lemon/csp.h
author alpar
Tue, 20 Feb 2007 13:01:22 +0000
changeset 2374 b59a17034ffa
parent 2360 72c7075ad5ba
child 2376 0ed45a6c74b1
permissions -rw-r--r--
Some two dimensional random distribution added.
They should be revised.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CSP_H
    20 #define LEMON_CSP_H
    21 
    22 ///\ingroup flowalgs
    23 ///\file
    24 ///\brief Algorithm for the Resource Constrained Shortest Path problem.
    25 ///
    26 ///
    27 ///\todo dijkstraZero() solution should be revised.
    28 
    29 #include <lemon/list_graph.h>
    30 #include <lemon/graph_utils.h>
    31 #include <lemon/error.h>
    32 #include <lemon/maps.h>
    33 #include <lemon/tolerance.h>
    34 #include <lemon/dijkstra.h>
    35 #include <lemon/path.h>
    36 #include <lemon/counter.h>
    37 namespace lemon {
    38   
    39   ///Algorithms for the Resource Constrained Shortest Path Problem
    40   
    41   ///The Resource Constrained Shortest (Least Cost) Path problem is the
    42   ///following. We are given a directed graph with two additive weightings
    43   ///on the edges, referred as \e cost and \e delay. In addition,
    44   ///a source and a destination node \e s and \e t and a delay
    45   ///constraint \e D is given. A path \e p is called \e feasible
    46   ///if <em>delay(p)\<=D</em>. Then, the task is to find the least cost
    47   ///feasible path.
    48   ///
    49   template<class Graph,
    50 	   class CM=typename Graph:: template EdgeMap<double>,
    51 	   class DM=CM>
    52   class ConstrainedShortestPath 
    53   {
    54   public:
    55     
    56     GRAPH_TYPEDEFS(typename Graph);
    57     
    58     typedef SimplePath<Graph> Path;
    59     
    60     Graph &_g;
    61     Tolerance<double> tol;
    62 
    63     CM &_cost;
    64     DM &_delay;
    65 
    66     class CoMap 
    67     {
    68       CM &_cost;
    69       DM &_delay;
    70       double _lambda;
    71     public:
    72       typedef typename CM::Key Key;
    73       typedef double Value;
    74       CoMap(CM &c,DM &d) :_cost(c), _delay(d), _lambda(0) {}
    75       double lambda() const { return _lambda; }
    76       void lambda(double l)  { _lambda=l; }
    77       Value operator[](Key &e) const 
    78       {
    79 	return _cost[e]+_lambda*_delay[e];
    80       }
    81     } _co_map;
    82     
    83     
    84     Dijkstra<Graph, CoMap> _dij;
    85     ///\e
    86     
    87     ///\e
    88     ///
    89     ConstrainedShortestPath(Graph &g, CM &cost, DM &delay)
    90       : _g(g), _cost(cost), _delay(delay),
    91 	_co_map(cost,delay), _dij(_g,_co_map) {}
    92     
    93 
    94     ///Compute the cost of a path
    95     double cost(const Path &p) 
    96     {
    97       double s=0;
    98       //      Path r;  
    99       for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_cost[e];
   100       return s;
   101     }
   102 
   103     ///Compute the delay of a path
   104     double delay(const Path &p) 
   105     {
   106       double s=0;
   107       for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_delay[e];
   108       return s;
   109     }
   110     
   111     ///Runs the LARAC algorithm
   112     
   113     ///This function runs a Lagrange relaxation based heuristic to find
   114     ///a delay constrained least cost path.
   115     ///\param s source node
   116     ///\param t target node
   117     ///\retval lo_bo a lower bound on the optimal solution
   118     ///\return the found path or an empty 
   119     Path larac(Node s, Node t, double delta, double &lo_bo) 
   120     {
   121       NoCounter cnt("LARAC iterations: ");
   122       double lambda=0;
   123       double cp,cq,dp,dq,cr,dr;
   124       Path p;
   125       Path q;
   126       Path r;
   127       {
   128 	Dijkstra<Graph,CM> dij(_g,_cost);
   129 	dij.run(s,t);
   130 	cnt++;
   131 	if(!dij.reached(t)) return Path();
   132 	p=dij.path(t);
   133 	cp=cost(p);
   134 	dp=delay(p);
   135       }
   136       if(delay(p)<=delta) return p;
   137       {
   138 	Dijkstra<Graph,DM> dij(_g,_delay);
   139 	dij.run(s,t);
   140 	cnt++;
   141 	q=dij.path(t);
   142 	cq=cost(q);
   143 	dq=delay(q);
   144       }
   145       if(delay(q)>delta) return Path();
   146       while (true) {
   147 	lambda=(cp-cq)/(dq-dp);
   148 	_co_map.lambda(lambda);
   149 	_dij.run(s,t);
   150 	cnt++;
   151 	r=_dij.path(t);
   152 	cr=cost(r);
   153 	dr=delay(r);
   154 	if(!tol.less(cr+lambda*dr,cp+lambda*dp)) {
   155 	  lo_bo=cq+lambda*(dq-delta);
   156 	  return q;
   157 	}
   158 	else if(tol.less(dr,delta)) 
   159 	  {
   160 	    q=r;
   161 	    cq=cr;
   162 	    dq=dr;
   163 	  }
   164 	else if(tol.less(delta,dr))
   165 	  {
   166 	    p=r;
   167 	    cp=cr;
   168 	    dp=dr;
   169 	  }
   170 	else return r;
   171       }
   172     }
   173   };
   174   
   175 
   176 } //END OF NAMESPACE LEMON
   177 
   178 #endif