lemon/bfs.h
author alpar
Mon, 12 Sep 2005 05:35:36 +0000
changeset 1678 b7b7125a5fe8
parent 1631 e15162d8eca1
child 1694 6d81e6f7a88d
permissions -rw-r--r--
graph_orientation.cc: A thoroughly documented demo application.
     1 /* -*- C++ -*-
     2  * lemon/bfs.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_BFS_H
    18 #define LEMON_BFS_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Bfs algorithm.
    23 
    24 #include <lemon/list_graph.h>
    25 #include <lemon/graph_utils.h>
    26 #include <lemon/invalid.h>
    27 #include <lemon/error.h>
    28 #include <lemon/maps.h>
    29 
    30 namespace lemon {
    31 
    32 
    33   
    34   ///Default traits class of Bfs class.
    35 
    36   ///Default traits class of Bfs class.
    37   ///\param GR Graph type.
    38   template<class GR>
    39   struct BfsDefaultTraits
    40   {
    41     ///The graph type the algorithm runs on. 
    42     typedef GR Graph;
    43     ///\brief The type of the map that stores the last
    44     ///edges of the shortest paths.
    45     /// 
    46     ///The type of the map that stores the last
    47     ///edges of the shortest paths.
    48     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    49     ///
    50     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    51     ///Instantiates a PredMap.
    52  
    53     ///This function instantiates a \ref PredMap. 
    54     ///\param G is the graph, to which we would like to define the PredMap.
    55     ///\todo The graph alone may be insufficient to initialize
    56     static PredMap *createPredMap(const GR &G) 
    57     {
    58       return new PredMap(G);
    59     }
    60 //     ///\brief The type of the map that stores the last but one
    61 //     ///nodes of the shortest paths.
    62 //     ///
    63 //     ///The type of the map that stores the last but one
    64 //     ///nodes of the shortest paths.
    65 //     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    66 //     ///
    67 //     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
    68 //     ///Instantiates a PredNodeMap.
    69     
    70 //     ///This function instantiates a \ref PredNodeMap. 
    71 //     ///\param G is the graph, to which
    72 //     ///we would like to define the \ref PredNodeMap
    73 //     static PredNodeMap *createPredNodeMap(const GR &G)
    74 //     {
    75 //       return new PredNodeMap();
    76 //     }
    77 
    78     ///The type of the map that indicates which nodes are processed.
    79  
    80     ///The type of the map that indicates which nodes are processed.
    81     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    82     ///\todo named parameter to set this type, function to read and write.
    83     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
    84     ///Instantiates a ProcessedMap.
    85  
    86     ///This function instantiates a \ref ProcessedMap. 
    87     ///\param g is the graph, to which
    88     ///we would like to define the \ref ProcessedMap
    89 #ifdef DOXYGEN
    90     static ProcessedMap *createProcessedMap(const GR &g)
    91 #else
    92     static ProcessedMap *createProcessedMap(const GR &)
    93 #endif
    94     {
    95       return new ProcessedMap();
    96     }
    97     ///The type of the map that indicates which nodes are reached.
    98  
    99     ///The type of the map that indicates which nodes are reached.
   100     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   101     ///\todo named parameter to set this type, function to read and write.
   102     typedef typename Graph::template NodeMap<bool> ReachedMap;
   103     ///Instantiates a ReachedMap.
   104  
   105     ///This function instantiates a \ref ReachedMap. 
   106     ///\param G is the graph, to which
   107     ///we would like to define the \ref ReachedMap.
   108     static ReachedMap *createReachedMap(const GR &G)
   109     {
   110       return new ReachedMap(G);
   111     }
   112     ///The type of the map that stores the dists of the nodes.
   113  
   114     ///The type of the map that stores the dists of the nodes.
   115     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   116     ///
   117     typedef typename Graph::template NodeMap<int> DistMap;
   118     ///Instantiates a DistMap.
   119  
   120     ///This function instantiates a \ref DistMap. 
   121     ///\param G is the graph, to which we would like to define the \ref DistMap
   122     static DistMap *createDistMap(const GR &G)
   123     {
   124       return new DistMap(G);
   125     }
   126   };
   127   
   128   ///%BFS algorithm class.
   129   
   130   ///\ingroup flowalgs
   131   ///This class provides an efficient implementation of the %BFS algorithm.
   132   ///
   133   ///\param GR The graph type the algorithm runs on. The default value is
   134   ///\ref ListGraph. The value of GR is not used directly by Bfs, it
   135   ///is only passed to \ref BfsDefaultTraits.
   136   ///\param TR Traits class to set various data types used by the algorithm.
   137   ///The default traits class is
   138   ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
   139   ///See \ref BfsDefaultTraits for the documentation of
   140   ///a Bfs traits class.
   141   ///
   142   ///\author Alpar Juttner
   143   ///\todo A compare object would be nice.
   144 
   145 #ifdef DOXYGEN
   146   template <typename GR,
   147 	    typename TR>
   148 #else
   149   template <typename GR=ListGraph,
   150 	    typename TR=BfsDefaultTraits<GR> >
   151 #endif
   152   class Bfs {
   153   public:
   154     /**
   155      * \brief \ref Exception for uninitialized parameters.
   156      *
   157      * This error represents problems in the initialization
   158      * of the parameters of the algorithms.
   159      */
   160     class UninitializedParameter : public lemon::UninitializedParameter {
   161     public:
   162       virtual const char* exceptionName() const {
   163 	return "lemon::Bfs::UninitializedParameter";
   164       }
   165     };
   166 
   167     typedef TR Traits;
   168     ///The type of the underlying graph.
   169     typedef typename TR::Graph Graph;
   170     ///\e
   171     typedef typename Graph::Node Node;
   172     ///\e
   173     typedef typename Graph::NodeIt NodeIt;
   174     ///\e
   175     typedef typename Graph::Edge Edge;
   176     ///\e
   177     typedef typename Graph::OutEdgeIt OutEdgeIt;
   178     
   179     ///\brief The type of the map that stores the last
   180     ///edges of the shortest paths.
   181     typedef typename TR::PredMap PredMap;
   182 //     ///\brief The type of the map that stores the last but one
   183 //     ///nodes of the shortest paths.
   184 //     typedef typename TR::PredNodeMap PredNodeMap;
   185     ///The type of the map indicating which nodes are reached.
   186     typedef typename TR::ReachedMap ReachedMap;
   187     ///The type of the map indicating which nodes are processed.
   188     typedef typename TR::ProcessedMap ProcessedMap;
   189     ///The type of the map that stores the dists of the nodes.
   190     typedef typename TR::DistMap DistMap;
   191   private:
   192     /// Pointer to the underlying graph.
   193     const Graph *G;
   194     ///Pointer to the map of predecessors edges.
   195     PredMap *_pred;
   196     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   197     bool local_pred;
   198 //     ///Pointer to the map of predecessors nodes.
   199 //     PredNodeMap *_predNode;
   200 //     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
   201 //     bool local_predNode;
   202     ///Pointer to the map of distances.
   203     DistMap *_dist;
   204     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   205     bool local_dist;
   206     ///Pointer to the map of reached status of the nodes.
   207     ReachedMap *_reached;
   208     ///Indicates if \ref _reached is locally allocated (\c true) or not.
   209     bool local_reached;
   210     ///Pointer to the map of processed status of the nodes.
   211     ProcessedMap *_processed;
   212     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   213     bool local_processed;
   214 
   215     std::vector<typename Graph::Node> _queue;
   216     int _queue_head,_queue_tail,_queue_next_dist;
   217     int _curr_dist;
   218 //     ///The source node of the last execution.
   219 //     Node source;
   220 
   221     ///Creates the maps if necessary.
   222     
   223     ///\todo Error if \c G are \c NULL.
   224     ///\todo Better memory allocation (instead of new).
   225     void create_maps() 
   226     {
   227       if(!_pred) {
   228 	local_pred = true;
   229 	_pred = Traits::createPredMap(*G);
   230       }
   231 //       if(!_predNode) {
   232 // 	local_predNode = true;
   233 // 	_predNode = Traits::createPredNodeMap(*G);
   234 //       }
   235       if(!_dist) {
   236 	local_dist = true;
   237 	_dist = Traits::createDistMap(*G);
   238       }
   239       if(!_reached) {
   240 	local_reached = true;
   241 	_reached = Traits::createReachedMap(*G);
   242       }
   243       if(!_processed) {
   244 	local_processed = true;
   245 	_processed = Traits::createProcessedMap(*G);
   246       }
   247     }
   248     
   249   public :
   250  
   251     ///\name Named template parameters
   252 
   253     ///@{
   254 
   255     template <class T>
   256     struct DefPredMapTraits : public Traits {
   257       typedef T PredMap;
   258       static PredMap *createPredMap(const Graph &G) 
   259       {
   260 	throw UninitializedParameter();
   261       }
   262     };
   263     ///\ref named-templ-param "Named parameter" for setting PredMap type
   264 
   265     ///\ref named-templ-param "Named parameter" for setting PredMap type
   266     ///
   267     template <class T>
   268     class DefPredMap : public Bfs< Graph, DefPredMapTraits<T> > { };
   269     
   270 //     template <class T>
   271 //     struct DefPredNodeMapTraits : public Traits {
   272 //       typedef T PredNodeMap;
   273 //       static PredNodeMap *createPredNodeMap(const Graph &G) 
   274 //       {
   275 // 	throw UninitializedParameter();
   276 //       }
   277 //     };
   278 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   279 
   280 //     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   281 //     ///
   282 //     template <class T>
   283 //     class DefPredNodeMap : public Bfs< Graph,
   284 // 					    LengthMap,
   285 // 					    DefPredNodeMapTraits<T> > { };
   286     
   287     template <class T>
   288     struct DefDistMapTraits : public Traits {
   289       typedef T DistMap;
   290       static DistMap *createDistMap(const Graph &G) 
   291       {
   292 	throw UninitializedParameter();
   293       }
   294     };
   295     ///\ref named-templ-param "Named parameter" for setting DistMap type
   296 
   297     ///\ref named-templ-param "Named parameter" for setting DistMap type
   298     ///
   299     template <class T>
   300     class DefDistMap : public Bfs< Graph,
   301 				   DefDistMapTraits<T> > { };
   302     
   303     template <class T>
   304     struct DefReachedMapTraits : public Traits {
   305       typedef T ReachedMap;
   306       static ReachedMap *createReachedMap(const Graph &G) 
   307       {
   308 	throw UninitializedParameter();
   309       }
   310     };
   311     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   312 
   313     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   314     ///
   315     template <class T>
   316     class DefReachedMap : public Bfs< Graph,
   317 				      DefReachedMapTraits<T> > { };
   318     
   319     struct DefGraphReachedMapTraits : public Traits {
   320       typedef typename Graph::template NodeMap<bool> ReachedMap;
   321       static ReachedMap *createReachedMap(const Graph &G) 
   322       {
   323 	return new ReachedMap(G);
   324       }
   325     };
   326     template <class T>
   327     struct DefProcessedMapTraits : public Traits {
   328       typedef T ProcessedMap;
   329       static ProcessedMap *createProcessedMap(const Graph &G) 
   330       {
   331 	throw UninitializedParameter();
   332       }
   333     };
   334     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   335 
   336     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   337     ///
   338     template <class T>
   339     class DefProcessedMap : public Bfs< Graph,
   340 					DefProcessedMapTraits<T> > { };
   341     
   342     struct DefGraphProcessedMapTraits : public Traits {
   343       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   344       static ProcessedMap *createProcessedMap(const Graph &G) 
   345       {
   346 	return new ProcessedMap(G);
   347       }
   348     };
   349     ///\brief \ref named-templ-param "Named parameter"
   350     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   351     ///
   352     ///\ref named-templ-param "Named parameter"
   353     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   354     ///If you don't set it explicitly, it will be automatically allocated.
   355     template <class T>
   356     class DefProcessedMapToBeDefaultMap :
   357       public Bfs< Graph,
   358 		  DefGraphProcessedMapTraits> { };
   359     
   360     ///@}
   361 
   362   public:      
   363     
   364     ///Constructor.
   365     
   366     ///\param _G the graph the algorithm will run on.
   367     ///
   368     Bfs(const Graph& _G) :
   369       G(&_G),
   370       _pred(NULL), local_pred(false),
   371 //       _predNode(NULL), local_predNode(false),
   372       _dist(NULL), local_dist(false),
   373       _reached(NULL), local_reached(false),
   374       _processed(NULL), local_processed(false)
   375     { }
   376     
   377     ///Destructor.
   378     ~Bfs() 
   379     {
   380       if(local_pred) delete _pred;
   381 //       if(local_predNode) delete _predNode;
   382       if(local_dist) delete _dist;
   383       if(local_reached) delete _reached;
   384       if(local_processed) delete _processed;
   385     }
   386 
   387     ///Sets the map storing the predecessor edges.
   388 
   389     ///Sets the map storing the predecessor edges.
   390     ///If you don't use this function before calling \ref run(),
   391     ///it will allocate one. The destructor deallocates this
   392     ///automatically allocated map, of course.
   393     ///\return <tt> (*this) </tt>
   394     Bfs &predMap(PredMap &m) 
   395     {
   396       if(local_pred) {
   397 	delete _pred;
   398 	local_pred=false;
   399       }
   400       _pred = &m;
   401       return *this;
   402     }
   403 
   404     ///Sets the map indicating the reached nodes.
   405 
   406     ///Sets the map indicating the reached nodes.
   407     ///If you don't use this function before calling \ref run(),
   408     ///it will allocate one. The destructor deallocates this
   409     ///automatically allocated map, of course.
   410     ///\return <tt> (*this) </tt>
   411     Bfs &reachedMap(ReachedMap &m) 
   412     {
   413       if(local_reached) {
   414 	delete _reached;
   415 	local_reached=false;
   416       }
   417       _reached = &m;
   418       return *this;
   419     }
   420 
   421     ///Sets the map indicating the processed nodes.
   422 
   423     ///Sets the map indicating the processed nodes.
   424     ///If you don't use this function before calling \ref run(),
   425     ///it will allocate one. The destructor deallocates this
   426     ///automatically allocated map, of course.
   427     ///\return <tt> (*this) </tt>
   428     Bfs &processedMap(ProcessedMap &m) 
   429     {
   430       if(local_processed) {
   431 	delete _processed;
   432 	local_processed=false;
   433       }
   434       _processed = &m;
   435       return *this;
   436     }
   437 
   438 //     ///Sets the map storing the predecessor nodes.
   439 
   440 //     ///Sets the map storing the predecessor nodes.
   441 //     ///If you don't use this function before calling \ref run(),
   442 //     ///it will allocate one. The destructor deallocates this
   443 //     ///automatically allocated map, of course.
   444 //     ///\return <tt> (*this) </tt>
   445 //     Bfs &predNodeMap(PredNodeMap &m) 
   446 //     {
   447 //       if(local_predNode) {
   448 // 	delete _predNode;
   449 // 	local_predNode=false;
   450 //       }
   451 //       _predNode = &m;
   452 //       return *this;
   453 //     }
   454 
   455     ///Sets the map storing the distances calculated by the algorithm.
   456 
   457     ///Sets the map storing the distances calculated by the algorithm.
   458     ///If you don't use this function before calling \ref run(),
   459     ///it will allocate one. The destructor deallocates this
   460     ///automatically allocated map, of course.
   461     ///\return <tt> (*this) </tt>
   462     Bfs &distMap(DistMap &m) 
   463     {
   464       if(local_dist) {
   465 	delete _dist;
   466 	local_dist=false;
   467       }
   468       _dist = &m;
   469       return *this;
   470     }
   471 
   472   public:
   473     ///\name Execution control
   474     ///The simplest way to execute the algorithm is to use
   475     ///one of the member functions called \c run(...).
   476     ///\n
   477     ///If you need more control on the execution,
   478     ///first you must call \ref init(), then you can add several source nodes
   479     ///with \ref addSource().
   480     ///Finally \ref start() will perform the actual path
   481     ///computation.
   482 
   483     ///@{
   484 
   485     ///Initializes the internal data structures.
   486 
   487     ///Initializes the internal data structures.
   488     ///
   489     void init()
   490     {
   491       create_maps();
   492       _queue.resize(countNodes(*G));
   493       _queue_head=_queue_tail=0;
   494       _curr_dist=1;
   495       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   496 	_pred->set(u,INVALID);
   497 // 	_predNode->set(u,INVALID);
   498 	_reached->set(u,false);
   499 	_processed->set(u,false);
   500       }
   501     }
   502     
   503     ///Adds a new source node.
   504 
   505     ///Adds a new source node to the set of nodes to be processed.
   506     ///
   507     void addSource(Node s)
   508     {
   509       if(!(*_reached)[s])
   510 	{
   511 	  _reached->set(s,true);
   512 	  _pred->set(s,INVALID);
   513 	  _dist->set(s,0);
   514 	  _queue[_queue_head++]=s;
   515 	  _queue_next_dist=_queue_head;
   516 	}
   517     }
   518     
   519     ///Processes the next node.
   520 
   521     ///Processes the next node.
   522     ///
   523     ///\return The processed node.
   524     ///
   525     ///\warning The queue must not be empty!
   526     Node processNextNode()
   527     {
   528       if(_queue_tail==_queue_next_dist) {
   529 	_curr_dist++;
   530 	_queue_next_dist=_queue_head;
   531       }
   532       Node n=_queue[_queue_tail++];
   533       _processed->set(n,true);
   534       Node m;
   535       for(OutEdgeIt e(*G,n);e!=INVALID;++e)
   536 	if(!(*_reached)[m=G->target(e)]) {
   537 	  _queue[_queue_head++]=m;
   538 	  _reached->set(m,true);
   539 	  _pred->set(m,e);
   540 // 	  _pred_node->set(m,n);
   541 	  _dist->set(m,_curr_dist);
   542 	}
   543       return n;
   544     }
   545       
   546     ///Next node to be processed.
   547 
   548     ///Next node to be processed.
   549     ///
   550     ///\return The next node to be processed or INVALID if the queue is
   551     /// empty.
   552     Node NextNode()
   553     { 
   554       return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID;
   555     }
   556  
   557     ///\brief Returns \c false if there are nodes
   558     ///to be processed in the queue
   559     ///
   560     ///Returns \c false if there are nodes
   561     ///to be processed in the queue
   562     bool emptyQueue() { return _queue_tail==_queue_head; }
   563     ///Returns the number of the nodes to be processed.
   564     
   565     ///Returns the number of the nodes to be processed in the queue.
   566     ///
   567     int queueSize() { return _queue_head-_queue_tail; }
   568     
   569     ///Executes the algorithm.
   570 
   571     ///Executes the algorithm.
   572     ///
   573     ///\pre init() must be called and at least one node should be added
   574     ///with addSource() before using this function.
   575     ///
   576     ///This method runs the %BFS algorithm from the root node(s)
   577     ///in order to
   578     ///compute the
   579     ///shortest path to each node. The algorithm computes
   580     ///- The shortest path tree.
   581     ///- The distance of each node from the root(s).
   582     ///
   583     void start()
   584     {
   585       while ( !emptyQueue() ) processNextNode();
   586     }
   587     
   588     ///Executes the algorithm until \c dest is reached.
   589 
   590     ///Executes the algorithm until \c dest is reached.
   591     ///
   592     ///\pre init() must be called and at least one node should be added
   593     ///with addSource() before using this function.
   594     ///
   595     ///This method runs the %BFS algorithm from the root node(s)
   596     ///in order to
   597     ///compute the
   598     ///shortest path to \c dest. The algorithm computes
   599     ///- The shortest path to \c  dest.
   600     ///- The distance of \c dest from the root(s).
   601     ///
   602     void start(Node dest)
   603     {
   604       while ( !emptyQueue() && _queue[_queue_tail]!=dest ) processNextNode();
   605     }
   606     
   607     ///Executes the algorithm until a condition is met.
   608 
   609     ///Executes the algorithm until a condition is met.
   610     ///
   611     ///\pre init() must be called and at least one node should be added
   612     ///with addSource() before using this function.
   613     ///
   614     ///\param nm must be a bool (or convertible) node map. The algorithm
   615     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   616     template<class NM>
   617       void start(const NM &nm)
   618       {
   619 	while ( !emptyQueue() && !nm[_queue[_queue_tail]] ) processNextNode();
   620       }
   621     
   622     ///Runs %BFS algorithm from node \c s.
   623     
   624     ///This method runs the %BFS algorithm from a root node \c s
   625     ///in order to
   626     ///compute the
   627     ///shortest path to each node. The algorithm computes
   628     ///- The shortest path tree.
   629     ///- The distance of each node from the root.
   630     ///
   631     ///\note d.run(s) is just a shortcut of the following code.
   632     ///\code
   633     ///  d.init();
   634     ///  d.addSource(s);
   635     ///  d.start();
   636     ///\endcode
   637     void run(Node s) {
   638       init();
   639       addSource(s);
   640       start();
   641     }
   642     
   643     ///Finds the shortest path between \c s and \c t.
   644     
   645     ///Finds the shortest path between \c s and \c t.
   646     ///
   647     ///\return The length of the shortest s---t path if there exists one,
   648     ///0 otherwise.
   649     ///\note Apart from the return value, d.run(s) is
   650     ///just a shortcut of the following code.
   651     ///\code
   652     ///  d.init();
   653     ///  d.addSource(s);
   654     ///  d.start(t);
   655     ///\endcode
   656     int run(Node s,Node t) {
   657       init();
   658       addSource(s);
   659       start(t);
   660       return reached(t)?_curr_dist-1+(_queue_tail==_queue_next_dist):0;
   661     }
   662     
   663     ///@}
   664 
   665     ///\name Query Functions
   666     ///The result of the %BFS algorithm can be obtained using these
   667     ///functions.\n
   668     ///Before the use of these functions,
   669     ///either run() or start() must be called.
   670     
   671     ///@{
   672 
   673     ///Copies the shortest path to \c t into \c p
   674     
   675     ///This function copies the shortest path to \c t into \c p.
   676     ///If \c t is a source itself or unreachable, then it does not
   677     ///alter \c p.
   678     ///\todo Is it the right way to handle unreachable nodes?
   679     ///\return Returns \c true if a path to \c t was actually copied to \c p,
   680     ///\c false otherwise.
   681     ///\sa DirPath
   682     template<class P>
   683     bool getPath(P &p,Node t) 
   684     {
   685       if(reached(t)) {
   686 	p.clear();
   687 	typename P::Builder b(p);
   688 	for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
   689 	  b.pushFront(pred(t));
   690 	b.commit();
   691 	return true;
   692       }
   693       return false;
   694     }
   695 
   696     ///The distance of a node from the root(s).
   697 
   698     ///Returns the distance of a node from the root(s).
   699     ///\pre \ref run() must be called before using this function.
   700     ///\warning If node \c v in unreachable from the root(s) the return value
   701     ///of this function is undefined.
   702     int dist(Node v) const { return (*_dist)[v]; }
   703 
   704     ///Returns the 'previous edge' of the shortest path tree.
   705 
   706     ///For a node \c v it returns the 'previous edge'
   707     ///of the shortest path tree,
   708     ///i.e. it returns the last edge of a shortest path from the root(s) to \c
   709     ///v. It is \ref INVALID
   710     ///if \c v is unreachable from the root(s) or \c v is a root. The
   711     ///shortest path tree used here is equal to the shortest path tree used in
   712     ///\ref predNode().
   713     ///\pre Either \ref run() or \ref start() must be called before using
   714     ///this function.
   715     ///\todo predEdge could be a better name.
   716     Edge pred(Node v) const { return (*_pred)[v];}
   717 
   718     ///Returns the 'previous node' of the shortest path tree.
   719 
   720     ///For a node \c v it returns the 'previous node'
   721     ///of the shortest path tree,
   722     ///i.e. it returns the last but one node from a shortest path from the
   723     ///root(a) to \c /v.
   724     ///It is INVALID if \c v is unreachable from the root(s) or
   725     ///if \c v itself a root.
   726     ///The shortest path tree used here is equal to the shortest path
   727     ///tree used in \ref pred().
   728     ///\pre Either \ref run() or \ref start() must be called before
   729     ///using this function.
   730     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   731 				  G->source((*_pred)[v]); }
   732     
   733     ///Returns a reference to the NodeMap of distances.
   734 
   735     ///Returns a reference to the NodeMap of distances.
   736     ///\pre Either \ref run() or \ref init() must
   737     ///be called before using this function.
   738     const DistMap &distMap() const { return *_dist;}
   739  
   740     ///Returns a reference to the shortest path tree map.
   741 
   742     ///Returns a reference to the NodeMap of the edges of the
   743     ///shortest path tree.
   744     ///\pre Either \ref run() or \ref init()
   745     ///must be called before using this function.
   746     const PredMap &predMap() const { return *_pred;}
   747  
   748 //     ///Returns a reference to the map of nodes of shortest paths.
   749 
   750 //     ///Returns a reference to the NodeMap of the last but one nodes of the
   751 //     ///shortest path tree.
   752 //     ///\pre \ref run() must be called before using this function.
   753 //     const PredNodeMap &predNodeMap() const { return *_predNode;}
   754 
   755     ///Checks if a node is reachable from the root.
   756 
   757     ///Returns \c true if \c v is reachable from the root.
   758     ///\warning The source nodes are indicated as unreached.
   759     ///\pre Either \ref run() or \ref start()
   760     ///must be called before using this function.
   761     ///
   762     bool reached(Node v) { return (*_reached)[v]; }
   763     
   764     ///@}
   765   };
   766 
   767   ///Default traits class of Bfs function.
   768 
   769   ///Default traits class of Bfs function.
   770   ///\param GR Graph type.
   771   template<class GR>
   772   struct BfsWizardDefaultTraits
   773   {
   774     ///The graph type the algorithm runs on. 
   775     typedef GR Graph;
   776     ///\brief The type of the map that stores the last
   777     ///edges of the shortest paths.
   778     /// 
   779     ///The type of the map that stores the last
   780     ///edges of the shortest paths.
   781     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   782     ///
   783     typedef NullMap<typename Graph::Node,typename GR::Edge> PredMap;
   784     ///Instantiates a PredMap.
   785  
   786     ///This function instantiates a \ref PredMap. 
   787     ///\param g is the graph, to which we would like to define the PredMap.
   788     ///\todo The graph alone may be insufficient to initialize
   789 #ifdef DOXYGEN
   790     static PredMap *createPredMap(const GR &g) 
   791 #else
   792     static PredMap *createPredMap(const GR &) 
   793 #endif
   794     {
   795       return new PredMap();
   796     }
   797 //     ///\brief The type of the map that stores the last but one
   798 //     ///nodes of the shortest paths.
   799 //     ///
   800 //     ///The type of the map that stores the last but one
   801 //     ///nodes of the shortest paths.
   802 //     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   803 //     ///
   804 //     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
   805 //     ///Instantiates a PredNodeMap.
   806     
   807 //     ///This function instantiates a \ref PredNodeMap. 
   808 //     ///\param G is the graph, to which
   809 //     ///we would like to define the \ref PredNodeMap
   810 //     static PredNodeMap *createPredNodeMap(const GR &G)
   811 //     {
   812 //       return new PredNodeMap();
   813 //     }
   814 
   815     ///The type of the map that indicates which nodes are processed.
   816  
   817     ///The type of the map that indicates which nodes are processed.
   818     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   819     ///\todo named parameter to set this type, function to read and write.
   820     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   821     ///Instantiates a ProcessedMap.
   822  
   823     ///This function instantiates a \ref ProcessedMap. 
   824     ///\param g is the graph, to which
   825     ///we would like to define the \ref ProcessedMap
   826 #ifdef DOXYGEN
   827     static ProcessedMap *createProcessedMap(const GR &g)
   828 #else
   829     static ProcessedMap *createProcessedMap(const GR &)
   830 #endif
   831     {
   832       return new ProcessedMap();
   833     }
   834     ///The type of the map that indicates which nodes are reached.
   835  
   836     ///The type of the map that indicates which nodes are reached.
   837     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   838     ///\todo named parameter to set this type, function to read and write.
   839     typedef typename Graph::template NodeMap<bool> ReachedMap;
   840     ///Instantiates a ReachedMap.
   841  
   842     ///This function instantiates a \ref ReachedMap. 
   843     ///\param G is the graph, to which
   844     ///we would like to define the \ref ReachedMap.
   845     static ReachedMap *createReachedMap(const GR &G)
   846     {
   847       return new ReachedMap(G);
   848     }
   849     ///The type of the map that stores the dists of the nodes.
   850  
   851     ///The type of the map that stores the dists of the nodes.
   852     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   853     ///
   854     typedef NullMap<typename Graph::Node,int> DistMap;
   855     ///Instantiates a DistMap.
   856  
   857     ///This function instantiates a \ref DistMap. 
   858     ///\param g is the graph, to which we would like to define the \ref DistMap
   859 #ifdef DOXYGEN
   860     static DistMap *createDistMap(const GR &g)
   861 #else
   862     static DistMap *createDistMap(const GR &)
   863 #endif
   864     {
   865       return new DistMap();
   866     }
   867   };
   868   
   869   /// Default traits used by \ref BfsWizard
   870 
   871   /// To make it easier to use Bfs algorithm
   872   ///we have created a wizard class.
   873   /// This \ref BfsWizard class needs default traits,
   874   ///as well as the \ref Bfs class.
   875   /// The \ref BfsWizardBase is a class to be the default traits of the
   876   /// \ref BfsWizard class.
   877   template<class GR>
   878   class BfsWizardBase : public BfsWizardDefaultTraits<GR>
   879   {
   880 
   881     typedef BfsWizardDefaultTraits<GR> Base;
   882   protected:
   883     /// Type of the nodes in the graph.
   884     typedef typename Base::Graph::Node Node;
   885 
   886     /// Pointer to the underlying graph.
   887     void *_g;
   888     ///Pointer to the map of reached nodes.
   889     void *_reached;
   890     ///Pointer to the map of processed nodes.
   891     void *_processed;
   892     ///Pointer to the map of predecessors edges.
   893     void *_pred;
   894 //     ///Pointer to the map of predecessors nodes.
   895 //     void *_predNode;
   896     ///Pointer to the map of distances.
   897     void *_dist;
   898     ///Pointer to the source node.
   899     Node _source;
   900     
   901     public:
   902     /// Constructor.
   903     
   904     /// This constructor does not require parameters, therefore it initiates
   905     /// all of the attributes to default values (0, INVALID).
   906     BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
   907 // 			   _predNode(0),
   908 			   _dist(0), _source(INVALID) {}
   909 
   910     /// Constructor.
   911     
   912     /// This constructor requires some parameters,
   913     /// listed in the parameters list.
   914     /// Others are initiated to 0.
   915     /// \param g is the initial value of  \ref _g
   916     /// \param s is the initial value of  \ref _source
   917     BfsWizardBase(const GR &g, Node s=INVALID) :
   918       _g((void *)&g), _reached(0), _processed(0), _pred(0),
   919 //       _predNode(0),
   920       _dist(0), _source(s) {}
   921 
   922   };
   923   
   924   /// A class to make the usage of Bfs algorithm easier
   925 
   926   /// This class is created to make it easier to use Bfs algorithm.
   927   /// It uses the functions and features of the plain \ref Bfs,
   928   /// but it is much simpler to use it.
   929   ///
   930   /// Simplicity means that the way to change the types defined
   931   /// in the traits class is based on functions that returns the new class
   932   /// and not on templatable built-in classes.
   933   /// When using the plain \ref Bfs
   934   /// the new class with the modified type comes from
   935   /// the original class by using the ::
   936   /// operator. In the case of \ref BfsWizard only
   937   /// a function have to be called and it will
   938   /// return the needed class.
   939   ///
   940   /// It does not have own \ref run method. When its \ref run method is called
   941   /// it initiates a plain \ref Bfs class, and calls the \ref Bfs::run
   942   /// method of it.
   943   template<class TR>
   944   class BfsWizard : public TR
   945   {
   946     typedef TR Base;
   947 
   948     ///The type of the underlying graph.
   949     typedef typename TR::Graph Graph;
   950     //\e
   951     typedef typename Graph::Node Node;
   952     //\e
   953     typedef typename Graph::NodeIt NodeIt;
   954     //\e
   955     typedef typename Graph::Edge Edge;
   956     //\e
   957     typedef typename Graph::OutEdgeIt OutEdgeIt;
   958     
   959     ///\brief The type of the map that stores
   960     ///the reached nodes
   961     typedef typename TR::ReachedMap ReachedMap;
   962     ///\brief The type of the map that stores
   963     ///the processed nodes
   964     typedef typename TR::ProcessedMap ProcessedMap;
   965     ///\brief The type of the map that stores the last
   966     ///edges of the shortest paths.
   967     typedef typename TR::PredMap PredMap;
   968 //     ///\brief The type of the map that stores the last but one
   969 //     ///nodes of the shortest paths.
   970 //     typedef typename TR::PredNodeMap PredNodeMap;
   971     ///The type of the map that stores the dists of the nodes.
   972     typedef typename TR::DistMap DistMap;
   973 
   974 public:
   975     /// Constructor.
   976     BfsWizard() : TR() {}
   977 
   978     /// Constructor that requires parameters.
   979 
   980     /// Constructor that requires parameters.
   981     /// These parameters will be the default values for the traits class.
   982     BfsWizard(const Graph &g, Node s=INVALID) :
   983       TR(g,s) {}
   984 
   985     ///Copy constructor
   986     BfsWizard(const TR &b) : TR(b) {}
   987 
   988     ~BfsWizard() {}
   989 
   990     ///Runs Bfs algorithm from a given node.
   991     
   992     ///Runs Bfs algorithm from a given node.
   993     ///The node can be given by the \ref source function.
   994     void run()
   995     {
   996       if(Base::_source==INVALID) throw UninitializedParameter();
   997       Bfs<Graph,TR> alg(*(Graph*)Base::_g);
   998       if(Base::_reached)
   999 	alg.reachedMap(*(ReachedMap*)Base::_reached);
  1000       if(Base::_processed) alg.processedMap(*(ProcessedMap*)Base::_processed);
  1001       if(Base::_pred) alg.predMap(*(PredMap*)Base::_pred);
  1002 //       if(Base::_predNode) alg.predNodeMap(*(PredNodeMap*)Base::_predNode);
  1003       if(Base::_dist) alg.distMap(*(DistMap*)Base::_dist);
  1004       alg.run(Base::_source);
  1005     }
  1006 
  1007     ///Runs Bfs algorithm from the given node.
  1008 
  1009     ///Runs Bfs algorithm from the given node.
  1010     ///\param s is the given source.
  1011     void run(Node s)
  1012     {
  1013       Base::_source=s;
  1014       run();
  1015     }
  1016 
  1017     template<class T>
  1018     struct DefPredMapBase : public Base {
  1019       typedef T PredMap;
  1020       static PredMap *createPredMap(const Graph &) { return 0; };
  1021       DefPredMapBase(const TR &b) : TR(b) {}
  1022     };
  1023     
  1024     ///\brief \ref named-templ-param "Named parameter"
  1025     ///function for setting PredMap
  1026     ///
  1027     /// \ref named-templ-param "Named parameter"
  1028     ///function for setting PredMap
  1029     ///
  1030     template<class T>
  1031     BfsWizard<DefPredMapBase<T> > predMap(const T &t) 
  1032     {
  1033       Base::_pred=(void *)&t;
  1034       return BfsWizard<DefPredMapBase<T> >(*this);
  1035     }
  1036     
  1037  
  1038     template<class T>
  1039     struct DefReachedMapBase : public Base {
  1040       typedef T ReachedMap;
  1041       static ReachedMap *createReachedMap(const Graph &) { return 0; };
  1042       DefReachedMapBase(const TR &b) : TR(b) {}
  1043     };
  1044     
  1045     ///\brief \ref named-templ-param "Named parameter"
  1046     ///function for setting ReachedMap
  1047     ///
  1048     /// \ref named-templ-param "Named parameter"
  1049     ///function for setting ReachedMap
  1050     ///
  1051     template<class T>
  1052     BfsWizard<DefReachedMapBase<T> > reachedMap(const T &t) 
  1053     {
  1054       Base::_pred=(void *)&t;
  1055       return BfsWizard<DefReachedMapBase<T> >(*this);
  1056     }
  1057     
  1058 
  1059     template<class T>
  1060     struct DefProcessedMapBase : public Base {
  1061       typedef T ProcessedMap;
  1062       static ProcessedMap *createProcessedMap(const Graph &) { return 0; };
  1063       DefProcessedMapBase(const TR &b) : TR(b) {}
  1064     };
  1065     
  1066     ///\brief \ref named-templ-param "Named parameter"
  1067     ///function for setting ProcessedMap
  1068     ///
  1069     /// \ref named-templ-param "Named parameter"
  1070     ///function for setting ProcessedMap
  1071     ///
  1072     template<class T>
  1073     BfsWizard<DefProcessedMapBase<T> > processedMap(const T &t) 
  1074     {
  1075       Base::_pred=(void *)&t;
  1076       return BfsWizard<DefProcessedMapBase<T> >(*this);
  1077     }
  1078     
  1079 
  1080 //     template<class T>
  1081 //     struct DefPredNodeMapBase : public Base {
  1082 //       typedef T PredNodeMap;
  1083 //       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
  1084 //       DefPredNodeMapBase(const TR &b) : TR(b) {}
  1085 //     };
  1086     
  1087 //     ///\brief \ref named-templ-param "Named parameter"
  1088 //     ///function for setting PredNodeMap type
  1089 //     ///
  1090 //     /// \ref named-templ-param "Named parameter"
  1091 //     ///function for setting PredNodeMap type
  1092 //     ///
  1093 //     template<class T>
  1094 //     BfsWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
  1095 //     {
  1096 //       Base::_predNode=(void *)&t;
  1097 //       return BfsWizard<DefPredNodeMapBase<T> >(*this);
  1098 //     }
  1099    
  1100     template<class T>
  1101     struct DefDistMapBase : public Base {
  1102       typedef T DistMap;
  1103       static DistMap *createDistMap(const Graph &) { return 0; };
  1104       DefDistMapBase(const TR &b) : TR(b) {}
  1105     };
  1106     
  1107     ///\brief \ref named-templ-param "Named parameter"
  1108     ///function for setting DistMap type
  1109     ///
  1110     /// \ref named-templ-param "Named parameter"
  1111     ///function for setting DistMap type
  1112     ///
  1113     template<class T>
  1114     BfsWizard<DefDistMapBase<T> > distMap(const T &t) 
  1115     {
  1116       Base::_dist=(void *)&t;
  1117       return BfsWizard<DefDistMapBase<T> >(*this);
  1118     }
  1119     
  1120     /// Sets the source node, from which the Bfs algorithm runs.
  1121 
  1122     /// Sets the source node, from which the Bfs algorithm runs.
  1123     /// \param s is the source node.
  1124     BfsWizard<TR> &source(Node s) 
  1125     {
  1126       Base::_source=s;
  1127       return *this;
  1128     }
  1129     
  1130   };
  1131   
  1132   ///Function type interface for Bfs algorithm.
  1133 
  1134   /// \ingroup flowalgs
  1135   ///Function type interface for Bfs algorithm.
  1136   ///
  1137   ///This function also has several
  1138   ///\ref named-templ-func-param "named parameters",
  1139   ///they are declared as the members of class \ref BfsWizard.
  1140   ///The following
  1141   ///example shows how to use these parameters.
  1142   ///\code
  1143   ///  bfs(g,source).predMap(preds).run();
  1144   ///\endcode
  1145   ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
  1146   ///to the end of the parameter list.
  1147   ///\sa BfsWizard
  1148   ///\sa Bfs
  1149   template<class GR>
  1150   BfsWizard<BfsWizardBase<GR> >
  1151   bfs(const GR &g,typename GR::Node s=INVALID)
  1152   {
  1153     return BfsWizard<BfsWizardBase<GR> >(g,s);
  1154   }
  1155 
  1156 } //END OF NAMESPACE LEMON
  1157 
  1158 #endif
  1159