src/work/peter/edgepathgraph.h
author alpar
Thu, 31 Mar 2005 14:04:13 +0000
changeset 1284 b941d044f87b
parent 986 e997802b855c
permissions -rw-r--r--
SmartGraph can also split() a node!
     1 // -*- c++ -*-
     2 #ifndef LEMON_NET_GRAPH_H
     3 #define LEMON_NET_GRAPH_H
     4 
     5 ///\file
     6 ///\brief Declaration of EdgePathGraph.
     7 
     8 #include <lemon/invalid.h>
     9 #include <lemon/maps.h>
    10 
    11 /// The namespace of LEMON
    12 namespace lemon {
    13 
    14   // @defgroup empty_graph The EdgePathGraph class
    15   // @{
    16 
    17   /// A graph class in that a simple edge can represent a path.
    18   
    19   /// This class provides all the common features of a graph structure
    20   /// that represents a network. You can handle with it layers. This
    21   /// means that an edge in one layer can be a complete path in a nother
    22   /// layer.
    23 
    24   template <typename P, class Gact, class Gsub>
    25   class EdgePathGraph
    26   {
    27 
    28   public:
    29 
    30     /// The actual layer
    31     Gact actuallayer;
    32 
    33 
    34     /// The layer on which the edges in this layer can represent paths.
    35     Gsub * sublayer;
    36 
    37 
    38     /// Map of nodes that represent the nodes of this layer in the sublayer
    39     typename Gact::template NodeMap<typename Gsub::Node *> projection;
    40 
    41 
    42     /// Map of routes that are represented by some edges in this layer
    43     typename Gact::template EdgeMap<P *> edgepath;
    44 
    45 
    46     /// Defalult constructor.
    47     /// We don't need any extra lines, because the actuallayer
    48     /// variable has run its constructor, when we have created this class
    49     /// So only the two maps has to be initialised here.
    50     EdgePathGraph() : projection(actuallayer), edgepath(actuallayer)
    51     {
    52     }
    53 
    54 
    55     ///Copy consructor.
    56     EdgePathGraph(const EdgePathGraph<P, Gact, Gsub> & EPG ) : actuallayer(EPG.actuallayer) , edgepath(actuallayer), projection(actuallayer)
    57     {
    58     }
    59 
    60 
    61     /// Map adder
    62 
    63     /// This function gets two edgemaps. One belongs to the actual layer and the
    64     /// other belongs to the sublayer.
    65     /// The function iterates through all of the edges in the edgemap belonging to the actual layer.
    66     /// It gets the value that belongs to the actual edge, and adds it to the value of each edge in the
    67     /// path represented by itself in the edgemap that belongs to the sublayer.
    68     
    69     template <typename T1, typename T2> void addMap (typename Gact::EdgeMap<T1> & actmap, typename Gsub::EdgeMap<T2> & submap)
    70     {
    71       for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
    72       {
    73 	typedef typename P::EdgeIt PEdgeIt;
    74 	PEdgeIt f;
    75 
    76 	//dep//cout << "Edge " << id(source(e)) << " - " << id(target(e)) << " in actual layer is";
    77 	T1 incr=actmap[e];
    78 	//cout << incr << endl;
    79 
    80         if(edgepath[e])
    81 	{
    82 	  //dep//cout << endl << "Path";
    83 	  for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
    84 	  {
    85 	    //dep//cout << " " << sublayer->id(sublayer->source(f)) << "-" << sublayer->id(sublayer->target(f));
    86 	    submap[f]+=incr;
    87 	  }
    88 	  //dep////cout << EPGr2.id(EPGr2.target(f)) << endl;
    89 	  //dep//cout << endl;
    90 	}
    91 	else
    92 	{
    93 	  //dep//cout << " itself." <<endl;
    94 	}
    95       }  
    96 
    97     };
    98 
    99 
   100     /// Describe
   101     /// This function walks thorugh the edges of the actual layer
   102     /// and displays the path represented by the actual edge.
   103     void describe ()
   104     {
   105       for(EdgeIt e(actuallayer);actuallayer.valid(e);actuallayer.next(e))
   106       {
   107 	typedef typename P::EdgeIt PEdgeIt;
   108 	PEdgeIt f;
   109 
   110 	cout << "Edge " << id(source(e)) << " - " << id(target(e)) << " in actual layer is";
   111         if(edgepath[e])
   112 	{
   113 	  cout << endl << "Path";
   114 	  for(edgepath[e]->first(f); edgepath[e]->valid(f); edgepath[e]->next(f))
   115 	  {
   116 	    cout << " " << sublayer->id(sublayer->source(f)) << "-" << sublayer->id(sublayer->target(f));
   117 	  }
   118 	  //cout << EPGr2.id(EPGr2.target(f)) << endl;
   119 	  cout << endl;
   120 	}
   121 	else
   122 	{
   123 	  cout << " itself." <<endl;
   124 	}
   125       }  
   126 
   127     };
   128 
   129 
   130 
   131 
   132     /// The base type of the node iterators.
   133 
   134     /// This is the base type of each node iterators,
   135     /// thus each kind of node iterator will convert to this.
   136     /// The Node type of the EdgePathGraph is the Node type of the actual layer.
   137     typedef typename Gact::Node Node;
   138 
   139     
   140     /// This iterator goes through each node.
   141 
   142     /// Its usage is quite simple, for example you can count the number
   143     /// of nodes in graph \c G of type \c Graph like this:
   144     /// \code
   145     ///int count=0;
   146     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
   147     /// \endcode
   148     /// The NodeIt type of the EdgePathGraph is the NodeIt type of the actual layer.
   149     typedef typename Gact::NodeIt NodeIt;
   150     
   151     
   152     /// The base type of the edge iterators.
   153     /// The Edge type of the EdgePathGraph is the Edge type of the actual layer.
   154     typedef typename  Gact::Edge Edge;
   155 
   156     
   157     /// This iterator goes trough the outgoing edges of a node.
   158 
   159     /// This iterator goes trough the \e outgoing edges of a certain node
   160     /// of a graph.
   161     /// Its usage is quite simple, for example you can count the number
   162     /// of outgoing edges of a node \c n
   163     /// in graph \c G of type \c Graph as follows.
   164     /// \code
   165     ///int count=0;
   166     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
   167     /// \endcode
   168     /// The OutEdgeIt type of the EdgePathGraph is the OutEdgeIt type of the actual layer.
   169     typedef typename Gact::OutEdgeIt OutEdgeIt;
   170 
   171 
   172     /// This iterator goes trough the incoming edges of a node.
   173 
   174     /// This iterator goes trough the \e incoming edges of a certain node
   175     /// of a graph.
   176     /// Its usage is quite simple, for example you can count the number
   177     /// of outgoing edges of a node \c n
   178     /// in graph \c G of type \c Graph as follows.
   179     /// \code
   180     ///int count=0;
   181     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
   182     /// \endcode
   183     /// The InEdgeIt type of the EdgePathGraph is the InEdgeIt type of the actual layer.
   184     typedef typename Gact::InEdgeIt InEdgeIt;
   185 
   186 
   187     /// This iterator goes through each edge.
   188 
   189     /// This iterator goes through each edge of a graph.
   190     /// Its usage is quite simple, for example you can count the number
   191     /// of edges in a graph \c G of type \c Graph as follows:
   192     /// \code
   193     ///int count=0;
   194     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
   195     /// \endcode
   196     /// The EdgeIt type of the EdgePathGraph is the EdgeIt type of the actual layer.
   197     typedef typename Gact::EdgeIt EdgeIt;
   198 
   199 
   200     /// First node of the graph.
   201 
   202     /// \retval i the first node.
   203     /// \return the first node.
   204     typename Gact::NodeIt &first(typename Gact::NodeIt &i) const { return actuallayer.first(i);}
   205 
   206 
   207     /// The first incoming edge.
   208     typename Gact::InEdgeIt &first(typename Gact::InEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
   209 
   210 
   211     /// The first outgoing edge.
   212     typename Gact::OutEdgeIt &first(typename Gact::OutEdgeIt &i, typename Gact::Node) const { return actuallayer.first(i);}
   213 
   214 
   215     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
   216     /// The first edge of the Graph.
   217     typename Gact::EdgeIt &first(typename Gact::EdgeIt &i) const { return actuallayer.first(i);}
   218 
   219 
   220 //     Node getNext(Node) const {}
   221 //     InEdgeIt getNext(InEdgeIt) const {}
   222 //     OutEdgeIt getNext(OutEdgeIt) const {}
   223 //     //SymEdgeIt getNext(SymEdgeIt) const {}
   224 //     EdgeIt getNext(EdgeIt) const {}
   225 
   226 
   227     /// Go to the next node.
   228     typename Gact::NodeIt &next(typename Gact::NodeIt &i) const { return actuallayer.next(i);}
   229     /// Go to the next incoming edge.
   230     typename Gact::InEdgeIt &next(typename Gact::InEdgeIt &i) const { return actuallayer.next(i);}
   231     /// Go to the next outgoing edge.
   232     typename Gact::OutEdgeIt &next(typename Gact::OutEdgeIt &i) const { return actuallayer.next(i);}
   233     //SymEdgeIt &next(SymEdgeIt &) const {}
   234     /// Go to the next edge.
   235     typename Gact::EdgeIt &next(typename Gact::EdgeIt &i) const { return actuallayer.next(i);}
   236 
   237     ///Gives back the target node of an edge.
   238     typename Gact::Node target(typename Gact::Edge edge) const { return actuallayer.target(edge); }
   239     ///Gives back the source node of an edge.
   240     typename Gact::Node source(typename Gact::Edge edge) const { return actuallayer.source(edge); }
   241   
   242     //   Node aNode(InEdgeIt) const {}
   243     //   Node aNode(OutEdgeIt) const {}
   244     //   Node aNode(SymEdgeIt) const {}
   245 
   246     //   Node bNode(InEdgeIt) const {}
   247     //   Node bNode(OutEdgeIt) const {}
   248     //   Node bNode(SymEdgeIt) const {}
   249 
   250     /// Checks if a node iterator is valid
   251 
   252     ///\todo Maybe, it would be better if iterator converted to
   253     ///bool directly, as Jacint prefers.
   254     bool valid(const typename Gact::Node& node) const { return actuallayer.valid(node);}
   255     /// Checks if an edge iterator is valid
   256 
   257     ///\todo Maybe, it would be better if iterator converted to
   258     ///bool directly, as Jacint prefers.
   259     bool valid(const typename Gact::Edge& edge) const { return actuallayer.valid(edge);}
   260 
   261     ///Gives back the \e id of a node.
   262 
   263     ///\warning Not all graph structures provide this feature.
   264     ///
   265     int id(const typename Gact::Node & node) const { return actuallayer.id(node);}
   266     ///Gives back the \e id of an edge.
   267 
   268     ///\warning Not all graph structures provide this feature.
   269     ///
   270     int id(const typename Gact::Edge & edge) const { return actuallayer.id(edge);}
   271 
   272     //void setInvalid(Node &) const {};
   273     //void setInvalid(Edge &) const {};
   274   
   275     ///Add a new node to the graph.
   276 
   277     /// \return the new node.
   278     ///
   279     typename Gact::Node addNode() { return actuallayer.addNode();}
   280     ///Add a new edge to the graph.
   281 
   282     ///Add a new edge to the graph with source node \c source
   283     ///and target node \c target.
   284     ///\return the new edge.
   285     typename Gact::Edge addEdge(typename Gact::Node node1, typename Gact::Node node2) { return actuallayer.addEdge(node1, node2);}
   286     
   287     /// Resets the graph.
   288 
   289     /// This function deletes all edges and nodes of the graph.
   290     /// It also frees the memory allocated to store them.
   291     void clear() {actuallayer.clear();}
   292 
   293     int nodeNum() const { return actuallayer.nodeNum();}
   294     int edgeNum() const { return actuallayer.edgeNum();}
   295 
   296     ///Read/write/reference map of the nodes to type \c T.
   297 
   298     ///Read/write/reference map of the nodes to type \c T.
   299     /// \sa MemoryMap
   300     /// \todo We may need copy constructor
   301     /// \todo We may need conversion from other nodetype
   302     /// \todo We may need operator=
   303     /// \warning Making maps that can handle bool type (NodeMap<bool>)
   304     /// needs extra attention!
   305 
   306     template<class T> class NodeMap
   307     {
   308     public:
   309       typedef T Value;
   310       typedef Node Key;
   311 
   312       NodeMap(const EdgePathGraph &) {}
   313       NodeMap(const EdgePathGraph &, T) {}
   314 
   315       template<typename TT> NodeMap(const NodeMap<TT> &) {}
   316 
   317       /// Sets the value of a node.
   318 
   319       /// Sets the value associated with node \c i to the value \c t.
   320       ///
   321       void set(Node, T) {}
   322       // Gets the value of a node.
   323       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
   324       T &operator[](Node) {return *(T*)0;}
   325       const T &operator[](Node) const {return *(T*)0;}
   326 
   327       /// Updates the map if the graph has been changed
   328 
   329       /// \todo Do we need this?
   330       ///
   331       void update() {}
   332       void update(T a) {}   //FIXME: Is it necessary
   333     };
   334 
   335     ///Read/write/reference map of the edges to type \c T.
   336 
   337     ///Read/write/reference map of the edges to type \c T.
   338     ///It behaves exactly in the same way as \ref NodeMap.
   339     /// \sa NodeMap
   340     /// \sa MemoryMap
   341     /// \todo We may need copy constructor
   342     /// \todo We may need conversion from other edgetype
   343     /// \todo We may need operator=
   344     template<class T> class EdgeMap
   345     {
   346     public:
   347       typedef T Value;
   348       typedef Edge Key;
   349 
   350       EdgeMap(const EdgePathGraph &) {}
   351       EdgeMap(const EdgePathGraph &, T ) {}
   352     
   353       ///\todo It can copy between different types.
   354       ///
   355       template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
   356 
   357       void set(Edge, T) {}
   358       //T get(Edge) const {return *(T*)0;}
   359       T &operator[](Edge) {return *(T*)0;}
   360       const T &operator[](Edge) const {return *(T*)0;}
   361     
   362       void update() {}
   363       void update(T a) {}   //FIXME: Is it necessary
   364     };
   365   };
   366 
   367   /// An empty erasable graph class.
   368   
   369   /// This class provides all the common features of an \e erasable graph
   370   /// structure,
   371   /// however completely without implementations and real data structures
   372   /// behind the interface.
   373   /// All graph algorithms should compile with this class, but it will not
   374   /// run properly, of course.
   375   ///
   376   /// \todo This blabla could be replaced by a sepatate description about
   377   /// s.
   378   ///
   379   /// It can be used for checking the interface compatibility,
   380   /// or it can serve as a skeleton of a new graph structure.
   381   /// 
   382   /// Also, you will find here the full documentation of a certain graph
   383   /// feature, the documentation of a real graph imlementation
   384   /// like @ref ListGraph or
   385   /// @ref SmartGraph will just refer to this structure.
   386   template <typename P, typename Gact, typename Gsub>
   387   class ErasableEdgePathGraph : public EdgePathGraph<P, Gact, Gsub>
   388   {
   389   public:
   390     /// Deletes a node.
   391     void erase(typename Gact::Node n) {actuallayer.erase(n);}
   392     /// Deletes an edge.
   393     void erase(typename Gact::Edge e) {actuallayer.erase(e);}
   394 
   395     /// Defalult constructor.
   396     ErasableEdgePathGraph() {}
   397     ///Copy consructor.
   398     ErasableEdgePathGraph(const EdgePathGraph<P, Gact, Gsub> &EPG) {}
   399   };
   400 
   401   
   402   // @}
   403 
   404 } //namespace lemon
   405 
   406 
   407 #endif // LEMON_SKELETON_GRAPH_H