src/work/athos/mincostflows.h
author marci
Tue, 04 May 2004 12:01:49 +0000
changeset 524 bd8109f8e2fa
parent 520 e4a6300616f9
child 527 7550fed0cd91
permissions -rw-r--r--
An undirected graph template UndirGraph<Graph> can be used.
     1 // -*- c++ -*-
     2 #ifndef HUGO_MINCOSTFLOWS_H
     3 #define HUGO_MINCOSTFLOWS_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost 
     8 
     9 #include <iostream>
    10 #include <dijkstra.h>
    11 #include <graph_wrapper.h>
    12 #include <maps.h>
    13 #include <vector.h>
    14 
    15 
    16 namespace hugo {
    17 
    18 /// \addtogroup galgs
    19 /// @{
    20 
    21   ///\brief Implementation of an algorithm for finding a flow of value \c k 
    22   ///(for small values of \c k) having minimal total cost between 2 nodes 
    23   /// 
    24   ///
    25   /// The class \ref hugo::MinCostFlows "MinCostFlows" implements
    26   /// an algorithm for finding a flow of value \c k 
    27   ///(for small values of \c k) having minimal total cost  
    28   /// from a given source node to a given target node in an
    29   /// edge-weighted directed graph having nonnegative integer capacities.
    30   /// The range of the length (weight) function is nonnegative reals but 
    31   /// the range of capacity function is the set of nonnegative integers. 
    32   /// It is not a polinomial time algorithm for counting the minimum cost
    33   /// maximal flow, since it counts the minimum cost flow for every value 0..M
    34   /// where \c M is the value of the maximal flow.
    35   ///
    36   ///\author Attila Bernath
    37   template <typename Graph, typename LengthMap>
    38   class MinCostFlows {
    39 
    40     typedef typename LengthMap::ValueType Length;
    41     
    42     typedef typename Graph::Node Node;
    43     typedef typename Graph::NodeIt NodeIt;
    44     typedef typename Graph::Edge Edge;
    45     typedef typename Graph::OutEdgeIt OutEdgeIt;
    46     typedef typename Graph::template EdgeMap<int> EdgeIntMap;
    47 
    48     typedef ConstMap<Edge,int> ConstMap;
    49 
    50     typedef ResGraphWrapper<const Graph,int,ConstMap,EdgeIntMap> ResGraphType;
    51 
    52     class ModLengthMap {   
    53       typedef typename ResGraphType::template NodeMap<Length> NodeMap;
    54       const ResGraphType& G;
    55       const EdgeIntMap& rev;
    56       const LengthMap &ol;
    57       const NodeMap &pot;
    58     public :
    59       typedef typename LengthMap::KeyType KeyType;
    60       typedef typename LengthMap::ValueType ValueType;
    61 	
    62       ValueType operator[](typename ResGraphType::Edge e) const {     
    63 	//if ( (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)] ) <0 ){
    64 	//  std::cout<<"Negative length!!"<<std::endl;
    65 	//}
    66 	return (1-2*rev[e])*ol[e]-(pot[G.head(e)]-pot[G.tail(e)]);   
    67       }     
    68 	
    69       ModLengthMap(const ResGraphType& _G, const EdgeIntMap& _rev, 
    70 		   const LengthMap &o,  const NodeMap &p) : 
    71 	G(_G), rev(_rev), ol(o), pot(p){}; 
    72     };//ModLengthMap
    73 
    74 
    75     
    76 
    77     const Graph& G;
    78     const LengthMap& length;
    79 
    80     //auxiliary variables
    81 
    82     //The value is 1 iff the edge is reversed. 
    83     //If the algorithm has finished, the edges of the seeked paths are 
    84     //exactly those that are reversed 
    85     EdgeIntMap reversed; 
    86     
    87     //Container to store found paths
    88     std::vector< std::vector<Edge> > paths;
    89     //typedef DirPath<Graph> DPath;
    90     //DPath paths;
    91 
    92 
    93     Length total_length;
    94 
    95   public :
    96 
    97 
    98     MinLengthPaths(Graph& _G, LengthMap& _length) : G(_G), 
    99       length(_length), reversed(_G)/*, dijkstra_dist(_G)*/{ }
   100 
   101     
   102     ///Runs the algorithm.
   103 
   104     ///Runs the algorithm.
   105     ///Returns k if there are at least k edge-disjoint paths from s to t.
   106     ///Otherwise it returns the number of found edge-disjoint paths from s to t.
   107     int run(Node s, Node t, int k) {
   108       ConstMap const1map(1);
   109 
   110 
   111       //We need a residual graph, in which some of the edges are reversed
   112       ResGraphType res_graph(G, const1map, reversed);
   113 
   114       //Initialize the copy of the Dijkstra potential to zero
   115       typename ResGraphType::template NodeMap<Length> dijkstra_dist(res_graph);
   116       ModLengthMap mod_length(res_graph, reversed, length, dijkstra_dist);
   117 
   118       Dijkstra<ResGraphType, ModLengthMap> dijkstra(res_graph, mod_length);
   119 
   120       int i;
   121       for (i=0; i<k; ++i){
   122 	dijkstra.run(s);
   123 	if (!dijkstra.reached(t)){
   124 	  //There are no k paths from s to t
   125 	  break;
   126 	};
   127 	
   128 	{
   129 	  //We have to copy the potential
   130 	  typename ResGraphType::NodeIt n;
   131 	  for ( res_graph.first(n) ; res_graph.valid(n) ; res_graph.next(n) ) {
   132 	      dijkstra_dist[n] += dijkstra.distMap()[n];
   133 	  }
   134 	}
   135 
   136 
   137 	//Reversing the sortest path
   138 	Node n=t;
   139 	Edge e;
   140 	while (n!=s){
   141 	  e = dijkstra.pred(n);
   142 	  n = dijkstra.predNode(n);
   143 	  reversed[e] = 1-reversed[e];
   144 	}
   145 
   146 	  
   147       }
   148       
   149       //Let's find the paths
   150       //We put the paths into stl vectors (as an inner representation). 
   151       //In the meantime we lose the information stored in 'reversed'.
   152       //We suppose the lengths to be positive now.
   153 
   154       //Meanwhile we put the total length of the found paths 
   155       //in the member variable total_length
   156       paths.clear();
   157       total_length=0;
   158       paths.resize(k);
   159       for (int j=0; j<i; ++j){
   160 	Node n=s;
   161 	OutEdgeIt e;
   162 
   163 	while (n!=t){
   164 
   165 
   166 	  G.first(e,n);
   167 	  
   168 	  while (!reversed[e]){
   169 	    G.next(e);
   170 	  }
   171 	  n = G.head(e);
   172 	  paths[j].push_back(e);
   173 	  total_length += length[e];
   174 	  reversed[e] = 1-reversed[e];
   175 	}
   176 	
   177       }
   178 
   179       return i;
   180     }
   181 
   182     ///This function gives back the total length of the found paths.
   183     ///Assumes that \c run() has been run and nothing changed since then.
   184     Length totalLength(){
   185       return total_length;
   186     }
   187 
   188     ///This function gives back the \c j-th path in argument p.
   189     ///Assumes that \c run() has been run and nothing changed since then.
   190     /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path.
   191     template<typename DirPath>
   192     void getPath(DirPath& p, int j){
   193       p.clear();
   194       typename DirPath::Builder B(p);
   195       for(typename std::vector<Edge>::iterator i=paths[j].begin(); 
   196 	  i!=paths[j].end(); ++i ){
   197 	B.pushBack(*i);
   198       }
   199 
   200       B.commit();
   201     }
   202 
   203   }; //class MinLengthPaths
   204 
   205   ///@}
   206 
   207 } //namespace hugo
   208 
   209 #endif //HUGO_MINLENGTHPATHS_H