2 #ifndef HUGO_BFS_DFS_MISC_H
3 #define HUGO_BFS_DFS_MISC_H
5 #include <bfs_iterator.h>
6 #include <for_each_macros.h>
10 /// This function eat a read-write \c BoolMap& bool_map,
11 /// which have to work well up
12 /// to its \c set and \c operator[]() method. Thus we have to deal
13 /// very carefully with an uninitialized \c IterableBoolMap.
14 template<typename Graph, typename BoolMap>
15 bool isBipartite(const Graph& g, BoolMap& bool_map) {
16 typedef typename Graph::template NodeMap<bool> ReachedMap;
17 ReachedMap reached(g/*, false*/);
18 BfsIterator<Graph, ReachedMap> bfs(g, reached);
19 FOR_EACH_LOC(typename Graph::NodeIt, n, g) {
21 bfs.pushAndSetReached(n);
22 bool_map.set(n, false);
23 while (!bfs.finished()) {
24 if (bfs.isBNodeNewlyReached()) {
25 bool_map.set(bfs.bNode())=!bfs.aNode();
27 if (bool_map[bfs.bNode()]==bool_map[bfs.aNode()]) {
39 /// experimental topsort,
40 /// I think the final version will work as an iterator
41 /// if the graph is not a acyclic, the na pre-topological order is obtained
42 /// (see Schrijver's book)
43 template<typename Graph>
44 void topSort(const Graph& g, std::list<typename Graph::Node>& l) {
46 typedef typename Graph::template NodeMap<bool> ReachedMap;
47 ReachedMap reached(g/*, false*/);
48 DfsIterator<Graph, ReachedMap> dfs(g, reached);
49 FOR_EACH_LOC(typename Graph::NodeIt, n, g) {
51 dfs.pushAndSetReached(n);
52 while (!dfs.finished()) {
54 if (dfs.isANodeExamined()) {
55 l.push_back(dfs.aNode());
63 #endif //HUGO_BFS_DFS_MISC_H