lemon/concept/ugraph.h
author alpar
Mon, 28 Aug 2006 16:10:12 +0000
changeset 2183 b6602864e456
parent 2126 2c8adbee9fa6
child 2231 06faf3f06d67
permissions -rw-r--r--
Update header list
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 ///\ingroup graph_concepts
    20 ///\file
    21 ///\brief The concept of the undirected graphs.
    22 
    23 
    24 #ifndef LEMON_CONCEPT_UGRAPH_H
    25 #define LEMON_CONCEPT_UGRAPH_H
    26 
    27 #include <lemon/concept/graph_components.h>
    28 #include <lemon/concept/graph.h>
    29 #include <lemon/bits/utility.h>
    30 
    31 namespace lemon {
    32   namespace concept {
    33 
    34     /// \addtogroup graph_concepts
    35     /// @{
    36 
    37 
    38     /// \brief Class describing the concept of Undirected Graphs.
    39     ///
    40     /// This class describes the common interface of all Undirected
    41     /// Graphs.
    42     ///
    43     /// As all concept describing classes it provides only interface
    44     /// without any sensible implementation. So any algorithm for
    45     /// undirected graph should compile with this class, but it will not
    46     /// run properly, of course.
    47     ///
    48     /// The LEMON undirected graphs also fulfill the concept of
    49     /// directed graphs (\ref lemon::concept::Graph "Graph
    50     /// Concept"). Each undirected edges can be seen as two opposite
    51     /// directed edge and consequently the undirected graph can be
    52     /// seen as the direceted graph of these directed edges. The
    53     /// UGraph has the UEdge inner class for the undirected edges and
    54     /// the Edge type for the directed edges. The Edge type is
    55     /// convertible to UEdge or inherited from it so from a directed
    56     /// edge we can get the represented undirected edge.
    57     ///
    58     /// In the sense of the LEMON each undirected edge has a default
    59     /// direction (it should be in every computer implementation,
    60     /// because the order of undirected edge's nodes defines an
    61     /// orientation). With the default orientation we can define that
    62     /// the directed edge is forward or backward directed. With the \c
    63     /// direction() and \c direct() function we can get the direction
    64     /// of the directed edge and we can direct an undirected edge.
    65     ///
    66     /// The UEdgeIt is an iterator for the undirected edges. We can use
    67     /// the UEdgeMap to map values for the undirected edges. The InEdgeIt and
    68     /// OutEdgeIt iterates on the same undirected edges but with opposite
    69     /// direction. The IncEdgeIt iterates also on the same undirected edges
    70     /// as the OutEdgeIt and InEdgeIt but it is not convertible to Edge just
    71     /// to UEdge.  
    72     class UGraph {
    73     public:
    74       /// \brief The undirected graph should be tagged by the
    75       /// UndirectedTag.
    76       ///
    77       /// The undirected graph should be tagged by the UndirectedTag. This
    78       /// tag helps the enable_if technics to make compile time 
    79       /// specializations for undirected graphs.  
    80       typedef True UndirectedTag;
    81 
    82       /// \brief The base type of node iterators, 
    83       /// or in other words, the trivial node iterator.
    84       ///
    85       /// This is the base type of each node iterator,
    86       /// thus each kind of node iterator converts to this.
    87       /// More precisely each kind of node iterator should be inherited 
    88       /// from the trivial node iterator.
    89       class Node {
    90       public:
    91         /// Default constructor
    92 
    93         /// @warning The default constructor sets the iterator
    94         /// to an undefined value.
    95         Node() { }
    96         /// Copy constructor.
    97 
    98         /// Copy constructor.
    99         ///
   100         Node(const Node&) { }
   101 
   102         /// Invalid constructor \& conversion.
   103 
   104         /// This constructor initializes the iterator to be invalid.
   105         /// \sa Invalid for more details.
   106         Node(Invalid) { }
   107         /// Equality operator
   108 
   109         /// Two iterators are equal if and only if they point to the
   110         /// same object or both are invalid.
   111         bool operator==(Node) const { return true; }
   112 
   113         /// Inequality operator
   114         
   115         /// \sa operator==(Node n)
   116         ///
   117         bool operator!=(Node) const { return true; }
   118 
   119 	/// Artificial ordering operator.
   120 	
   121 	/// To allow the use of graph descriptors as key type in std::map or
   122 	/// similar associative container we require this.
   123 	///
   124 	/// \note This operator only have to define some strict ordering of
   125 	/// the items; this order has nothing to do with the iteration
   126 	/// ordering of the items.
   127 	bool operator<(Node) const { return false; }
   128 
   129       };
   130     
   131       /// This iterator goes through each node.
   132 
   133       /// This iterator goes through each node.
   134       /// Its usage is quite simple, for example you can count the number
   135       /// of nodes in graph \c g of type \c Graph like this:
   136       ///\code
   137       /// int count=0;
   138       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   139       ///\endcode
   140       class NodeIt : public Node {
   141       public:
   142         /// Default constructor
   143 
   144         /// @warning The default constructor sets the iterator
   145         /// to an undefined value.
   146         NodeIt() { }
   147         /// Copy constructor.
   148         
   149         /// Copy constructor.
   150         ///
   151         NodeIt(const NodeIt& n) : Node(n) { }
   152         /// Invalid constructor \& conversion.
   153 
   154         /// Initialize the iterator to be invalid.
   155         /// \sa Invalid for more details.
   156         NodeIt(Invalid) { }
   157         /// Sets the iterator to the first node.
   158 
   159         /// Sets the iterator to the first node of \c g.
   160         ///
   161         NodeIt(const UGraph&) { }
   162         /// Node -> NodeIt conversion.
   163 
   164         /// Sets the iterator to the node of \c the graph pointed by 
   165 	/// the trivial iterator.
   166         /// This feature necessitates that each time we 
   167         /// iterate the edge-set, the iteration order is the same.
   168         NodeIt(const UGraph&, const Node&) { }
   169         /// Next node.
   170 
   171         /// Assign the iterator to the next node.
   172         ///
   173         NodeIt& operator++() { return *this; }
   174       };
   175     
   176     
   177       /// The base type of the undirected edge iterators.
   178 
   179       /// The base type of the undirected edge iterators.
   180       ///
   181       class UEdge {
   182       public:
   183         /// Default constructor
   184 
   185         /// @warning The default constructor sets the iterator
   186         /// to an undefined value.
   187         UEdge() { }
   188         /// Copy constructor.
   189 
   190         /// Copy constructor.
   191         ///
   192         UEdge(const UEdge&) { }
   193         /// Initialize the iterator to be invalid.
   194 
   195         /// Initialize the iterator to be invalid.
   196         ///
   197         UEdge(Invalid) { }
   198         /// Equality operator
   199 
   200         /// Two iterators are equal if and only if they point to the
   201         /// same object or both are invalid.
   202         bool operator==(UEdge) const { return true; }
   203         /// Inequality operator
   204 
   205         /// \sa operator==(UEdge n)
   206         ///
   207         bool operator!=(UEdge) const { return true; }
   208 
   209 	/// Artificial ordering operator.
   210 	
   211 	/// To allow the use of graph descriptors as key type in std::map or
   212 	/// similar associative container we require this.
   213 	///
   214 	/// \note This operator only have to define some strict ordering of
   215 	/// the items; this order has nothing to do with the iteration
   216 	/// ordering of the items.
   217 	bool operator<(UEdge) const { return false; }
   218       };
   219 
   220       /// This iterator goes through each undirected edge.
   221 
   222       /// This iterator goes through each undirected edge of a graph.
   223       /// Its usage is quite simple, for example you can count the number
   224       /// of undirected edges in a graph \c g of type \c Graph as follows:
   225       ///\code
   226       /// int count=0;
   227       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   228       ///\endcode
   229       class UEdgeIt : public UEdge {
   230       public:
   231         /// Default constructor
   232 
   233         /// @warning The default constructor sets the iterator
   234         /// to an undefined value.
   235         UEdgeIt() { }
   236         /// Copy constructor.
   237 
   238         /// Copy constructor.
   239         ///
   240         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   241         /// Initialize the iterator to be invalid.
   242 
   243         /// Initialize the iterator to be invalid.
   244         ///
   245         UEdgeIt(Invalid) { }
   246         /// This constructor sets the iterator to the first undirected edge.
   247     
   248         /// This constructor sets the iterator to the first undirected edge.
   249         UEdgeIt(const UGraph&) { }
   250         /// UEdge -> UEdgeIt conversion
   251 
   252         /// Sets the iterator to the value of the trivial iterator.
   253         /// This feature necessitates that each time we
   254         /// iterate the undirected edge-set, the iteration order is the 
   255 	/// same.
   256         UEdgeIt(const UGraph&, const UEdge&) { } 
   257         /// Next undirected edge
   258         
   259         /// Assign the iterator to the next undirected edge.
   260         UEdgeIt& operator++() { return *this; }
   261       };
   262 
   263       /// \brief This iterator goes trough the incident undirected 
   264       /// edges of a node.
   265       ///
   266       /// This iterator goes trough the incident undirected edges
   267       /// of a certain node of a graph. You should assume that the 
   268       /// loop edges will be iterated twice.
   269       /// 
   270       /// Its usage is quite simple, for example you can compute the
   271       /// degree (i.e. count the number of incident edges of a node \c n
   272       /// in graph \c g of type \c Graph as follows. 
   273       ///
   274       ///\code
   275       /// int count=0;
   276       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   277       ///\endcode
   278       class IncEdgeIt : public UEdge {
   279       public:
   280         /// Default constructor
   281 
   282         /// @warning The default constructor sets the iterator
   283         /// to an undefined value.
   284         IncEdgeIt() { }
   285         /// Copy constructor.
   286 
   287         /// Copy constructor.
   288         ///
   289         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   290         /// Initialize the iterator to be invalid.
   291 
   292         /// Initialize the iterator to be invalid.
   293         ///
   294         IncEdgeIt(Invalid) { }
   295         /// This constructor sets the iterator to first incident edge.
   296     
   297         /// This constructor set the iterator to the first incident edge of
   298         /// the node.
   299         IncEdgeIt(const UGraph&, const Node&) { }
   300         /// UEdge -> IncEdgeIt conversion
   301 
   302         /// Sets the iterator to the value of the trivial iterator \c e.
   303         /// This feature necessitates that each time we 
   304         /// iterate the edge-set, the iteration order is the same.
   305         IncEdgeIt(const UGraph&, const UEdge&) { }
   306         /// Next incident edge
   307 
   308         /// Assign the iterator to the next incident edge
   309 	/// of the corresponding node.
   310         IncEdgeIt& operator++() { return *this; }
   311       };
   312 
   313       /// The directed edge type.
   314 
   315       /// The directed edge type. It can be converted to the
   316       /// undirected edge or it should be inherited from the undirected
   317       /// edge.
   318       class Edge : public UEdge {
   319       public:
   320         /// Default constructor
   321 
   322         /// @warning The default constructor sets the iterator
   323         /// to an undefined value.
   324         Edge() { }
   325         /// Copy constructor.
   326 
   327         /// Copy constructor.
   328         ///
   329         Edge(const Edge& e) : UEdge(e) { }
   330         /// Initialize the iterator to be invalid.
   331 
   332         /// Initialize the iterator to be invalid.
   333         ///
   334         Edge(Invalid) { }
   335         /// Equality operator
   336 
   337         /// Two iterators are equal if and only if they point to the
   338         /// same object or both are invalid.
   339         bool operator==(Edge) const { return true; }
   340         /// Inequality operator
   341 
   342         /// \sa operator==(Edge n)
   343         ///
   344         bool operator!=(Edge) const { return true; }
   345 
   346 	/// Artificial ordering operator.
   347 	
   348 	/// To allow the use of graph descriptors as key type in std::map or
   349 	/// similar associative container we require this.
   350 	///
   351 	/// \note This operator only have to define some strict ordering of
   352 	/// the items; this order has nothing to do with the iteration
   353 	/// ordering of the items.
   354 	bool operator<(Edge) const { return false; }
   355 	
   356       }; 
   357       /// This iterator goes through each directed edge.
   358 
   359       /// This iterator goes through each edge of a graph.
   360       /// Its usage is quite simple, for example you can count the number
   361       /// of edges in a graph \c g of type \c Graph as follows:
   362       ///\code
   363       /// int count=0;
   364       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   365       ///\endcode
   366       class EdgeIt : public Edge {
   367       public:
   368         /// Default constructor
   369 
   370         /// @warning The default constructor sets the iterator
   371         /// to an undefined value.
   372         EdgeIt() { }
   373         /// Copy constructor.
   374 
   375         /// Copy constructor.
   376         ///
   377         EdgeIt(const EdgeIt& e) : Edge(e) { }
   378         /// Initialize the iterator to be invalid.
   379 
   380         /// Initialize the iterator to be invalid.
   381         ///
   382         EdgeIt(Invalid) { }
   383         /// This constructor sets the iterator to the first edge.
   384     
   385         /// This constructor sets the iterator to the first edge of \c g.
   386         ///@param g the graph
   387         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
   388         /// Edge -> EdgeIt conversion
   389 
   390         /// Sets the iterator to the value of the trivial iterator \c e.
   391         /// This feature necessitates that each time we 
   392         /// iterate the edge-set, the iteration order is the same.
   393         EdgeIt(const UGraph&, const Edge&) { } 
   394         ///Next edge
   395         
   396         /// Assign the iterator to the next edge.
   397         EdgeIt& operator++() { return *this; }
   398       };
   399    
   400       /// This iterator goes trough the outgoing directed edges of a node.
   401 
   402       /// This iterator goes trough the \e outgoing edges of a certain node
   403       /// of a graph.
   404       /// Its usage is quite simple, for example you can count the number
   405       /// of outgoing edges of a node \c n
   406       /// in graph \c g of type \c Graph as follows.
   407       ///\code
   408       /// int count=0;
   409       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   410       ///\endcode
   411     
   412       class OutEdgeIt : public Edge {
   413       public:
   414         /// Default constructor
   415 
   416         /// @warning The default constructor sets the iterator
   417         /// to an undefined value.
   418         OutEdgeIt() { }
   419         /// Copy constructor.
   420 
   421         /// Copy constructor.
   422         ///
   423         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   424         /// Initialize the iterator to be invalid.
   425 
   426         /// Initialize the iterator to be invalid.
   427         ///
   428         OutEdgeIt(Invalid) { }
   429         /// This constructor sets the iterator to the first outgoing edge.
   430     
   431         /// This constructor sets the iterator to the first outgoing edge of
   432         /// the node.
   433         ///@param n the node
   434         ///@param g the graph
   435         OutEdgeIt(const UGraph& n, const Node& g) {
   436 	  ignore_unused_variable_warning(n);
   437 	  ignore_unused_variable_warning(g);
   438 	}
   439         /// Edge -> OutEdgeIt conversion
   440 
   441         /// Sets the iterator to the value of the trivial iterator.
   442 	/// This feature necessitates that each time we 
   443         /// iterate the edge-set, the iteration order is the same.
   444         OutEdgeIt(const UGraph&, const Edge&) { }
   445         ///Next outgoing edge
   446         
   447         /// Assign the iterator to the next 
   448         /// outgoing edge of the corresponding node.
   449         OutEdgeIt& operator++() { return *this; }
   450       };
   451 
   452       /// This iterator goes trough the incoming directed edges of a node.
   453 
   454       /// This iterator goes trough the \e incoming edges of a certain node
   455       /// of a graph.
   456       /// Its usage is quite simple, for example you can count the number
   457       /// of outgoing edges of a node \c n
   458       /// in graph \c g of type \c Graph as follows.
   459       ///\code
   460       /// int count=0;
   461       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   462       ///\endcode
   463 
   464       class InEdgeIt : public Edge {
   465       public:
   466         /// Default constructor
   467 
   468         /// @warning The default constructor sets the iterator
   469         /// to an undefined value.
   470         InEdgeIt() { }
   471         /// Copy constructor.
   472 
   473         /// Copy constructor.
   474         ///
   475         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   476         /// Initialize the iterator to be invalid.
   477 
   478         /// Initialize the iterator to be invalid.
   479         ///
   480         InEdgeIt(Invalid) { }
   481         /// This constructor sets the iterator to first incoming edge.
   482     
   483         /// This constructor set the iterator to the first incoming edge of
   484         /// the node.
   485         ///@param n the node
   486         ///@param g the graph
   487         InEdgeIt(const UGraph& g, const Node& n) { 
   488 	  ignore_unused_variable_warning(n);
   489 	  ignore_unused_variable_warning(g);
   490 	}
   491         /// Edge -> InEdgeIt conversion
   492 
   493         /// Sets the iterator to the value of the trivial iterator \c e.
   494         /// This feature necessitates that each time we 
   495         /// iterate the edge-set, the iteration order is the same.
   496         InEdgeIt(const UGraph&, const Edge&) { }
   497         /// Next incoming edge
   498 
   499         /// Assign the iterator to the next inedge of the corresponding node.
   500         ///
   501         InEdgeIt& operator++() { return *this; }
   502       };
   503 
   504       /// \brief Read write map of the nodes to type \c T.
   505       /// 
   506       /// ReadWrite map of the nodes to type \c T.
   507       /// \sa Reference
   508       /// \warning Making maps that can handle bool type (NodeMap<bool>)
   509       /// needs some extra attention!
   510       template<class T> 
   511       class NodeMap : public ReadWriteMap< Node, T >
   512       {
   513       public:
   514 
   515         ///\e
   516         NodeMap(const UGraph&) { }
   517         ///\e
   518         NodeMap(const UGraph&, T) { }
   519 
   520         ///Copy constructor
   521         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   522         ///Assignment operator
   523         template <typename CMap>
   524         NodeMap& operator=(const CMap&) { 
   525           checkConcept<ReadMap<Node, T>, CMap>();
   526           return *this; 
   527         }
   528       };
   529 
   530       /// \brief Read write map of the directed edges to type \c T.
   531       ///
   532       /// Reference map of the directed edges to type \c T.
   533       /// \sa Reference
   534       /// \warning Making maps that can handle bool type (EdgeMap<bool>)
   535       /// needs some extra attention!
   536       template<class T> 
   537       class EdgeMap : public ReadWriteMap<Edge,T>
   538       {
   539       public:
   540 
   541         ///\e
   542         EdgeMap(const UGraph&) { }
   543         ///\e
   544         EdgeMap(const UGraph&, T) { }
   545         ///Copy constructor
   546         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   547         ///Assignment operator
   548         template <typename CMap>
   549         EdgeMap& operator=(const CMap&) { 
   550           checkConcept<ReadMap<Edge, T>, CMap>();
   551           return *this; 
   552         }
   553       };
   554 
   555       /// Read write map of the undirected edges to type \c T.
   556 
   557       /// Reference map of the edges to type \c T.
   558       /// \sa Reference
   559       /// \warning Making maps that can handle bool type (UEdgeMap<bool>)
   560       /// needs some extra attention!
   561       template<class T> 
   562       class UEdgeMap : public ReadWriteMap<UEdge,T>
   563       {
   564       public:
   565 
   566         ///\e
   567         UEdgeMap(const UGraph&) { }
   568         ///\e
   569         UEdgeMap(const UGraph&, T) { }
   570         ///Copy constructor
   571         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   572         ///Assignment operator
   573         template <typename CMap>
   574         UEdgeMap& operator=(const CMap&) { 
   575           checkConcept<ReadMap<UEdge, T>, CMap>();
   576           return *this; 
   577         }
   578       };
   579 
   580       /// \brief Direct the given undirected edge.
   581       ///
   582       /// Direct the given undirected edge. The returned edge source
   583       /// will be the given node.
   584       Edge direct(const UEdge&, const Node&) const {
   585 	return INVALID;
   586       }
   587 
   588       /// \brief Direct the given undirected edge.
   589       ///
   590       /// Direct the given undirected edge. The returned edge
   591       /// represents the given undireted edge and the direction comes
   592       /// from the given bool.  The source of the undirected edge and
   593       /// the directed edge is the same when the given bool is true.
   594       Edge direct(const UEdge&, bool) const {
   595 	return INVALID;
   596       }
   597 
   598       /// \brief Returns true if the edge has default orientation.
   599       ///
   600       /// Returns whether the given directed edge is same orientation as
   601       /// the corresponding undirected edge's default orientation.
   602       bool direction(Edge) const { return true; }
   603 
   604       /// \brief Returns the opposite directed edge.
   605       ///
   606       /// Returns the opposite directed edge.
   607       Edge oppositeEdge(Edge) const { return INVALID; }
   608 
   609       /// \brief Opposite node on an edge
   610       ///
   611       /// \return the opposite of the given Node on the given UEdge
   612       Node oppositeNode(Node, UEdge) const { return INVALID; }
   613 
   614       /// \brief First node of the undirected edge.
   615       ///
   616       /// \return the first node of the given UEdge.
   617       ///
   618       /// Naturally undirected edges don't have direction and thus
   619       /// don't have source and target node. But we use these two methods
   620       /// to query the two nodes of the edge. The direction of the edge
   621       /// which arises this way is called the inherent direction of the
   622       /// undirected edge, and is used to define the "default" direction
   623       /// of the directed versions of the edges.
   624       /// \sa direction
   625       Node source(UEdge) const { return INVALID; }
   626 
   627       /// \brief Second node of the undirected edge.
   628       Node target(UEdge) const { return INVALID; }
   629 
   630       /// \brief Source node of the directed edge.
   631       Node source(Edge) const { return INVALID; }
   632 
   633       /// \brief Target node of the directed edge.
   634       Node target(Edge) const { return INVALID; }
   635 
   636       void first(Node&) const {}
   637       void next(Node&) const {}
   638 
   639       void first(UEdge&) const {}
   640       void next(UEdge&) const {}
   641 
   642       void first(Edge&) const {}
   643       void next(Edge&) const {}
   644 
   645       void firstOut(Edge&, Node) const {}
   646       void nextOut(Edge&) const {}
   647 
   648       void firstIn(Edge&, Node) const {}
   649       void nextIn(Edge&) const {}
   650 
   651 
   652       void firstInc(UEdge &, bool &, const Node &) const {}
   653       void nextInc(UEdge &, bool &) const {}
   654 
   655       /// \brief Base node of the iterator
   656       ///
   657       /// Returns the base node (the source in this case) of the iterator
   658       Node baseNode(OutEdgeIt e) const {
   659 	return source(e);
   660       }
   661       /// \brief Running node of the iterator
   662       ///
   663       /// Returns the running node (the target in this case) of the
   664       /// iterator
   665       Node runningNode(OutEdgeIt e) const {
   666 	return target(e);
   667       }
   668 
   669       /// \brief Base node of the iterator
   670       ///
   671       /// Returns the base node (the target in this case) of the iterator
   672       Node baseNode(InEdgeIt e) const {
   673 	return target(e);
   674       }
   675       /// \brief Running node of the iterator
   676       ///
   677       /// Returns the running node (the source in this case) of the
   678       /// iterator
   679       Node runningNode(InEdgeIt e) const {
   680 	return source(e);
   681       }
   682 
   683       /// \brief Base node of the iterator
   684       ///
   685       /// Returns the base node of the iterator
   686       Node baseNode(IncEdgeIt) const {
   687 	return INVALID;
   688       }
   689       
   690       /// \brief Running node of the iterator
   691       ///
   692       /// Returns the running node of the iterator
   693       Node runningNode(IncEdgeIt) const {
   694 	return INVALID;
   695       }
   696 
   697       template <typename Graph>
   698       struct Constraints {
   699 	void constraints() {
   700 	  checkConcept<BaseIterableUGraphComponent<>, Graph>();
   701 	  checkConcept<IterableUGraphComponent<>, Graph>();
   702 	  checkConcept<MappableUGraphComponent<>, Graph>();
   703 	}
   704       };
   705 
   706     };
   707 
   708     /// @}
   709 
   710   }
   711 
   712 }
   713 
   714 #endif