src/work/athos/xy/xy.h
author klao
Sun, 21 Mar 2004 16:16:08 +0000
changeset 225 b72b36a25170
parent 201 b9158a014fe8
child 237 7fb8b67d2c5e
permissions -rw-r--r--
Ut struktura. Elso valtozat.
     1 // -*- c++ -*-
     2 /**
     3 2 dimensional vector (plainvector) implementation
     4 
     5 */
     6 #ifndef HUGO_XY_H
     7 #define HUGO_XY_H
     8 
     9 #include <iostream>
    10 
    11 namespace hugo {
    12 
    13   template<typename T>
    14     class xy {
    15     T _x,_y;
    16 
    17     public:
    18       
    19       ///Default constructor: both coordinates become 0
    20       xy() { _x=_y=0; }
    21 
    22       ///Constructing from coordinates
    23       xy(T a, T b) { _x=a; _y=b; }
    24 
    25       ///Gives back the x coordinate
    26       T x(){
    27 	return _x;
    28       };
    29 
    30       ///Gives back the y coordinate
    31       T y(){
    32 	return _y;
    33       };
    34 
    35       ///Gives back the square of the norm of the vector
    36       T normSquare(){
    37 	return _x*_x+_y*_y;
    38       };
    39   
    40       ///Increments the left hand side by u
    41       xy<T>& operator +=(const xy<T>& u){
    42 	_x += u._x;
    43 	_y += u._y;
    44 	return *this;
    45       };
    46   
    47       ///Decrements the left hand side by u
    48       xy<T>& operator -=(const xy<T>& u){
    49 	_x -= u._x;
    50 	_y -= u._y;
    51 	return *this;
    52       };
    53 
    54       ///Multiplying the left hand side with a scalar
    55       xy<T>& operator *=(const T &u){
    56 	_x *= u;
    57 	_y *= u;
    58 	return *this;
    59       };
    60 
    61       ///Dividing the left hand side by a scalar
    62       xy<T>& operator /=(const T &u){
    63 	_x /= u;
    64 	_y /= u;
    65 	return *this;
    66       };
    67   
    68       ///Returns the scalar product of two vectors
    69       T operator *(const xy<T>& u){
    70 	return _x*u._x+_y*u._y;
    71       };
    72   
    73       ///Returns the sum of two vectors
    74       xy<T> operator+(const xy<T> &u) const {
    75 	xy<T> b=*this;
    76 	return b+=u;
    77       };
    78 
    79       ///Returns the difference of two vectors
    80       xy<T> operator-(const xy<T> &u) const {
    81 	xy<T> b=*this;
    82 	return b-=u;
    83       };
    84 
    85       ///Returns a vector multiplied by a scalar
    86       xy<T> operator*(const T &u) const {
    87 	xy<T> b=*this;
    88 	return b*=u;
    89       };
    90 
    91       ///Returns a vector divided by a scalar
    92       xy<T> operator/(const T &u) const {
    93 	xy<T> b=*this;
    94 	return b/=u;
    95       };
    96 
    97       ///Testing equality
    98       bool operator==(const xy<T> &u){
    99 	return (_x==u._x) && (_y==u._y);
   100       };
   101 
   102       ///Testing inequality
   103       bool operator!=(xy u){
   104 	return  (_x!=u._x) || (_y!=u._y);
   105       };
   106 
   107     };
   108 
   109   ///Reading a plainvector from a stream
   110   template<typename T>
   111   inline
   112   std::istream& operator>>(std::istream &is, xy<T> &z)
   113   {
   114     ///This is not the best solution here: I didn't know how to solve this with friend functions
   115     T a,b;
   116     is >> a >> b;
   117     xy<T> buf(a,b);
   118     z=buf;
   119     return is;
   120   }
   121 
   122   ///Outputting a plainvector to a stream
   123   template<typename T>
   124   inline
   125   std::ostream& operator<<(std::ostream &os, xy<T> z)
   126   {
   127     os << "(" << z.x() << ", " << z.y() << ")";
   128     return os;
   129   }
   130 
   131 } //namespace hugo
   132 
   133 #endif //HUGO_XY_H