src/lemon/lp_base.h
author alpar
Thu, 21 Apr 2005 06:06:56 +0000
changeset 1378 b82995734b2d
parent 1376 8de0c1aeeb32
child 1379 96a34c0904dd
permissions -rw-r--r--
Fix Makefile.am
     1 /* -*- C++ -*-
     2  * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<math.h>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 //#include"lin_expr.h"
    30 
    31 ///\file
    32 ///\brief The interface of the LP solver interface.
    33 ///\ingroup gen_opt_group
    34 namespace lemon {
    35   
    36   ///Internal data structure to convert floating id's to fix one's
    37     
    38   ///\todo This might be implemented to be also usable in other places.
    39   class _FixId 
    40   {
    41     std::vector<int> index;
    42     std::vector<int> cross;
    43     int first_free;
    44   public:
    45     _FixId() : first_free(-1) {};
    46     ///Convert a floating id to a fix one
    47 
    48     ///\param n is a floating id
    49     ///\return the corresponding fix id
    50     int fixId(int n) {return cross[n];}
    51     ///Convert a fix id to a floating one
    52 
    53     ///\param n is a fix id
    54     ///\return the corresponding floating id
    55     int floatingId(int n) { return index[n];}
    56     ///Add a new floating id.
    57 
    58     ///\param n is a floating id
    59     ///\return the fix id of the new value
    60     ///\todo Multiple additions should also be handled.
    61     int insert(int n)
    62     {
    63       if(n>=int(cross.size())) {
    64 	cross.resize(n+1);
    65 	if(first_free==-1) {
    66 	  cross[n]=index.size();
    67 	  index.push_back(n);
    68 	}
    69 	else {
    70 	  cross[n]=first_free;
    71 	  int next=index[first_free];
    72 	  index[first_free]=n;
    73 	  first_free=next;
    74 	}
    75 	return cross[n];
    76       }
    77       ///\todo Create an own exception type.
    78       else throw LogicError(); //floatingId-s must form a continuous range;
    79     }
    80     ///Remove a fix id.
    81 
    82     ///\param n is a fix id
    83     ///
    84     void erase(int n) 
    85     {
    86       int fl=index[n];
    87       index[n]=first_free;
    88       first_free=n;
    89       for(int i=fl+1;i<int(cross.size());++i) {
    90 	cross[i-1]=cross[i];
    91 	index[cross[i]]--;
    92       }
    93       cross.pop_back();
    94     }
    95     ///An upper bound on the largest fix id.
    96 
    97     ///\todo Do we need this?
    98     ///
    99     std::size_t maxFixId() { return cross.size()-1; }
   100   
   101   };
   102     
   103   ///Common base class for LP solvers
   104   
   105   ///\todo Much more docs
   106   ///\ingroup gen_opt_group
   107   class LpSolverBase {
   108 
   109   public:
   110 
   111     ///\e
   112     enum SolveExitStatus {
   113       ///\e
   114       SOLVED = 0,
   115       ///\e
   116       UNSOLVED = 1
   117     };
   118       
   119     ///\e
   120     enum SolutionStatus {
   121       ///Feasible solution has'n been found (but may exist).
   122 
   123       ///\todo NOTFOUND might be a better name.
   124       ///
   125       UNDEFINED = 0,
   126       ///The problem has no feasible solution
   127       INFEASIBLE = 1,
   128       ///Feasible solution found
   129       FEASIBLE = 2,
   130       ///Optimal solution exists and found
   131       OPTIMAL = 3,
   132       ///The cost function is unbounded
   133 
   134       ///\todo Give a feasible solution and an infinite ray (and the
   135       ///corresponding bases)
   136       INFINITE = 4
   137     };
   138       
   139     ///The floating point type used by the solver
   140     typedef double Value;
   141     ///The infinity constant
   142     static const Value INF;
   143     ///The not a number constant
   144     static const Value NaN;
   145     
   146     ///Refer to a column of the LP.
   147 
   148     ///This type is used to refer to a column of the LP.
   149     ///
   150     ///Its value remains valid and correct even after the addition or erase of
   151     ///other columns.
   152     ///
   153     ///\todo Document what can one do with a Col (INVALID, comparing,
   154     ///it is similar to Node/Edge)
   155     class Col {
   156     protected:
   157       int id;
   158       friend class LpSolverBase;
   159     public:
   160       typedef Value ExprValue;
   161       typedef True LpSolverCol;
   162       Col() {}
   163       Col(const Invalid&) : id(-1) {}
   164       bool operator<(Col c) const  {return id<c.id;}
   165       bool operator==(Col c) const  {return id==c.id;}
   166       bool operator!=(Col c) const  {return id==c.id;}
   167     };
   168 
   169     ///Refer to a row of the LP.
   170 
   171     ///This type is used to refer to a row of the LP.
   172     ///
   173     ///Its value remains valid and correct even after the addition or erase of
   174     ///other rows.
   175     ///
   176     ///\todo Document what can one do with a Row (INVALID, comparing,
   177     ///it is similar to Node/Edge)
   178     class Row {
   179     protected:
   180       int id;
   181       friend class LpSolverBase;
   182     public:
   183       typedef Value ExprValue;
   184       typedef True LpSolverRow;
   185       Row() {}
   186       Row(const Invalid&) : id(-1) {}
   187       typedef True LpSolverRow;
   188       bool operator<(Row c) const  {return id<c.id;}
   189       bool operator==(Row c) const  {return id==c.id;}
   190       bool operator!=(Row c) const  {return id==c.id;} 
   191    };
   192     
   193     ///Linear expression of variables and a constant component
   194     
   195     ///This data structure strores a linear expression of the variables
   196     ///(\ref Col "Col"s) and also has a constant component.
   197     ///
   198     ///There are several ways to access and modify the contents of this
   199     ///container.
   200     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   201     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   202     ///read and modify the coefficients like
   203     ///these.
   204     ///\code
   205     ///e[v]=5;
   206     ///e[v]+=12;
   207     ///e.erase(v);
   208     ///\endcode
   209     ///or you can also iterate through its elements.
   210     ///\code
   211     ///double s=0;
   212     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   213     ///  s+=i->second;
   214     ///\endcode
   215     ///(This code computes the sum of all coefficients).
   216     ///- Numbers (<tt>double</tt>'s)
   217     ///and variables (\ref Col "Col"s) directly convert to an
   218     ///\ref Expr and the usual linear operations are defined so  
   219     ///\code
   220     ///v+w
   221     ///2*v-3.12*(v-w/2)+2
   222     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   223     ///\endcode
   224     ///are valid \ref Expr "Expr"essions.
   225     ///The usual assignment operations are also defined.
   226     ///\code
   227     ///e=v+w;
   228     ///e+=2*v-3.12*(v-w/2)+2;
   229     ///e*=3.4;
   230     ///e/=5;
   231     ///\endcode
   232     ///- The constant member can be set and read by \ref constComp()
   233     ///\code
   234     ///e.constComp()=12;
   235     ///double c=e.constComp();
   236     ///\endcode
   237     ///
   238     ///\note \ref clear() not only sets all coefficients to 0 but also
   239     ///clears the constant components.
   240     ///
   241     ///\sa Constr
   242     ///
   243     class Expr : public std::map<Col,Value>
   244     {
   245     public:
   246       typedef LpSolverBase::Col Key; 
   247       typedef LpSolverBase::Value Value;
   248       
   249     protected:
   250       typedef std::map<Col,Value> Base;
   251       
   252       Value const_comp;
   253   public:
   254       typedef True IsLinExpression;
   255       ///\e
   256       Expr() : Base(), const_comp(0) { }
   257       ///\e
   258       Expr(const Key &v) : const_comp(0) {
   259 	Base::insert(std::make_pair(v, 1));
   260       }
   261       ///\e
   262       Expr(const Value &v) : const_comp(v) {}
   263       ///\e
   264       void set(const Key &v,const Value &c) {
   265 	Base::insert(std::make_pair(v, c));
   266       }
   267       ///\e
   268       Value &constComp() { return const_comp; }
   269       ///\e
   270       const Value &constComp() const { return const_comp; }
   271       
   272       ///Removes the components with zero coefficient.
   273       void simplify() {
   274 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   275 	  Base::iterator j=i;
   276 	  ++j;
   277 	  if ((*i).second==0) Base::erase(i);
   278 	  j=i;
   279 	}
   280       }
   281 
   282       ///Sets all coefficients and the constant component to 0.
   283       void clear() {
   284 	Base::clear();
   285 	const_comp=0;
   286       }
   287 
   288       ///\e
   289       Expr &operator+=(const Expr &e) {
   290 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   291 	  (*this)[j->first]+=j->second;
   292 	///\todo it might be speeded up using "hints"
   293 	const_comp+=e.const_comp;
   294 	return *this;
   295       }
   296       ///\e
   297       Expr &operator-=(const Expr &e) {
   298 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   299 	  (*this)[j->first]-=j->second;
   300 	const_comp-=e.const_comp;
   301 	return *this;
   302       }
   303       ///\e
   304       Expr &operator*=(const Value &c) {
   305 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   306 	  j->second*=c;
   307 	const_comp*=c;
   308 	return *this;
   309       }
   310       ///\e
   311       Expr &operator/=(const Value &c) {
   312 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   313 	  j->second/=c;
   314 	const_comp/=c;
   315 	return *this;
   316       }
   317     };
   318     
   319     ///Linear constraint
   320 
   321     ///This data stucture represents a linear constraint in the LP.
   322     ///Basically it is a linear expression with a lower or an upper bound
   323     ///(or both). These parts of the constraint can be obtained by the member
   324     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   325     ///respectively.
   326     ///There are two ways to construct a constraint.
   327     ///- You can set the linear expression and the bounds directly
   328     ///  by the functions above.
   329     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   330     ///  are defined between expressions, or even between constraints whenever
   331     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   332     ///  \c s and \c t are numbers, then the followings are valid expressions
   333     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   334     ///  it makes sense.
   335     ///  \code
   336     ///  e<=s
   337     ///  e<=f
   338     ///  s<=e<=t
   339     ///  e>=t
   340     ///  \endcode
   341     ///\warning The validity of a constraint is checked only at run time, so
   342     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   343     ///\ref LogicError exception.
   344     class Constr
   345     {
   346     public:
   347       typedef LpSolverBase::Expr Expr;
   348       typedef Expr::Key Key;
   349       typedef Expr::Value Value;
   350       
   351 //       static const Value INF;
   352 //       static const Value NaN;
   353 
   354     protected:
   355       Expr _expr;
   356       Value _lb,_ub;
   357     public:
   358       ///\e
   359       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   360       ///\e
   361       Constr(Value lb,const Expr &e,Value ub) :
   362 	_expr(e), _lb(lb), _ub(ub) {}
   363       ///\e
   364       Constr(const Expr &e,Value ub) : 
   365 	_expr(e), _lb(NaN), _ub(ub) {}
   366       ///\e
   367       Constr(Value lb,const Expr &e) :
   368 	_expr(e), _lb(lb), _ub(NaN) {}
   369       ///\e
   370       Constr(const Expr &e) : 
   371 	_expr(e), _lb(NaN), _ub(NaN) {}
   372       ///\e
   373       void clear() 
   374       {
   375 	_expr.clear();
   376 	_lb=_ub=NaN;
   377       }
   378 
   379       ///Reference to the linear expression 
   380       Expr &expr() { return _expr; }
   381       ///Cont reference to the linear expression 
   382       const Expr &expr() const { return _expr; }
   383       ///Reference to the lower bound.
   384 
   385       ///\return
   386       ///- -\ref INF: the constraint is lower unbounded.
   387       ///- -\ref NaN: lower bound has not been set.
   388       ///- finite number: the lower bound
   389       Value &lowerBound() { return _lb; }
   390       ///The const version of \ref lowerBound()
   391       const Value &lowerBound() const { return _lb; }
   392       ///Reference to the upper bound.
   393 
   394       ///\return
   395       ///- -\ref INF: the constraint is upper unbounded.
   396       ///- -\ref NaN: upper bound has not been set.
   397       ///- finite number: the upper bound
   398       Value &upperBound() { return _ub; }
   399       ///The const version of \ref upperBound()
   400       const Value &upperBound() const { return _ub; }
   401       ///Is the constraint lower bounded?
   402       bool lowerBounded() const { 
   403 	using namespace std;
   404 	return isfinite(_lb);
   405       }
   406       ///Is the constraint upper bounded?
   407       bool upperBounded() const {
   408 	using namespace std;
   409 	return isfinite(_ub);
   410       }
   411     };
   412     
   413 
   414   protected:
   415     _FixId rows;
   416     _FixId cols;
   417 
   418     //Abstract virtual functions
   419     virtual LpSolverBase &_newLp() = 0;
   420     virtual LpSolverBase &_copyLp() = 0;
   421 
   422     virtual int _addCol() = 0;
   423     virtual int _addRow() = 0;
   424     virtual void _setRowCoeffs(int i, 
   425 			       int length,
   426                                int  const * indices, 
   427                                Value  const * values ) = 0;
   428     virtual void _setColCoeffs(int i, 
   429 			       int length,
   430                                int  const * indices, 
   431                                Value  const * values ) = 0;
   432     virtual void _setColLowerBound(int i, Value value) = 0;
   433     virtual void _setColUpperBound(int i, Value value) = 0;
   434     virtual void _setRowLowerBound(int i, Value value) = 0;
   435     virtual void _setRowUpperBound(int i, Value value) = 0;
   436     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   437     virtual void _clearObj()=0;
   438 //     virtual void _setObj(int length,
   439 //                          int  const * indices, 
   440 //                          Value  const * values ) = 0;
   441     virtual SolveExitStatus _solve() = 0;
   442     virtual Value _getPrimal(int i) = 0;
   443     virtual Value _getPrimalValue() = 0;
   444     virtual SolutionStatus _getPrimalStatus() = 0;
   445     virtual void _setMax() = 0;
   446     virtual void _setMin() = 0;
   447     
   448     //Own protected stuff
   449     
   450     //Constant component of the objective function
   451     Value obj_const_comp;
   452     
   453 
   454 
   455     
   456   public:
   457 
   458     ///\e
   459     LpSolverBase() : obj_const_comp(0) {}
   460 
   461     ///\e
   462     virtual ~LpSolverBase() {}
   463 
   464     ///Creates a new LP problem
   465     LpSolverBase &newLp() {return _newLp();}
   466     ///Make a copy of the LP problem
   467     LpSolverBase &copyLp() {return _copyLp();}
   468     
   469     ///\name Build up and modify of the LP
   470 
   471     ///@{
   472 
   473     ///Add a new empty column (i.e a new variable) to the LP
   474     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   475 
   476     ///\brief Adds several new columns
   477     ///(i.e a variables) at once
   478     ///
   479     ///This magic function takes a container as its argument
   480     ///and fills its elements
   481     ///with new columns (i.e. variables)
   482     ///\param t can be
   483     ///- a standard STL compatible iterable container with
   484     ///\ref Col as its \c values_type
   485     ///like
   486     ///\code
   487     ///std::vector<LpSolverBase::Col>
   488     ///std::list<LpSolverBase::Col>
   489     ///\endcode
   490     ///- a standard STL compatible iterable container with
   491     ///\ref Col as its \c mapped_type
   492     ///like
   493     ///\code
   494     ///std::map<AnyType,LpSolverBase::Col>
   495     ///\endcode
   496     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   497     ///\code
   498     ///ListGraph::NodeMap<LpSolverBase::Col>
   499     ///ListGraph::EdgeMap<LpSolverBase::Col>
   500     ///\endcode
   501     ///\return The number of the created column.
   502 #ifdef DOXYGEN
   503     template<class T>
   504     int addColSet(T &t) { return 0;} 
   505 #else
   506     template<class T>
   507     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   508     addColSet(T &t,dummy<0> = 0) {
   509       int s=0;
   510       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   511       return s;
   512     }
   513     template<class T>
   514     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   515 		       int>::type
   516     addColSet(T &t,dummy<1> = 1) { 
   517       int s=0;
   518       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   519 	i->second=addCol();
   520 	s++;
   521       }
   522       return s;
   523     }
   524     template<class T>
   525     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   526 		       int>::type
   527     addColSet(T &t,dummy<2> = 2) { 
   528       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   529       int s=0;
   530       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   531 	  i!=t.valueSet().end();
   532 	  ++i)
   533 	{
   534 	  *i=addCol();
   535 	  s++;
   536 	}
   537       return s;
   538     }
   539 #endif
   540 
   541     ///Add a new empty row (i.e a new constaint) to the LP
   542 
   543     ///This function adds a new empty row (i.e a new constaint) to the LP.
   544     ///\return The created row
   545     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   546 
   547     ///Set a row (i.e a constaint) of the LP
   548 
   549     ///\param r is the row to be modified
   550     ///\param l is lower bound (-\ref INF means no bound)
   551     ///\param e is a linear expression (see \ref Expr)
   552     ///\param u is the upper bound (\ref INF means no bound)
   553     ///\bug This is a temportary function. The interface will change to
   554     ///a better one.
   555     ///\todo Option to control whether a constraint with a single variable is
   556     ///added or not.
   557     void setRow(Row r, Value l,const Expr &e, Value u) {
   558       std::vector<int> indices;
   559       std::vector<Value> values;
   560       indices.push_back(0);
   561       values.push_back(0);
   562       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   563 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   564 	  indices.push_back(cols.floatingId((*i).first.id));
   565 	  values.push_back((*i).second);
   566 	}
   567       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   568 		    &indices[0],&values[0]);
   569       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   570       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   571     }
   572 
   573     ///Set a row (i.e a constaint) of the LP
   574 
   575     ///\param r is the row to be modified
   576     ///\param c is a linear expression (see \ref Constr)
   577     void setRow(Row r, const Constr &c) {
   578       setRow(r,
   579 	     c.lowerBounded()?c.lowerBound():-INF,
   580 	     c.expr(),
   581 	     c.upperBounded()?c.upperBound():INF);
   582     }
   583 
   584     ///Add a new row (i.e a new constaint) to the LP
   585 
   586     ///\param l is the lower bound (-\ref INF means no bound)
   587     ///\param e is a linear expression (see \ref Expr)
   588     ///\param u is the upper bound (\ref INF means no bound)
   589     ///\return The created row.
   590     ///\bug This is a temportary function. The interface will change to
   591     ///a better one.
   592     Row addRow(Value l,const Expr &e, Value u) {
   593       Row r=addRow();
   594       setRow(r,l,e,u);
   595       return r;
   596     }
   597 
   598     ///Add a new row (i.e a new constaint) to the LP
   599 
   600     ///\param c is a linear expression (see \ref Constr)
   601     ///\return The created row.
   602     Row addRow(const Constr &c) {
   603       Row r=addRow();
   604       setRow(r,c);
   605       return r;
   606     }
   607 
   608     /// Set the lower bound of a column (i.e a variable)
   609 
   610     /// The upper bound of a variable (column) has to be given by an 
   611     /// extended number of type Value, i.e. a finite number of type 
   612     /// Value or -\ref INF.
   613     void colLowerBound(Col c, Value value) {
   614       _setColLowerBound(cols.floatingId(c.id),value);
   615     }
   616     /// Set the upper bound of a column (i.e a variable)
   617 
   618     /// The upper bound of a variable (column) has to be given by an 
   619     /// extended number of type Value, i.e. a finite number of type 
   620     /// Value or \ref INF.
   621     void colUpperBound(Col c, Value value) {
   622       _setColUpperBound(cols.floatingId(c.id),value);
   623     };
   624     /// Set the lower and the upper bounds of a column (i.e a variable)
   625 
   626     /// The lower and the upper bounds of
   627     /// a variable (column) have to be given by an 
   628     /// extended number of type Value, i.e. a finite number of type 
   629     /// Value, -\ref INF or \ref INF.
   630     void colBounds(Col c, Value lower, Value upper) {
   631       _setColLowerBound(cols.floatingId(c.id),lower);
   632       _setColUpperBound(cols.floatingId(c.id),upper);
   633     }
   634     
   635     /// Set the lower bound of a row (i.e a constraint)
   636 
   637     /// The lower bound of a linear expression (row) has to be given by an 
   638     /// extended number of type Value, i.e. a finite number of type 
   639     /// Value or -\ref INF.
   640     void rowLowerBound(Row r, Value value) {
   641       _setRowLowerBound(rows.floatingId(r.id),value);
   642     };
   643     /// Set the upper bound of a row (i.e a constraint)
   644 
   645     /// The upper bound of a linear expression (row) has to be given by an 
   646     /// extended number of type Value, i.e. a finite number of type 
   647     /// Value or \ref INF.
   648     void rowUpperBound(Row r, Value value) {
   649       _setRowUpperBound(rows.floatingId(r.id),value);
   650     };
   651     /// Set the lower and the upper bounds of a row (i.e a variable)
   652 
   653     /// The lower and the upper bounds of
   654     /// a constraint (row) have to be given by an 
   655     /// extended number of type Value, i.e. a finite number of type 
   656     /// Value, -\ref INF or \ref INF.
   657     void rowBounds(Row c, Value lower, Value upper) {
   658       _setRowLowerBound(rows.floatingId(c.id),lower);
   659       _setRowUpperBound(rows.floatingId(c.id),upper);
   660     }
   661     
   662     ///Set an element of the objective function
   663     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   664     ///Set the objective function
   665     
   666     ///\param e is a linear expression of type \ref Expr.
   667     ///\bug The previous objective function is not cleared!
   668     void setObj(Expr e) {
   669       _clearObj();
   670       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   671 	objCoeff((*i).first,(*i).second);
   672       obj_const_comp=e.constComp();
   673     }
   674 
   675     ///Maximize
   676     void max() { _setMax(); }
   677     ///Minimize
   678     void min() { _setMin(); }
   679 
   680     
   681     ///@}
   682 
   683 
   684     ///\name Solve the LP
   685 
   686     ///@{
   687 
   688     ///\e
   689     SolveExitStatus solve() { return _solve(); }
   690     
   691     ///@}
   692     
   693     ///\name Obtain the solution
   694 
   695     ///@{
   696 
   697     ///\e
   698     SolutionStatus primalStatus() {
   699       return _getPrimalStatus();
   700     }
   701 
   702     ///\e
   703     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
   704 
   705     ///\e
   706 
   707     ///\return
   708     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
   709     /// of the primal problem, depending on whether we minimize or maximize.
   710     ///- \ref NaN if no primal solution is found.
   711     ///- The (finite) objective value if an optimal solution is found.
   712     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
   713     ///@}
   714     
   715   };  
   716 
   717   ///\e
   718   
   719   ///\relates LpSolverBase::Expr
   720   ///
   721   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
   722 				      const LpSolverBase::Expr &b) 
   723   {
   724     LpSolverBase::Expr tmp(a);
   725     tmp+=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   726     return tmp;
   727   }
   728   ///\e
   729   
   730   ///\relates LpSolverBase::Expr
   731   ///
   732   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
   733 				      const LpSolverBase::Expr &b) 
   734   {
   735     LpSolverBase::Expr tmp(a);
   736     tmp-=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   737     return tmp;
   738   }
   739   ///\e
   740   
   741   ///\relates LpSolverBase::Expr
   742   ///
   743   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
   744 				      const LpSolverBase::Value &b) 
   745   {
   746     LpSolverBase::Expr tmp(a);
   747     tmp*=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   748     return tmp;
   749   }
   750   
   751   ///\e
   752   
   753   ///\relates LpSolverBase::Expr
   754   ///
   755   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
   756 				      const LpSolverBase::Expr &b) 
   757   {
   758     LpSolverBase::Expr tmp(b);
   759     tmp*=a; ///\todo Doesn't STL have some special 'merge' algorithm?
   760     return tmp;
   761   }
   762   ///\e
   763   
   764   ///\relates LpSolverBase::Expr
   765   ///
   766   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
   767 				      const LpSolverBase::Value &b) 
   768   {
   769     LpSolverBase::Expr tmp(a);
   770     tmp/=b; ///\todo Doesn't STL have some special 'merge' algorithm?
   771     return tmp;
   772   }
   773   
   774   ///\e
   775   
   776   ///\relates LpSolverBase::Constr
   777   ///
   778   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   779 					 const LpSolverBase::Expr &f) 
   780   {
   781     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
   782   }
   783 
   784   ///\e
   785   
   786   ///\relates LpSolverBase::Constr
   787   ///
   788   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
   789 					 const LpSolverBase::Expr &f) 
   790   {
   791     return LpSolverBase::Constr(e,f);
   792   }
   793 
   794   ///\e
   795   
   796   ///\relates LpSolverBase::Constr
   797   ///
   798   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
   799 					 const LpSolverBase::Value &f) 
   800   {
   801     return LpSolverBase::Constr(e,f);
   802   }
   803 
   804   ///\e
   805   
   806   ///\relates LpSolverBase::Constr
   807   ///
   808   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   809 					 const LpSolverBase::Expr &f) 
   810   {
   811     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
   812   }
   813 
   814 
   815   ///\e
   816   
   817   ///\relates LpSolverBase::Constr
   818   ///
   819   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
   820 					 const LpSolverBase::Expr &f) 
   821   {
   822     return LpSolverBase::Constr(f,e);
   823   }
   824 
   825 
   826   ///\e
   827   
   828   ///\relates LpSolverBase::Constr
   829   ///
   830   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
   831 					 const LpSolverBase::Value &f) 
   832   {
   833     return LpSolverBase::Constr(f,e);
   834   }
   835 
   836   ///\e
   837   
   838   ///\relates LpSolverBase::Constr
   839   ///
   840   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
   841 					 const LpSolverBase::Expr &f) 
   842   {
   843     return LpSolverBase::Constr(0,e-f,0);
   844   }
   845 
   846   ///\e
   847   
   848   ///\relates LpSolverBase::Constr
   849   ///
   850   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
   851 					 const LpSolverBase::Constr&c) 
   852   {
   853     LpSolverBase::Constr tmp(c);
   854     ///\todo Create an own exception type.
   855     if(!isnan(tmp.lowerBound())) throw LogicError();
   856     else tmp.lowerBound()=n;
   857     return tmp;
   858   }
   859   ///\e
   860   
   861   ///\relates LpSolverBase::Constr
   862   ///
   863   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
   864 					 const LpSolverBase::Value &n)
   865   {
   866     LpSolverBase::Constr tmp(c);
   867     ///\todo Create an own exception type.
   868     if(!isnan(tmp.upperBound())) throw LogicError();
   869     else tmp.upperBound()=n;
   870     return tmp;
   871   }
   872 
   873   ///\e
   874   
   875   ///\relates LpSolverBase::Constr
   876   ///
   877   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
   878 					 const LpSolverBase::Constr&c) 
   879   {
   880     LpSolverBase::Constr tmp(c);
   881     ///\todo Create an own exception type.
   882     if(!isnan(tmp.upperBound())) throw LogicError();
   883     else tmp.upperBound()=n;
   884     return tmp;
   885   }
   886   ///\e
   887   
   888   ///\relates LpSolverBase::Constr
   889   ///
   890   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
   891 					 const LpSolverBase::Value &n)
   892   {
   893     LpSolverBase::Constr tmp(c);
   894     ///\todo Create an own exception type.
   895     if(!isnan(tmp.lowerBound())) throw LogicError();
   896     else tmp.lowerBound()=n;
   897     return tmp;
   898   }
   899 
   900 
   901 } //namespace lemon
   902 
   903 #endif //LEMON_LP_BASE_H