of the solution preceding the previous one.
100 double prev_prev_cost;
101 /// \brief Number of iterations.
103 /// \brief Number of iterations which did not improve the solution since
104 /// the last improvement.
107 /// \brief Step to a neighbouring state.
108 virtual double mutate() = 0;
109 /// \brief Reverts the last mutate().
110 virtual void revert() = 0;
111 /// \brief Saves the current solution as the best one.
112 virtual void saveAsBest() = 0;
113 /// \brief Does initializations before each run.
114 virtual void init() {
116 curr_cost = prev_cost = prev_prev_cost = best_cost =
117 std::numeric_limits<double>::infinity();
118 iter = last_impr = 0;
121 /// \brief Sets the controller class to use.
122 void setController(ControllerBase &_controller) {
123 controller = &_controller;
124 controller->simann = this;
126 /// \brief Returns the cost of the current solution.
127 double getCurrCost() const { return curr_cost; }
128 /// \brief Returns the cost of the previous solution.
129 double getPrevCost() const { return prev_cost; }
130 /// \brief Returns the cost of the best solution.
131 double getBestCost() const { return best_cost; }
132 /// \brief Returns the number of iterations done.
133 long getIter() const { return iter; }
134 /// \brief Returns the ordinal number of the last iteration when the
135 /// solution was improved.
136 long getLastImpr() const { return last_impr; }
137 /// \brief Performs one iteration.
140 prev_prev_cost = prev_cost;
141 prev_cost = curr_cost;
142 curr_cost = mutate();
143 if (controller->accept()) {
144 controller->acceptEvent();
146 if (curr_cost < best_cost) {
147 best_cost = curr_cost;
149 controller->improveEvent();
154 curr_cost = prev_cost;
155 prev_cost = prev_prev_cost;
156 controller->rejectEvent();
158 return controller->next();
160 /// \brief Performs a given number of iterations.
161 /// \param n the number of iterations
163 for(; n > 0 && step(); --n) ;
166 /// \brief Starts the annealing process.
169 do { } while (step());
171 /// \brief Destructor.
172 virtual ~SimAnnBase() {}
175 /// \brief Simulated annealing class.
176 class SimAnn : public SimAnnBase {
178 /// \brief Pointer to the current entity.
179 EntityBase *curr_ent;
180 /// \brief Pointer to the best entity.
181 EntityBase *best_ent;
182 /// \brief Does initializations before each run.
185 if (best_ent) delete best_ent;
187 curr_ent->randomize();
190 /// \brief Constructor.
191 SimAnn() : curr_ent(NULL), best_ent(NULL) {}
192 /// \brief Destructor.
194 if (best_ent) delete best_ent;
196 /// \brief Step to a neighbouring state.
198 return curr_ent->mutate();
200 /// \brief Reverts the last mutate().
204 /// \brief Saves the current solution as the best one.
206 if (best_ent) delete best_ent;
207 best_ent = curr_ent->clone();
209 /// \brief Sets the current entity.
210 void setEntity(EntityBase &_ent) {
213 /// \brief Returns a copy of the best found entity.
214 EntityBase* getBestEntity() { return best_ent->clone(); }
217 /// \brief A simple controller for the simulated annealing class.
219 /// This controller starts from a given initial temperature and evenly
221 class SimpleController : public ControllerBase {
223 /// \brief Maximum number of iterations.
225 /// \brief Maximum number of iterations which do not improve the
228 /// \brief Temperature.
230 /// \brief Annealing factor.
232 /// \brief Constructor.
233 /// \param _max_iter maximum number of iterations
234 /// \param _max_no_impr maximum number of consecutive iterations which do
235 /// not yield a better solution
236 /// \param _temp initial temperature
237 /// \param _ann_fact annealing factor
239 SimpleController(long _max_iter = 500000, long _max_no_impr = 20000,
240 double _temp = 1000.0, double _ann_fact = 0.9999) : max_iter(_max_iter),
241 max_no_impr(_max_no_impr), temp(_temp), ann_fact(_ann_fact)
244 /// \brief This is called when a neighbouring state gets accepted.
245 void acceptEvent() {}
246 /// \brief This is called when the accepted neighbouring state's cost is
247 /// less than the best found one's.
248 void improveEvent() {}
249 /// \brief This is called when a neighbouring state gets rejected.
250 void rejectEvent() {}
251 /// \brief Decides whether to continue the annealing process or not. Also
252 /// decreases the temperature.
255 bool quit = (simann->getIter() > max_iter) ||
256 (simann->getIter() - simann->getLastImpr() > max_no_impr);
259 /// \brief Decides whether to accept the current solution or not.
261 double cost_diff = simann->getCurrCost() - simann->getPrevCost();
262 return (rnd() <= exp(-(cost_diff / temp)));
264 /// \brief Destructor.
265 virtual ~SimpleController() {}
268 /// \brief A controller with preset running time for the simulated annealing
271 /// With this controller you can set the running time of the annealing
272 /// process in advance. It works the following way: the controller measures
273 /// a kind of divergence. The divergence is the difference of the average
274 /// cost of the recently found solutions the cost of the best found one. In
275 /// case this divergence is greater than a given threshold, then we decrease
276 /// the annealing factor, that is we cool the system faster. In case the
277 /// divergence is lower than the threshold, then we increase the temperature.
278 /// The threshold is a function of the elapsed time which reaches zero at the
279 /// desired end time.
280 class AdvancedController : public ControllerBase {
282 /// \brief Timer class to measure the elapsed time.
284 /// \brief Calculates the threshold value.
285 /// \param time the elapsed time in seconds
286 virtual double threshold(double time) {
287 return (-1.0) * start_threshold / end_time * time + start_threshold;
289 /// \brief Parameter used to calculate the running average.
291 /// \brief Parameter used to decrease the annealing factor.
293 /// \brief Parameter used to increase the temperature.
295 /// \brief The time at the end of the algorithm.
297 /// \brief The time at the start of the algorithm.
299 /// \brief Starting threshold.
300 double start_threshold;
301 /// \brief Average cost of recent solutions.
303 /// \brief Temperature.
305 /// \brief Annealing factor.
307 /// \brief Initial annealing factor.
308 double init_ann_fact;
309 /// \brief True when the annealing process has been started.
312 /// \brief Constructor.
313 /// \param _end_time running time in seconds
314 /// \param _alpha parameter used to calculate the running average
315 /// \param _beta parameter used to decrease the annealing factor
316 /// \param _gamma parameter used to increase the temperature
317 /// \param _ann_fact initial annealing factor
318 AdvancedController(double _end_time, double _alpha = 0.2,
319 double _beta = 0.9, double _gamma = 1.6, double _ann_fact = 0.9999) :
320 alpha(_alpha), beta(_beta), gamma(_gamma), end_time(_end_time),
321 ann_fact(_ann_fact), init_ann_fact(_ann_fact), start(false)
324 /// \brief Does initializations before each run.
326 avg_cost = simann->getCurrCost();
328 /// \brief This is called when a neighbouring state gets accepted.
330 avg_cost = alpha * simann->getCurrCost() + (1.0 - alpha) * avg_cost;
335 // calculate starting threshold and starting temperature
336 start_threshold = 5.0 * fabs(simann->getBestCost() - avg_cost);
343 /// \brief Decides whether to continue the annealing process or not.
349 double elapsed_time = timer.realTime();
350 if (fabs(avg_cost - simann->getBestCost()) > threshold(elapsed_time)) {
351 // decrease the annealing factor
355 // increase the temperature
357 // reset the annealing factor
358 ann_fact = init_ann_fact;
361 return elapsed_time < end_time;
364 /// \brief Decides whether to accept the current solution or not.
370 double cost_diff = simann->getCurrCost() - simann->getPrevCost();
371 return (rnd() <= exp(-(cost_diff / temp)));
374 /// \brief Destructor.
375 virtual ~AdvancedController() {}