Some two dimensional random distribution added.
They should be revised.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_KRUSKAL_H
20 #define LEMON_KRUSKAL_H
24 #include <lemon/unionfind.h>
25 #include <lemon/bits/utility.h>
26 #include <lemon/bits/traits.h>
30 ///\brief Kruskal's algorithm to compute a minimum cost tree
32 ///Kruskal's algorithm to compute a minimum cost tree.
37 /// \addtogroup spantree
40 /// Kruskal's algorithm to find a minimum cost tree of a graph.
42 /// This function runs Kruskal's algorithm to find a minimum cost tree.
43 /// Due to hard C++ hacking, it accepts various input and output types.
45 /// \param g The graph the algorithm runs on.
46 /// It can be either \ref concepts::Graph "directed" or
47 /// \ref concepts::UGraph "undirected".
48 /// If the graph is directed, the algorithm consider it to be
49 /// undirected by disregarding the direction of the edges.
51 /// \param in This object is used to describe the edge costs. It can be one
52 /// of the following choices.
53 /// - An STL compatible 'Forward Container'
54 /// with <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>,
55 /// where \c X is the type of the costs. The pairs indicates the edges along
56 /// with the assigned cost. <em>They must be in a
57 /// cost-ascending order.</em>
58 /// - Any readable Edge map. The values of the map indicate the edge costs.
60 /// \retval out Here we also have a choise.
61 /// - It can be a writable \c bool edge map.
62 /// After running the algorithm
63 /// this will contain the found minimum cost spanning tree: the value of an
64 /// edge will be set to \c true if it belongs to the tree, otherwise it will
65 /// be set to \c false. The value of each edge will be set exactly once.
66 /// - It can also be an iteraror of an STL Container with
67 /// <tt>GR::Edge</tt> as its <tt>value_type</tt>.
68 /// The algorithm copies the elements of the found tree into this sequence.
69 /// For example, if we know that the spanning tree of the graph \c g has
70 /// say 53 edges, then
71 /// we can put its edges into an STL vector \c tree with a code like this.
73 /// std::vector<Edge> tree(53);
74 /// kruskal(g,cost,tree.begin());
76 /// Or if we don't know in advance the size of the tree, we can write this.
78 /// std::vector<Edge> tree;
79 /// kruskal(g,cost,std::back_inserter(tree));
82 /// \return The cost of the found tree.
84 /// \warning If kruskal runs on an
85 /// \ref lemon::concepts::UGraph "undirected graph", be sure that the
86 /// map storing the tree is also undirected
87 /// (e.g. ListUGraph::UEdgeMap<bool>, otherwise the values of the
88 /// half of the edges will not be set.
92 template <class GR, class IN, class OUT>
94 kruskal(GR const& g, IN const& in,
97 template <class GR, class IN, class OUT>
98 typename IN::value_type::second_type
99 kruskal(GR const& g, IN const& in,
101 // typename IN::value_type::first_type = typename GR::Edge()
102 // ,typename OUT::Key = OUT::Key()
103 // //,typename OUT::Key = typename GR::Edge()
104 const typename IN::value_type::first_type * =
105 (const typename IN::value_type::first_type *)(0),
106 const typename OUT::Key * = (const typename OUT::Key *)(0)
110 typedef typename IN::value_type::second_type EdgeCost;
111 typedef typename GR::template NodeMap<int> NodeIntMap;
112 typedef typename GR::Node Node;
115 UnionFind<NodeIntMap> uf(comp);
116 for (typename GR::NodeIt it(g); it != INVALID; ++it) {
120 EdgeCost tot_cost = 0;
121 for (typename IN::const_iterator p = in.begin();
123 if ( uf.join(g.target((*p).first),
124 g.source((*p).first)) ) {
125 out.set((*p).first, true);
126 tot_cost += (*p).second;
129 out.set((*p).first, false);
139 /* A work-around for running Kruskal with const-reference bool maps... */
141 /// Helper class for calling kruskal with "constant" output map.
143 /// Helper class for calling kruskal with output maps constructed
146 /// A typical examle is the following call:
147 /// <tt>kruskal(g, some_input, makeSequenceOutput(iterator))</tt>.
148 /// Here, the third argument is a temporary object (which wraps around an
149 /// iterator with a writable bool map interface), and thus by rules of C++
150 /// is a \c const object. To enable call like this exist this class and
151 /// the prototype of the \ref kruskal() function with <tt>const& OUT</tt>
154 class NonConstMapWr {
157 typedef typename Map::Key Key;
158 typedef typename Map::Value Value;
160 NonConstMapWr(const Map &_m) : m(_m) {}
163 void set(Key const& k, Value const &v) const { m.set(k,v); }
166 template <class GR, class IN, class OUT>
168 typename IN::value_type::second_type
169 kruskal(GR const& g, IN const& edges, OUT const& out_map,
170 // typename IN::value_type::first_type = typename GR::Edge(),
171 // typename OUT::Key = GR::Edge()
172 const typename IN::value_type::first_type * =
173 (const typename IN::value_type::first_type *)(0),
174 const typename OUT::Key * = (const typename OUT::Key *)(0)
177 NonConstMapWr<OUT> map_wr(out_map);
178 return kruskal(g, edges, map_wr);
181 /* ** ** Input-objects ** ** */
183 /// Kruskal's input source.
185 /// Kruskal's input source.
187 /// In most cases you possibly want to use the \ref kruskal() instead.
189 /// \sa makeKruskalMapInput()
191 ///\param GR The type of the graph the algorithm runs on.
192 ///\param Map An edge map containing the cost of the edges.
194 ///The cost type can be any type satisfying
195 ///the STL 'LessThan comparable'
196 ///concept if it also has an operator+() implemented. (It is necessary for
197 ///computing the total cost of the tree).
199 template<class GR, class Map>
200 class KruskalMapInput
201 : public std::vector< std::pair<typename GR::Edge,
202 typename Map::Value> > {
205 typedef std::vector< std::pair<typename GR::Edge,
206 typename Map::Value> > Parent;
207 typedef typename Parent::value_type value_type;
212 bool operator()(const value_type& a,
213 const value_type& b) {
214 return a.second < b.second;
219 typename enable_if<UndirectedTagIndicator<_GR>,void>::type
220 fillWithEdges(const _GR& g, const Map& m,dummy<0> = 0)
222 for(typename GR::UEdgeIt e(g);e!=INVALID;++e)
223 push_back(value_type(g.direct(e, true), m[e]));
227 typename disable_if<UndirectedTagIndicator<_GR>,void>::type
228 fillWithEdges(const _GR& g, const Map& m,dummy<1> = 1)
230 for(typename GR::EdgeIt e(g);e!=INVALID;++e)
231 push_back(value_type(e, m[e]));
238 std::sort(this->begin(), this->end(), comparePair());
241 KruskalMapInput(GR const& g, Map const& m) {
247 /// Creates a KruskalMapInput object for \ref kruskal()
249 /// It makes easier to use
250 /// \ref KruskalMapInput by making it unnecessary
251 /// to explicitly give the type of the parameters.
253 /// In most cases you possibly
254 /// want to use \ref kruskal() instead.
256 ///\param g The type of the graph the algorithm runs on.
257 ///\param m An edge map containing the cost of the edges.
259 ///The cost type can be any type satisfying the
260 ///STL 'LessThan Comparable'
261 ///concept if it also has an operator+() implemented. (It is necessary for
262 ///computing the total cost of the tree).
264 ///\return An appropriate input source for \ref kruskal().
266 template<class GR, class Map>
268 KruskalMapInput<GR,Map> makeKruskalMapInput(const GR &g,const Map &m)
270 return KruskalMapInput<GR,Map>(g,m);
275 /* ** ** Output-objects: simple writable bool maps ** ** */
279 /// A writable bool-map that makes a sequence of "true" keys
281 /// A writable bool-map that creates a sequence out of keys that receives
282 /// the value "true".
284 /// \sa makeKruskalSequenceOutput()
286 /// Very often, when looking for a min cost spanning tree, we want as
287 /// output a container containing the edges of the found tree. For this
288 /// purpose exist this class that wraps around an STL iterator with a
289 /// writable bool map interface. When a key gets value "true" this key
290 /// is added to sequence pointed by the iterator.
294 /// std::vector<Graph::Edge> v;
295 /// kruskal(g, input, makeKruskalSequenceOutput(back_inserter(v)));
298 /// For the most common case, when the input is given by a simple edge
299 /// map and the output is a sequence of the tree edges, a special
300 /// wrapper function exists: \ref kruskalEdgeMap_IteratorOut().
302 /// \warning Not a regular property map, as it doesn't know its Key
304 template<class Iterator>
305 class KruskalSequenceOutput {
309 typedef typename std::iterator_traits<Iterator>::value_type Key;
312 KruskalSequenceOutput(Iterator const &_it) : it(_it) {}
314 template<typename Key>
315 void set(Key const& k, bool v) const { if(v) {*it=k; ++it;} }
318 template<class Iterator>
320 KruskalSequenceOutput<Iterator>
321 makeKruskalSequenceOutput(Iterator it) {
322 return KruskalSequenceOutput<Iterator>(it);
327 /* ** ** Wrapper funtions ** ** */
329 // \brief Wrapper function to kruskal().
330 // Input is from an edge map, output is a plain bool map.
332 // Wrapper function to kruskal().
333 // Input is from an edge map, output is a plain bool map.
335 // \param g The type of the graph the algorithm runs on.
336 // \param in An edge map containing the cost of the edges.
338 // The cost type can be any type satisfying the
339 // STL 'LessThan Comparable'
340 // concept if it also has an operator+() implemented. (It is necessary for
341 // computing the total cost of the tree).
343 // \retval out This must be a writable \c bool edge map.
344 // After running the algorithm
345 // this will contain the found minimum cost spanning tree: the value of an
346 // edge will be set to \c true if it belongs to the tree, otherwise it will
347 // be set to \c false. The value of each edge will be set exactly once.
349 // \return The cost of the found tree.
351 template <class GR, class IN, class RET>
357 // typename IN::Key = typename GR::Edge(),
358 //typename IN::Key = typename IN::Key (),
359 // typename RET::Key = typename GR::Edge()
360 const typename IN::Key * = (const typename IN::Key *)(0),
361 const typename RET::Key * = (const typename RET::Key *)(0)
365 KruskalMapInput<GR,IN>(g,in),
369 // \brief Wrapper function to kruskal().
370 // Input is from an edge map, output is an STL Sequence.
372 // Wrapper function to kruskal().
373 // Input is from an edge map, output is an STL Sequence.
375 // \param g The type of the graph the algorithm runs on.
376 // \param in An edge map containing the cost of the edges.
378 // The cost type can be any type satisfying the
379 // STL 'LessThan Comparable'
380 // concept if it also has an operator+() implemented. (It is necessary for
381 // computing the total cost of the tree).
383 // \retval out This must be an iteraror of an STL Container with
384 // <tt>GR::Edge</tt> as its <tt>value_type</tt>.
385 // The algorithm copies the elements of the found tree into this sequence.
386 // For example, if we know that the spanning tree of the graph \c g has
387 // say 53 edges, then
388 // we can put its edges into an STL vector \c tree with a code like this.
390 // std::vector<Edge> tree(53);
391 // kruskal(g,cost,tree.begin());
393 // Or if we don't know in advance the size of the tree, we can write this.
395 // std::vector<Edge> tree;
396 // kruskal(g,cost,std::back_inserter(tree));
399 // \return The cost of the found tree.
401 // \bug its name does not follow the coding style.
403 template <class GR, class IN, class RET>
409 const typename RET::value_type * =
410 (const typename RET::value_type *)(0)
413 KruskalSequenceOutput<RET> _out(out);
414 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
417 template <class GR, class IN, class RET>
425 KruskalSequenceOutput<RET*> _out(out);
426 return kruskal(g, KruskalMapInput<GR,IN>(g, in), _out);
433 #endif //LEMON_KRUSKAL_H