Query functions have been implemented for GLPK (CPLEX breaks at the moment, I guess): These functions include:
retrieving one element of the coeff. matrix
retrieving one element of the obj function
lower bd for a variable
upper bound for a variable
lower and upper bounds for a row (these can not be handled separately at the moment)
direction of the optimization (is_max() function)
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_MIN_COST_FLOW_H
20 #define LEMON_MIN_COST_FLOW_H
24 ///\file \brief An algorithm for finding a flow of value \c k (for
25 ///small values of \c k) having minimal total cost
28 #include <lemon/dijkstra.h>
29 #include <lemon/graph_adaptor.h>
30 #include <lemon/maps.h>
35 /// \addtogroup flowalgs
38 /// \brief Implementation of an algorithm for finding a flow of
39 /// value \c k (for small values of \c k) having minimal total cost
43 /// The \ref lemon::SspMinCostFlow "Successive Shortest Path Minimum
44 /// Cost Flow" implements an algorithm for finding a flow of value
45 /// \c k having minimal total cost from a given source node to a
46 /// given target node in a directed graph with a cost function on
47 /// the edges. To this end, the edge-capacities and edge-costs have
48 /// to be nonnegative. The edge-capacities should be integers, but
49 /// the edge-costs can be integers, reals or of other comparable
50 /// numeric type. This algorithm is intended to be used only for
51 /// small values of \c k, since it is only polynomial in k, not in
52 /// the length of k (which is log k): in order to find the minimum
53 /// cost flow of value \c k it finds the minimum cost flow of value
54 /// \c i for every \c i between 0 and \c k.
56 ///\param Graph The directed graph type the algorithm runs on.
57 ///\param LengthMap The type of the length map.
58 ///\param CapacityMap The capacity map type.
60 ///\author Attila Bernath
61 template <typename Graph, typename LengthMap, typename CapacityMap>
62 class SspMinCostFlow {
64 typedef typename LengthMap::Value Length;
66 //Warning: this should be integer type
67 typedef typename CapacityMap::Value Capacity;
69 typedef typename Graph::Node Node;
70 typedef typename Graph::NodeIt NodeIt;
71 typedef typename Graph::Edge Edge;
72 typedef typename Graph::OutEdgeIt OutEdgeIt;
73 typedef typename Graph::template EdgeMap<int> EdgeIntMap;
75 typedef ResGraphAdaptor<const Graph,int,CapacityMap,EdgeIntMap> ResGW;
76 typedef typename ResGW::Edge ResGraphEdge;
81 const LengthMap& length;
82 const CapacityMap& capacity;
85 typedef typename Graph::template NodeMap<Length> PotentialMap;
86 PotentialMap potential;
94 typedef typename Graph::template NodeMap<Length> NodeMap;
96 const LengthMap &length;
99 typedef typename LengthMap::Key Key;
100 typedef typename LengthMap::Value Value;
102 ModLengthMap(const ResGW& _g,
103 const LengthMap &_length, const NodeMap &_pot) :
104 g(_g), /*rev(_rev),*/ length(_length), pot(_pot) { }
106 Value operator[](typename ResGW::Edge e) const {
108 return length[e]-(pot[g.target(e)]-pot[g.source(e)]);
110 return -length[e]-(pot[g.target(e)]-pot[g.source(e)]);
116 ModLengthMap mod_length;
117 Dijkstra<ResGW, ModLengthMap> dijkstra;
121 /// \brief The constructor of the class.
123 /// \param _g The directed graph the algorithm runs on.
124 /// \param _length The length (cost) of the edges.
125 /// \param _cap The capacity of the edges.
126 /// \param _s Source node.
127 /// \param _t Target node.
128 SspMinCostFlow(Graph& _g, LengthMap& _length, CapacityMap& _cap,
130 g(_g), length(_length), capacity(_cap), flow(_g), potential(_g),
132 res_graph(g, capacity, flow),
133 mod_length(res_graph, length, potential),
134 dijkstra(res_graph, mod_length) {
138 /// \brief Tries to augment the flow between s and t by 1. The
139 /// return value shows if the augmentation is successful.
142 if (!dijkstra.reached(t)) {
144 //Unsuccessful augmentation.
148 //We have to change the potential
149 for(typename ResGW::NodeIt n(res_graph); n!=INVALID; ++n)
150 potential.set(n, potential[n]+dijkstra.distMap()[n]);
152 //Augmenting on the shortest path
156 e = dijkstra.predEdge(n);
157 n = dijkstra.predNode(n);
158 res_graph.augment(e,1);
159 //Let's update the total length
160 if (res_graph.forward(e))
161 total_length += length[e];
163 total_length -= length[e];
170 /// \brief Runs the algorithm.
172 /// Runs the algorithm.
173 /// Returns k if there is a flow of value at least k from s to t.
174 /// Otherwise it returns the maximum value of a flow from s to t.
176 /// \param k The value of the flow we are looking for.
178 /// \todo May be it does make sense to be able to start with a
179 /// nonzero feasible primal-dual solution pair as well.
181 /// \todo If the actual flow value is bigger than k, then
182 /// everything is cleared and the algorithm starts from zero
183 /// flow. Is it a good approach?
185 if (flowValue()>k) reset();
186 while (flowValue()<k && augment()) { }
190 /// \brief The class is reset to zero flow and potential. The
191 /// class is reset to zero flow and potential.
194 for (typename Graph::EdgeIt e(g); e!=INVALID; ++e) flow.set(e, 0);
195 for (typename Graph::NodeIt n(g); n!=INVALID; ++n) potential.set(n, 0);
198 /// \brief Returns the value of the actual flow.
199 int flowValue() const {
201 for (typename Graph::OutEdgeIt e(g, s); e!=INVALID; ++e) i+=flow[e];
202 for (typename Graph::InEdgeIt e(g, s); e!=INVALID; ++e) i-=flow[e];
206 /// \brief Total cost of the found flow.
208 /// This function gives back the total cost of the found flow.
209 Length totalLength(){
213 /// \brief Returns a const reference to the EdgeMap \c flow.
215 /// Returns a const reference to the EdgeMap \c flow.
216 const EdgeIntMap &getFlow() const { return flow;}
218 /// \brief Returns a const reference to the NodeMap \c potential
219 /// (the dual solution).
221 /// Returns a const reference to the NodeMap \c potential (the
223 const PotentialMap &getPotential() const { return potential;}
225 /// \brief Checking the complementary slackness optimality criteria.
227 /// This function checks, whether the given flow and potential
228 /// satisfy the complementary slackness conditions (i.e. these are optimal).
229 /// This function only checks optimality, doesn't bother with feasibility.
230 /// For testing purpose.
231 bool checkComplementarySlackness(){
234 for(typename Graph::EdgeIt e(g); e!=INVALID; ++e) {
236 mod_pot = length[e]-potential[g.target(e)]+potential[g.source(e)];
238 if (0<fl_e && fl_e<capacity[e]) {
239 /// \todo better comparison is needed for real types, moreover,
240 /// this comparison here is superfluous.
245 if (mod_pot > 0 && fl_e != 0)
247 if (mod_pot < 0 && fl_e != capacity[e])
254 }; //class SspMinCostFlow
260 #endif //LEMON_MIN_COST_FLOW_H