lemon/maps.h
author athos
Mon, 04 Jul 2005 16:11:33 +0000
changeset 1534 b86aad11f842
parent 1456 5289afbdb720
child 1536 308150155bb5
permissions -rw-r--r--
Doc.
     1 /* -*- C++ -*-
     2  * lemon/maps.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_MAPS_H
    18 #define LEMON_MAPS_H
    19 
    20 #include <lemon/graph_utils.h>
    21 #include <lemon/utility.h>
    22 
    23 
    24 ///\file
    25 ///\ingroup maps
    26 ///\brief Miscellaneous property maps
    27 ///
    28 ///\todo This file has the same name as the concept file in concept/,
    29 /// and this is not easily detectable in docs...
    30 
    31 #include <map>
    32 
    33 namespace lemon {
    34 
    35   /// \addtogroup maps
    36   /// @{
    37 
    38   /// Base class of maps.
    39 
    40   /// Base class of maps.
    41   /// It provides the necessary <tt>typedef</tt>s required by the map concept.
    42   template<typename K, typename T>
    43   class MapBase
    44   {
    45   public:
    46     ///\e
    47     typedef K Key;
    48     ///\e
    49     typedef T Value;
    50   };
    51 
    52   /// Null map. (a.k.a. DoNothingMap)
    53 
    54   /// If you have to provide a map only for its type definitions,
    55   /// or if you have to provide a writable map, but
    56   /// data written to it will sent to <tt>/dev/null</tt>...
    57   template<typename K, typename T>
    58   class NullMap : public MapBase<K,T>
    59   {
    60   public:
    61     
    62     typedef True NeedCopy;
    63 
    64     /// Gives back a default constructed element.
    65     T operator[](const K&) const { return T(); }
    66     /// Absorbs the value.
    67     void set(const K&, const T&) {}
    68   };
    69 
    70   template <typename K, typename V> 
    71   NullMap<K, V> nullMap() {
    72     return NullMap<K, V>();
    73   }
    74 
    75 
    76   /// Constant map.
    77 
    78   /// This is a readable map which assigns a specified value to each key.
    79   /// In other aspects it is equivalent to the \ref NullMap.
    80   /// \todo set could be used to set the value.
    81   template<typename K, typename T>
    82   class ConstMap : public MapBase<K,T>
    83   {
    84     T v;
    85   public:
    86 
    87     typedef True NeedCopy;
    88 
    89     /// Default constructor
    90 
    91     /// The value of the map will be uninitialized. 
    92     /// (More exactly it will be default constructed.)
    93     ConstMap() {}
    94     ///\e
    95 
    96     /// \param _v The initial value of the map.
    97     ///
    98     ConstMap(const T &_v) : v(_v) {}
    99 
   100     T operator[](const K&) const { return v; }
   101     void set(const K&, const T&) {}
   102 
   103     template<typename T1>
   104     struct rebind {
   105       typedef ConstMap<K,T1> other;
   106     };
   107 
   108     template<typename T1>
   109     ConstMap(const ConstMap<K,T1> &, const T &_v) : v(_v) {}
   110   };
   111 
   112   ///Returns a \ref ConstMap class
   113 
   114   ///This function just returns a \ref ConstMap class.
   115   ///\relates ConstMap
   116   template<class V,class K> 
   117   inline ConstMap<V,K> constMap(const K &k) 
   118   {
   119     return ConstMap<V,K>(k);
   120   }
   121 
   122 
   123   //to document later
   124   template<typename T, T v>
   125   struct Const { };
   126   //to document later
   127   template<typename K, typename V, V v>
   128   class ConstMap<K, Const<V, v> > : public MapBase<K, V>
   129   {
   130   public:
   131     ConstMap() { }
   132     V operator[](const K&) const { return v; }
   133     void set(const K&, const V&) { }
   134   };
   135 
   136   /// \c std::map wrapper
   137 
   138   /// This is essentially a wrapper for \c std::map. With addition that
   139   /// you can specify a default value different from \c Value() .
   140   ///
   141   /// \todo Provide allocator parameter...
   142   template <typename K, typename T, typename Compare = std::less<K> >
   143   class StdMap : public std::map<K,T,Compare> {
   144     typedef std::map<K,T,Compare> parent;
   145     T v;
   146     typedef typename parent::value_type PairType;
   147 
   148   public:
   149     ///\e
   150     typedef K Key;
   151     ///\e
   152     typedef T Value;
   153     ///\e
   154     typedef T& Reference;
   155     ///\e
   156     typedef const T& ConstReference;
   157 
   158 
   159     StdMap() : v() {}
   160     /// Constructor with specified default value
   161     StdMap(const T& _v) : v(_v) {}
   162 
   163     /// \brief Constructs the map from an appropriate std::map.
   164     ///
   165     /// \warning Inefficient: copies the content of \c m !
   166     StdMap(const parent &m) : parent(m) {}
   167     /// \brief Constructs the map from an appropriate std::map, and explicitly
   168     /// specifies a default value.
   169     ///
   170     /// \warning Inefficient: copies the content of \c m !
   171     StdMap(const parent &m, const T& _v) : parent(m), v(_v) {}
   172     
   173     template<typename T1, typename Comp1>
   174     StdMap(const StdMap<Key,T1,Comp1> &m, const T &_v) { 
   175       //FIXME; 
   176     }
   177 
   178     Reference operator[](const Key &k) {
   179       return insert(PairType(k,v)).first -> second;
   180     }
   181     ConstReference operator[](const Key &k) const {
   182       typename parent::iterator i = lower_bound(k);
   183       if (i == parent::end() || parent::key_comp()(k, (*i).first))
   184 	return v;
   185       return (*i).second;
   186     }
   187     void set(const Key &k, const T &t) {
   188       parent::operator[](k) = t;
   189     }
   190 
   191     /// Changes the default value of the map.
   192     /// \return Returns the previous default value.
   193     ///
   194     /// \warning The value of some keys (which has already been queried, but
   195     /// the value has been unchanged from the default) may change!
   196     T setDefault(const T &_v) { T old=v; v=_v; return old; }
   197 
   198     template<typename T1>
   199     struct rebind {
   200       typedef StdMap<Key,T1,Compare> other;
   201     };
   202   };
   203 
   204   /// @}
   205 
   206   /// \addtogroup map_adaptors
   207   /// @{
   208 
   209   /// \brief Identity mapping.
   210   ///
   211   /// This mapping gives back the given key as value without any
   212   /// modification. 
   213   template <typename T>
   214   class IdentityMap {
   215   public:
   216     typedef T Key;
   217     typedef T Value;
   218 
   219     const Value& operator[](const Key& t) const {
   220       return t;
   221     }
   222   };
   223 
   224   ///Convert the \c Value of a maps to another type.
   225 
   226   ///This \ref concept::ReadMap "read only map"
   227   ///converts the \c Value of a maps to type \c T.
   228   ///Its \c Value is inherited from \c M.
   229   ///
   230   ///Actually,
   231   ///\code
   232   ///  ConvertMap<X> sh(x,v);
   233   ///\endcode
   234   ///it is equivalent with
   235   ///\code
   236   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   237   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   238   ///\endcode
   239   ///\bug wrong documentation
   240   template<class M, class T> 
   241   class ConvertMap {
   242     typename SmartConstReference<M>::Type m;
   243   public:
   244 
   245     typedef True NeedCopy;
   246 
   247     ///\e
   248     typedef typename M::Key Key;
   249     ///\e
   250     typedef T Value;
   251 
   252     ///Constructor
   253 
   254     ///Constructor
   255     ///\param _m is the undelying map
   256     ///\param _v is the convert value
   257     ConvertMap(const M &_m) : m(_m) {};
   258 
   259     /// \brief The subscript operator.
   260     ///
   261     /// The subscript operator.
   262     /// \param edge The edge 
   263     /// \return The target of the edge 
   264     Value operator[](Key k) const {return m[k];}
   265   };
   266   
   267   ///Returns an \ref ConvertMap class
   268 
   269   ///This function just returns an \ref ConvertMap class.
   270   ///\relates ConvertMap
   271   ///\todo The order of the template parameters are changed.
   272   template<class T, class M>
   273   inline ConvertMap<M,T> convertMap(const M &m) 
   274   {
   275     return ConvertMap<M,T>(m);
   276   }
   277 
   278   ///Sum of two maps
   279 
   280   ///This \ref concept::ReadMap "read only map" returns the sum of the two
   281   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   282   ///The \c Key and \c Value of M2 must be convertible to those of \c M1.
   283 
   284   template<class M1,class M2> 
   285   class AddMap
   286   {
   287     typename SmartConstReference<M1>::Type m1;
   288     typename SmartConstReference<M2>::Type m2;
   289 
   290   public:
   291 
   292     typedef True NeedCopy;
   293 
   294     ///\e
   295     typedef typename M1::Key Key;
   296     ///\e
   297     typedef typename M1::Value Value;
   298 
   299     ///Constructor
   300 
   301     ///\e
   302     ///
   303     AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   304     Value operator[](Key k) const {return m1[k]+m2[k];}
   305   };
   306   
   307   ///Returns an \ref AddMap class
   308 
   309   ///This function just returns an \ref AddMap class.
   310   ///\todo How to call these type of functions?
   311   ///
   312   ///\relates AddMap
   313   ///\todo Wrong scope in Doxygen when \c \\relates is used
   314   template<class M1,class M2> 
   315   inline AddMap<M1,M2> addMap(const M1 &m1,const M2 &m2) 
   316   {
   317     return AddMap<M1,M2>(m1,m2);
   318   }
   319 
   320   ///Shift a maps with a constant.
   321 
   322   ///This \ref concept::ReadMap "read only map" returns the sum of the
   323   ///given map and a constant value.
   324   ///Its \c Key and \c Value is inherited from \c M.
   325   ///
   326   ///Actually,
   327   ///\code
   328   ///  ShiftMap<X> sh(x,v);
   329   ///\endcode
   330   ///it is equivalent with
   331   ///\code
   332   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   333   ///  AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v);
   334   ///\endcode
   335   template<class M> 
   336   class ShiftMap
   337   {
   338     typename SmartConstReference<M>::Type m;
   339     typename M::Value v;
   340   public:
   341 
   342     typedef True NeedCopy;
   343     ///\e
   344     typedef typename M::Key Key;
   345     ///\e
   346     typedef typename M::Value Value;
   347 
   348     ///Constructor
   349 
   350     ///Constructor
   351     ///\param _m is the undelying map
   352     ///\param _v is the shift value
   353     ShiftMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   354     Value operator[](Key k) const {return m[k]+v;}
   355   };
   356   
   357   ///Returns an \ref ShiftMap class
   358 
   359   ///This function just returns an \ref ShiftMap class.
   360   ///\relates ShiftMap
   361   ///\todo A better name is required.
   362   template<class M> 
   363   inline ShiftMap<M> shiftMap(const M &m,const typename M::Value &v) 
   364   {
   365     return ShiftMap<M>(m,v);
   366   }
   367 
   368   ///Difference of two maps
   369 
   370   ///This \ref concept::ReadMap "read only map" returns the difference
   371   ///of the values returned by the two
   372   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   373   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   374 
   375   template<class M1,class M2> 
   376   class SubMap
   377   {
   378     typename SmartConstReference<M1>::Type m1;
   379     typename SmartConstReference<M2>::Type m2;
   380   public:
   381 
   382     typedef True NeedCopy;
   383     ///\e
   384     typedef typename M1::Key Key;
   385     ///\e
   386     typedef typename M1::Value Value;
   387 
   388     ///Constructor
   389 
   390     ///\e
   391     ///
   392     SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   393     Value operator[](Key k) const {return m1[k]-m2[k];}
   394   };
   395   
   396   ///Returns a \ref SubMap class
   397 
   398   ///This function just returns a \ref SubMap class.
   399   ///
   400   ///\relates SubMap
   401   template<class M1,class M2> 
   402   inline SubMap<M1,M2> subMap(const M1 &m1,const M2 &m2) 
   403   {
   404     return SubMap<M1,M2>(m1,m2);
   405   }
   406 
   407   ///Product of two maps
   408 
   409   ///This \ref concept::ReadMap "read only map" returns the product of the
   410   ///values returned by the two
   411   ///given
   412   ///maps. Its \c Key and \c Value will be inherited from \c M1.
   413   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   414 
   415   template<class M1,class M2> 
   416   class MulMap
   417   {
   418     typename SmartConstReference<M1>::Type m1;
   419     typename SmartConstReference<M2>::Type m2;
   420   public:
   421 
   422     typedef True NeedCopy;
   423     ///\e
   424     typedef typename M1::Key Key;
   425     ///\e
   426     typedef typename M1::Value Value;
   427 
   428     ///Constructor
   429 
   430     ///\e
   431     ///
   432     MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   433     Value operator[](Key k) const {return m1[k]*m2[k];}
   434   };
   435   
   436   ///Returns a \ref MulMap class
   437 
   438   ///This function just returns a \ref MulMap class.
   439   ///\relates MulMap
   440   template<class M1,class M2> 
   441   inline MulMap<M1,M2> mulMap(const M1 &m1,const M2 &m2) 
   442   {
   443     return MulMap<M1,M2>(m1,m2);
   444   }
   445  
   446   ///Scale a maps with a constant.
   447 
   448   ///This \ref concept::ReadMap "read only map" returns the value of the
   449   ///given map multipied with a constant value.
   450   ///Its \c Key and \c Value is inherited from \c M.
   451   ///
   452   ///Actually,
   453   ///\code
   454   ///  ScaleMap<X> sc(x,v);
   455   ///\endcode
   456   ///it is equivalent with
   457   ///\code
   458   ///  ConstMap<X::Key, X::Value> c_tmp(v);
   459   ///  MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v);
   460   ///\endcode
   461   template<class M> 
   462   class ScaleMap
   463   {
   464     typename SmartConstReference<M>::Type m;
   465     typename M::Value v;
   466   public:
   467 
   468     typedef True NeedCopy;
   469     ///\e
   470     typedef typename M::Key Key;
   471     ///\e
   472     typedef typename M::Value Value;
   473 
   474     ///Constructor
   475 
   476     ///Constructor
   477     ///\param _m is the undelying map
   478     ///\param _v is the scaling value
   479     ScaleMap(const M &_m,const Value &_v ) : m(_m), v(_v) {};
   480     Value operator[](Key k) const {return m[k]*v;}
   481   };
   482   
   483   ///Returns an \ref ScaleMap class
   484 
   485   ///This function just returns an \ref ScaleMap class.
   486   ///\relates ScaleMap
   487   ///\todo A better name is required.
   488   template<class M> 
   489   inline ScaleMap<M> scaleMap(const M &m,const typename M::Value &v) 
   490   {
   491     return ScaleMap<M>(m,v);
   492   }
   493 
   494   ///Quotient of two maps
   495 
   496   ///This \ref concept::ReadMap "read only map" returns the quotient of the
   497   ///values returned by the two
   498   ///given maps. Its \c Key and \c Value will be inherited from \c M1.
   499   ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1.
   500 
   501   template<class M1,class M2> 
   502   class DivMap
   503   {
   504     typename SmartConstReference<M1>::Type m1;
   505     typename SmartConstReference<M2>::Type m2;
   506   public:
   507 
   508     typedef True NeedCopy;
   509     ///\e
   510     typedef typename M1::Key Key;
   511     ///\e
   512     typedef typename M1::Value Value;
   513 
   514     ///Constructor
   515 
   516     ///\e
   517     ///
   518     DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   519     Value operator[](Key k) const {return m1[k]/m2[k];}
   520   };
   521   
   522   ///Returns a \ref DivMap class
   523 
   524   ///This function just returns a \ref DivMap class.
   525   ///\relates DivMap
   526   template<class M1,class M2> 
   527   inline DivMap<M1,M2> divMap(const M1 &m1,const M2 &m2) 
   528   {
   529     return DivMap<M1,M2>(m1,m2);
   530   }
   531   
   532   ///Composition of two maps
   533 
   534   ///This \ref concept::ReadMap "read only map" returns the composition of
   535   ///two
   536   ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is
   537   ///of \c M2,
   538   ///then for
   539   ///\code
   540   ///  ComposeMap<M1,M2> cm(m1,m2);
   541   ///\endcode
   542   /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>
   543   ///
   544   ///Its \c Key is inherited from \c M2 and its \c Value is from
   545   ///\c M1.
   546   ///The \c M2::Value must be convertible to \c M1::Key.
   547   ///\todo Check the requirements.
   548 
   549   template<class M1,class M2> 
   550   class ComposeMap
   551   {
   552     typename SmartConstReference<M1>::Type m1;
   553     typename SmartConstReference<M2>::Type m2;
   554   public:
   555 
   556     typedef True NeedCopy;
   557     ///\e
   558     typedef typename M2::Key Key;
   559     ///\e
   560     typedef typename M1::Value Value;
   561 
   562     ///Constructor
   563 
   564     ///\e
   565     ///
   566     ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   567     Value operator[](Key k) const {return m1[m2[k]];}
   568   };
   569   ///Returns a \ref ComposeMap class
   570 
   571   ///This function just returns a \ref ComposeMap class.
   572   ///
   573   ///\relates ComposeMap
   574   template<class M1,class M2> 
   575   inline ComposeMap<M1,M2> composeMap(const M1 &m1,const M2 &m2) 
   576   {
   577     return ComposeMap<M1,M2>(m1,m2);
   578   }
   579   
   580   ///Combine of two maps using an STL (binary) functor.
   581 
   582   ///Combine of two maps using an STL (binary) functor.
   583   ///
   584   ///
   585   ///This \ref concept::ReadMap "read only map" takes to maps and a
   586   ///binary functor and returns the composition of
   587   ///two
   588   ///given maps unsing the functor. 
   589   ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2
   590   ///and \c f is of \c F,
   591   ///then for
   592   ///\code
   593   ///  CombineMap<M1,M2,F,V> cm(m1,m2,f);
   594   ///\endcode
   595   /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>
   596   ///
   597   ///Its \c Key is inherited from \c M1 and its \c Value is \c V.
   598   ///The \c M2::Value and \c M1::Value must be convertible to the corresponding
   599   ///input parameter of \c F and the return type of \c F must be convertible
   600   ///to \c V.
   601   ///\todo Check the requirements.
   602 
   603   template<class M1,class M2,class F,class V = typename F::result_type> 
   604   class CombineMap
   605   {
   606     typename SmartConstReference<M1>::Type m1;
   607     typename SmartConstReference<M2>::Type m2;
   608     F f;
   609   public:
   610 
   611     typedef True NeedCopy;
   612     ///\e
   613     typedef typename M1::Key Key;
   614     ///\e
   615     typedef V Value;
   616 
   617     ///Constructor
   618 
   619     ///\e
   620     ///
   621     CombineMap(const M1 &_m1,const M2 &_m2,const F &_f)
   622       : m1(_m1), m2(_m2), f(_f) {};
   623     Value operator[](Key k) const {return f(m1[k],m2[k]);}
   624   };
   625   
   626   ///Returns a \ref CombineMap class
   627 
   628   ///This function just returns a \ref CombineMap class.
   629   ///
   630   ///Only the first template parameter (the value type) must be given.
   631   ///
   632   ///For example if \c m1 and \c m2 are both \c double valued maps, then 
   633   ///\code
   634   ///combineMap<double>(m1,m2,std::plus<double>)
   635   ///\endcode
   636   ///is equivalent with
   637   ///\code
   638   ///addMap(m1,m2)
   639   ///\endcode
   640   ///
   641   ///\relates CombineMap
   642   template<class M1,class M2,class F> 
   643   inline CombineMap<M1,M2,F> combineMap(const M1 &m1,const M2 &m2,const F &f) 
   644   {
   645     return CombineMap<M1,M2,F>(m1,m2,f);
   646   }
   647 
   648   ///Negative value of a map
   649 
   650   ///This \ref concept::ReadMap "read only map" returns the negative
   651   ///value of the
   652   ///value returned by the
   653   ///given map. Its \c Key and \c Value will be inherited from \c M.
   654   ///The unary \c - operator must be defined for \c Value, of course.
   655 
   656   template<class M> 
   657   class NegMap
   658   {
   659     typename SmartConstReference<M>::Type m;
   660   public:
   661 
   662     typedef True NeedCopy;
   663     ///\e
   664     typedef typename M::Key Key;
   665     ///\e
   666     typedef typename M::Value Value;
   667 
   668     ///Constructor
   669 
   670     ///\e
   671     ///
   672     NegMap(const M &_m) : m(_m) {};
   673     Value operator[](Key k) const {return -m[k];}
   674   };
   675   
   676   ///Returns a \ref NegMap class
   677 
   678   ///This function just returns a \ref NegMap class.
   679   ///\relates NegMap
   680   template<class M> 
   681   inline NegMap<M> negMap(const M &m) 
   682   {
   683     return NegMap<M>(m);
   684   }
   685 
   686 
   687   ///Absolute value of a map
   688 
   689   ///This \ref concept::ReadMap "read only map" returns the absolute value
   690   ///of the
   691   ///value returned by the
   692   ///given map. Its \c Key and \c Value will be inherited
   693   ///from <tt>M</tt>. <tt>Value</tt>
   694   ///must be comparable to <tt>0</tt> and the unary <tt>-</tt>
   695   ///operator must be defined for it, of course.
   696   ///
   697   ///\bug We need a unified way to handle the situation below:
   698   ///\code
   699   ///  struct _UnConvertible {};
   700   ///  template<class A> inline A t_abs(A a) {return _UnConvertible();}
   701   ///  template<> inline int t_abs<>(int n) {return abs(n);}
   702   ///  template<> inline long int t_abs<>(long int n) {return labs(n);}
   703   ///  template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);}
   704   ///  template<> inline float t_abs<>(float n) {return fabsf(n);}
   705   ///  template<> inline double t_abs<>(double n) {return fabs(n);}
   706   ///  template<> inline long double t_abs<>(long double n) {return fabsl(n);}
   707   ///\endcode
   708   
   709 
   710   template<class M> 
   711   class AbsMap
   712   {
   713     typename SmartConstReference<M>::Type m;
   714   public:
   715 
   716     typedef True NeedCopy;
   717     ///\e
   718     typedef typename M::Key Key;
   719     ///\e
   720     typedef typename M::Value Value;
   721 
   722     ///Constructor
   723 
   724     ///\e
   725     ///
   726     AbsMap(const M &_m) : m(_m) {};
   727     Value operator[](Key k) const {Value tmp=m[k]; return tmp>=0?tmp:-tmp;}
   728   };
   729   
   730   ///Returns a \ref AbsMap class
   731 
   732   ///This function just returns a \ref AbsMap class.
   733   ///\relates AbsMap
   734   template<class M> 
   735   inline AbsMap<M> absMap(const M &m) 
   736   {
   737     return AbsMap<M>(m);
   738   }
   739 
   740   ///Converts an STL style functor to a map
   741 
   742   ///This \ref concept::ReadMap "read only map" returns the value
   743   ///of a
   744   ///given map.
   745   ///
   746   ///Template parameters \c K and \c V will become its
   747   ///\c Key and \c Value. They must be given explicitely
   748   ///because a functor does not provide such typedefs.
   749   ///
   750   ///Parameter \c F is the type of the used functor.
   751   
   752 
   753   template<class K,class V,class F> 
   754   class FunctorMap
   755   {
   756     const F &f;
   757   public:
   758 
   759     typedef True NeedCopy;
   760     ///\e
   761     typedef K Key;
   762     ///\e
   763     typedef V Value;
   764 
   765     ///Constructor
   766 
   767     ///\e
   768     ///
   769     FunctorMap(const F &_f) : f(_f) {};
   770     Value operator[](Key k) const {return f(k);}
   771   };
   772   
   773   ///Returns a \ref FunctorMap class
   774 
   775   ///This function just returns a \ref FunctorMap class.
   776   ///
   777   ///The third template parameter isn't necessary to be given.
   778   ///\relates FunctorMap
   779   template<class K,class V, class F>
   780   inline FunctorMap<K,V,F> functorMap(const F &f) 
   781   {
   782     return FunctorMap<K,V,F>(f);
   783   }
   784 
   785   ///Converts a map to an STL style (unary) functor
   786 
   787   ///This class Converts a map to an STL style (unary) functor.
   788   ///that is it provides an <tt>operator()</tt> to read its values.
   789   ///
   790   ///For the sake of convenience it also works as
   791   ///a ususal \ref concept::ReadMap "readable map", i.e
   792   ///<tt>operator[]</tt> and the \c Key and \c Value typedefs also exist.
   793 
   794   template<class M> 
   795   class MapFunctor
   796   {
   797     typename SmartConstReference<M>::Type m;
   798   public:
   799 
   800     typedef True NeedCopy;
   801     ///\e
   802     typedef typename M::Key argument_type;
   803     ///\e
   804     typedef typename M::Value result_type;
   805     ///\e
   806     typedef typename M::Key Key;
   807     ///\e
   808     typedef typename M::Value Value;
   809 
   810     ///Constructor
   811 
   812     ///\e
   813     ///
   814     MapFunctor(const M &_m) : m(_m) {};
   815     ///Returns a value of the map
   816     
   817     ///\e
   818     ///
   819     Value operator()(Key k) const {return m[k];}
   820     ///\e
   821     ///
   822     Value operator[](Key k) const {return m[k];}
   823   };
   824   
   825   ///Returns a \ref MapFunctor class
   826 
   827   ///This function just returns a \ref MapFunctor class.
   828   ///\relates MapFunctor
   829   template<class M> 
   830   inline MapFunctor<M> mapFunctor(const M &m) 
   831   {
   832     return MapFunctor<M>(m);
   833   }
   834 
   835 
   836   ///Apply all map setting operations to two maps
   837 
   838   ///This map has two \ref concept::WriteMap "writable map"
   839   ///parameters and each write request will be passed to both of them.
   840   ///If \c M1 is also \ref concept::ReadMap "readable",
   841   ///then the read operations will return the
   842   ///corresponding values of \c M1.
   843   ///
   844   ///The \c Key and \c Value will be inherited from \c M1.
   845   ///The \c Key and \c Value of M2 must be convertible from those of \c M1.
   846 
   847   template<class M1,class M2> 
   848   class ForkMap
   849   {
   850     typename SmartConstReference<M1>::Type m1;
   851     typename SmartConstReference<M2>::Type m2;
   852   public:
   853 
   854     typedef True NeedCopy;
   855     ///\e
   856     typedef typename M1::Key Key;
   857     ///\e
   858     typedef typename M1::Value Value;
   859 
   860     ///Constructor
   861 
   862     ///\e
   863     ///
   864     ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
   865     Value operator[](Key k) const {return m1[k];}
   866     void set(Key k,const Value &v) {m1.set(k,v); m2.set(k,v);}
   867   };
   868   
   869   ///Returns an \ref ForkMap class
   870 
   871   ///This function just returns an \ref ForkMap class.
   872   ///\todo How to call these type of functions?
   873   ///
   874   ///\relates ForkMap
   875   ///\todo Wrong scope in Doxygen when \c \\relates is used
   876   template<class M1,class M2> 
   877   inline ForkMap<M1,M2> forkMap(const M1 &m1,const M2 &m2) 
   878   {
   879     return ForkMap<M1,M2>(m1,m2);
   880   }
   881 
   882 
   883   
   884   /* ************* BOOL MAPS ******************* */
   885   
   886   ///Logical 'not' of a map
   887   
   888   ///This bool \ref concept::ReadMap "read only map" returns the 
   889   ///logical negation of
   890   ///value returned by the
   891   ///given map. Its \c Key and will be inherited from \c M,
   892   ///its Value is <tt>bool</tt>.
   893 
   894   template<class M> 
   895   class NotMap
   896   {
   897     typename SmartConstReference<M>::Type m;
   898   public:
   899 
   900     typedef True NeedCopy;
   901     ///\e
   902     typedef typename M::Key Key;
   903     ///\e
   904     typedef bool Value;
   905 
   906     ///Constructor
   907 
   908     ///\e
   909     ///
   910     NotMap(const M &_m) : m(_m) {};
   911     Value operator[](Key k) const {return !m[k];}
   912   };
   913   
   914   ///Returns a \ref NotMap class
   915   
   916   ///This function just returns a \ref NotMap class.
   917   ///\relates NotMap
   918   template<class M> 
   919   inline NotMap<M> notMap(const M &m) 
   920   {
   921     return NotMap<M>(m);
   922   }
   923 
   924 
   925 
   926 
   927 
   928 
   929 
   930 
   931 
   932 
   933 
   934   /// @}
   935 }
   936 
   937 #endif // LEMON_MAPS_H