Some two dimensional random distribution added.
They should be revised.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_UNION_FIND_H
20 #define LEMON_UNION_FIND_H
24 //!\brief Union-Find data structures.
32 #include <lemon/bits/invalid.h>
38 /// \brief A \e Union-Find data structure implementation
40 /// The class implements the \e Union-Find data structure.
41 /// The union operation uses rank heuristic, while
42 /// the find operation uses path compression.
43 /// This is a very simple but efficient implementation, providing
44 /// only four methods: join (union), find, insert and size.
45 /// For more features see the \ref UnionFindEnum class.
47 /// It is primarily used in Kruskal algorithm for finding minimal
48 /// cost spanning tree in a graph.
51 /// \pre You need to add all the elements by the \ref insert()
53 template <typename _ItemIntMap>
57 typedef _ItemIntMap ItemIntMap;
58 typedef typename ItemIntMap::Key Item;
61 // If the items vector stores negative value for an item then
62 // that item is root item and it has -items[it] component size.
63 // Else the items[it] contains the index of the parent.
64 std::vector<int> items;
67 bool rep(int idx) const {
68 return items[idx] < 0;
71 int repIndex(int idx) const {
77 int next = items[idx];
78 const_cast<int&>(items[idx]) = k;
86 /// \brief Constructor
88 /// Constructor of the UnionFind class. You should give an item to
89 /// integer map which will be used from the data structure. If you
90 /// modify directly this map that may cause segmentation fault,
91 /// invalid data structure, or infinite loop when you use again
93 UnionFind(ItemIntMap& m) : index(m) {}
95 /// \brief Returns the index of the element's component.
97 /// The method returns the index of the element's component.
98 /// This is an integer between zero and the number of inserted elements.
100 int find(const Item& a) {
101 return repIndex(index[a]);
104 /// \brief Inserts a new element into the structure.
106 /// This method inserts a new element into the data structure.
108 /// The method returns the index of the new component.
109 int insert(const Item& a) {
110 int n = items.size();
116 /// \brief Joining the components of element \e a and element \e b.
118 /// This is the \e union operation of the Union-Find structure.
119 /// Joins the component of element \e a and component of
120 /// element \e b. If \e a and \e b are in the same component then
121 /// it returns false otherwise it returns true.
122 bool join(const Item& a, const Item& b) {
123 int ka = repIndex(index[a]);
124 int kb = repIndex(index[b]);
129 if (items[ka] < items[kb]) {
130 items[ka] += items[kb];
133 items[kb] += items[ka];
139 /// \brief Returns the size of the component of element \e a.
141 /// Returns the size of the component of element \e a.
142 int size(const Item& a) {
143 int k = repIndex(index[a]);
151 /// \brief A \e Union-Find data structure implementation which
152 /// is able to enumerate the components.
154 /// The class implements a \e Union-Find data structure
155 /// which is able to enumerate the components and the items in
156 /// a component. If you don't need this feature then perhaps it's
157 /// better to use the \ref UnionFind class which is more efficient.
159 /// The union operation uses rank heuristic, while
160 /// the find operation uses path compression.
162 /// \pre You need to add all the elements by the \ref insert()
165 template <typename _ItemIntMap>
166 class UnionFindEnum {
169 typedef _ItemIntMap ItemIntMap;
170 typedef typename ItemIntMap::Key Item;
174 // If the parent stores negative value for an item then that item
175 // is root item and it has -items[it].parent component size. Else
176 // the items[it].parent contains the index of the parent.
178 // The \c nextItem and \c prevItem provides the double-linked
179 // cyclic list of one component's items. The \c prevClass and
180 // \c nextClass gives the double linked list of the representant
186 int nextItem, prevItem;
187 int nextClass, prevClass;
190 std::vector<ItemT> items;
196 bool rep(int idx) const {
197 return items[idx].parent < 0;
200 int repIndex(int idx) const {
206 int next = items[idx].parent;
207 const_cast<int&>(items[idx].parent) = k;
213 void unlaceClass(int k) {
214 if (items[k].prevClass != -1) {
215 items[items[k].prevClass].nextClass = items[k].nextClass;
217 firstClass = items[k].nextClass;
219 if (items[k].nextClass != -1) {
220 items[items[k].nextClass].prevClass = items[k].prevClass;
224 void spliceItems(int ak, int bk) {
225 items[items[ak].prevItem].nextItem = bk;
226 items[items[bk].prevItem].nextItem = ak;
227 int tmp = items[ak].prevItem;
228 items[ak].prevItem = items[bk].prevItem;
229 items[bk].prevItem = tmp;
235 UnionFindEnum(ItemIntMap& _index)
236 : items(), index(_index), firstClass(-1) {}
238 /// \brief Inserts the given element into a new component.
240 /// This method creates a new component consisting only of the
243 void insert(const Item& item) {
246 int idx = items.size();
247 index.set(item, idx);
254 t.nextClass = firstClass;
255 if (firstClass != -1) {
256 items[firstClass].prevClass = idx;
264 /// \brief Inserts the given element into the component of the others.
266 /// This methods inserts the element \e a into the component of the
268 void insert(const Item& item, const Item& comp) {
269 int k = repIndex(index[comp]);
272 int idx = items.size();
273 index.set(item, idx);
276 t.nextItem = items[k].nextItem;
277 items[items[k].nextItem].prevItem = idx;
278 items[k].nextItem = idx;
288 /// \brief Finds the leader of the component of the given element.
290 /// The method returns the leader of the component of the given element.
291 const Item& find(const Item &item) const {
292 return items[repIndex(index[item])].item;
295 /// \brief Joining the component of element \e a and element \e b.
297 /// This is the \e union operation of the Union-Find structure.
298 /// Joins the component of element \e a and component of
299 /// element \e b. If \e a and \e b are in the same component then
300 /// returns false else returns true.
301 bool join(const Item& a, const Item& b) {
303 int ak = repIndex(index[a]);
304 int bk = repIndex(index[b]);
310 if ( items[ak].parent < items[bk].parent ) {
312 items[ak].parent += items[bk].parent;
313 items[bk].parent = ak;
316 items[bk].parent += items[ak].parent;
317 items[ak].parent = bk;
324 /// \brief Returns the size of the component of element \e a.
326 /// Returns the size of the component of element \e a.
327 int size(const Item &item) const {
328 return - items[repIndex(index[item])].parent;
331 /// \brief Splits up the component of the element.
333 /// Splitting the component of the element into sigleton
334 /// components (component of size one).
335 void split(const Item &item) {
336 int k = repIndex(index[item]);
337 int idx = items[k].nextItem;
339 int next = items[idx].nextItem;
341 items[idx].parent = -1;
342 items[idx].prevItem = idx;
343 items[idx].nextItem = idx;
345 items[idx].nextClass = firstClass;
346 items[firstClass].prevClass = idx;
352 items[idx].parent = -1;
353 items[idx].prevItem = idx;
354 items[idx].nextItem = idx;
356 items[firstClass].prevClass = -1;
359 /// \brief Sets the given element to the leader element of its component.
361 /// Sets the given element to the leader element of its component.
362 void makeRep(const Item &item) {
363 int nk = index[item];
364 int k = repIndex(nk);
367 if (items[k].prevClass != -1) {
368 items[items[k].prevClass].nextClass = nk;
372 if (items[k].nextClass != -1) {
373 items[items[k].nextClass].prevClass = nk;
376 int idx = items[k].nextItem;
378 items[idx].parent = nk;
379 idx = items[idx].nextItem;
382 items[nk].parent = items[k].parent;
383 items[k].parent = nk;
386 /// \brief Removes the given element from the structure.
388 /// Removes the element from its component and if the component becomes
389 /// empty then removes that component from the component list.
391 /// \warning It is an error to remove an element which is not in
393 void erase(const Item &item) {
394 int idx = index[item];
397 if (items[k].parent == -1) {
401 int nk = items[k].nextItem;
402 if (items[k].prevClass != -1) {
403 items[items[k].prevClass].nextClass = nk;
407 if (items[k].nextClass != -1) {
408 items[items[k].nextClass].prevClass = nk;
411 int idx = items[k].nextItem;
413 items[idx].parent = nk;
414 idx = items[idx].nextItem;
417 items[nk].parent = items[k].parent + 1;
421 int k = repIndex(idx);
422 idx = items[k].nextItem;
424 items[idx].parent = k;
425 idx = items[idx].nextItem;
432 items[items[idx].prevItem].nextItem = items[idx].nextItem;
433 items[items[idx].nextItem].prevItem = items[idx].prevItem;
437 /// \brief Moves the given element to another component.
439 /// This method moves the element \e a from its component
440 /// to the component of \e comp.
441 /// If \e a and \e comp are in the same component then
442 /// it returns false otherwise it returns true.
443 bool move(const Item &item, const Item &comp) {
444 if (repIndex(index[item]) == repIndex(index[comp])) return false;
451 /// \brief Removes the component of the given element from the structure.
453 /// Removes the component of the given element from the structure.
455 /// \warning It is an error to give an element which is not in the
457 void eraseClass(const Item &item) {
458 unlaceClass(repIndex(index[item]));
461 /// \brief Lemon style iterator for the representant items.
463 /// ClassIt is a lemon style iterator for the components. It iterates
464 /// on the representant items of the classes.
467 /// \brief Constructor of the iterator
469 /// Constructor of the iterator
470 ClassIt(const UnionFindEnum& ufe) : unionFind(&ufe) {
471 idx = unionFind->firstClass;
474 /// \brief Constructor to get invalid iterator
476 /// Constructor to get invalid iterator
477 ClassIt(Invalid) : unionFind(0), idx(-1) {}
479 /// \brief Increment operator
481 /// It steps to the next representant item.
482 ClassIt& operator++() {
483 idx = unionFind->items[idx].nextClass;
487 /// \brief Conversion operator
489 /// It converts the iterator to the current representant item.
490 operator const Item&() const {
491 return unionFind->items[idx].item;
494 /// \brief Equality operator
496 /// Equality operator
497 bool operator==(const ClassIt& i) {
501 /// \brief Inequality operator
503 /// Inequality operator
504 bool operator!=(const ClassIt& i) {
509 const UnionFindEnum* unionFind;
513 /// \brief Lemon style iterator for the items of a component.
515 /// ClassIt is a lemon style iterator for the components. It iterates
516 /// on the items of a class. By example if you want to iterate on
517 /// each items of each classes then you may write the next code.
519 /// for (ClassIt cit(ufe); cit != INVALID; ++cit) {
520 /// std::cout << "Class: ";
521 /// for (ItemIt iit(ufe, cit); iit != INVALID; ++iit) {
522 /// std::cout << toString(iit) << ' ' << std::endl;
524 /// std::cout << std::endl;
529 /// \brief Constructor of the iterator
531 /// Constructor of the iterator. The iterator iterates
532 /// on the class of the \c item.
533 ItemIt(const UnionFindEnum& ufe, const Item& item) : unionFind(&ufe) {
534 idx = unionFind->repIndex(unionFind->index[item]);
537 /// \brief Constructor to get invalid iterator
539 /// Constructor to get invalid iterator
540 ItemIt(Invalid) : unionFind(0), idx(-1) {}
542 /// \brief Increment operator
544 /// It steps to the next item in the class.
545 ItemIt& operator++() {
546 idx = unionFind->items[idx].nextItem;
547 if (unionFind->rep(idx)) idx = -1;
551 /// \brief Conversion operator
553 /// It converts the iterator to the current item.
554 operator const Item&() const {
555 return unionFind->items[idx].item;
558 /// \brief Equality operator
560 /// Equality operator
561 bool operator==(const ItemIt& i) {
565 /// \brief Inequality operator
567 /// Inequality operator
568 bool operator!=(const ItemIt& i) {
573 const UnionFindEnum* unionFind;
584 #endif //LEMON_UNION_FIND_H