src/hugo/max_flow.h
author marci
Thu, 29 Jul 2004 17:20:51 +0000
changeset 747 be163d94c109
parent 735 2859c45c31dd
child 749 8e933219691e
permissions -rw-r--r--
a bug test for preflow with preflow_bug_8 dimacs file
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_NO_STACK_H
     3 #define HUGO_MAX_FLOW_NO_STACK_H
     4 
     5 #include <vector>
     6 #include <queue>
     7 //#include <stack>
     8 
     9 #include <hugo/graph_wrapper.h>
    10 #include <hugo/invalid.h>
    11 #include <hugo/maps.h>
    12 
    13 /// \file
    14 /// \brief The same as max_flow.h, but without using stl stack for the active nodes. Only for test.
    15 /// \ingroup galgs
    16 
    17 namespace hugo {
    18 
    19   /// \addtogroup galgs
    20   /// @{                                                                                                                                        
    21   ///Maximum flow algorithms class.
    22 
    23   ///This class provides various algorithms for finding a flow of
    24   ///maximum value in a directed graph. The \e source node, the \e
    25   ///target node, the \e capacity of the edges and the \e starting \e
    26   ///flow value of the edges should be passed to the algorithm through the
    27   ///constructor. It is possible to change these quantities using the
    28   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    29   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    30   ///the class \ref resetFlow should be called. 
    31 
    32   ///After running an algorithm of the class, the actual flow value 
    33   ///can be obtained by calling \ref flowValue(). The minimum
    34   ///value cut can be written into a \c node map of \c bools by
    35   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    36   ///the inclusionwise minimum and maximum of the minimum value
    37   ///cuts, resp.)                                                                                                                               
    38   ///\param Graph The directed graph type the algorithm runs on.
    39   ///\param Num The number type of the capacities and the flow values.
    40   ///\param CapMap The capacity map type.
    41   ///\param FlowMap The flow map type.                                                                                                           
    42   ///\author Marton Makai, Jacint Szabo 
    43   template <typename Graph, typename Num,
    44 	    typename CapMap=typename Graph::template EdgeMap<Num>,
    45             typename FlowMap=typename Graph::template EdgeMap<Num> >
    46   class MaxFlow {
    47   protected:
    48     typedef typename Graph::Node Node;
    49     typedef typename Graph::NodeIt NodeIt;
    50     typedef typename Graph::EdgeIt EdgeIt;
    51     typedef typename Graph::OutEdgeIt OutEdgeIt;
    52     typedef typename Graph::InEdgeIt InEdgeIt;
    53 
    54     //    typedef typename std::vector<std::stack<Node> > VecStack;
    55     typedef typename std::vector<Node> VecFirst;
    56     typedef typename Graph::template NodeMap<Node> NNMap;
    57     typedef typename std::vector<Node> VecNode;
    58 
    59     const Graph* g;
    60     Node s;
    61     Node t;
    62     const CapMap* capacity;
    63     FlowMap* flow;
    64     int n;      //the number of nodes of G
    65     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;   
    66     //typedef ExpResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    67     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    68     typedef typename ResGW::Edge ResGWEdge;
    69     //typedef typename ResGW::template NodeMap<bool> ReachedMap;
    70     typedef typename Graph::template NodeMap<int> ReachedMap;
    71 
    72 
    73     //level works as a bool map in augmenting path algorithms and is
    74     //used by bfs for storing reached information.  In preflow, it
    75     //shows the levels of nodes.     
    76     ReachedMap level;
    77 
    78     //excess is needed only in preflow
    79     typename Graph::template NodeMap<Num> excess;
    80 
    81     // constants used for heuristics
    82     static const int H0=20;
    83     static const int H1=1;
    84 
    85   public:
    86 
    87     ///Indicates the property of the starting flow.
    88 
    89     ///Indicates the property of the starting flow. The meanings are as follows:
    90     ///- \c ZERO_FLOW: constant zero flow
    91     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
    92     ///the sum of the out-flows in every node except the \e source and
    93     ///the \e target.
    94     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at 
    95     ///least the sum of the out-flows in every node except the \e source.
    96     ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be 
    97     ///set to the constant zero flow in the beginning of the algorithm in this case.
    98     enum FlowEnum{
    99       ZERO_FLOW,
   100       GEN_FLOW,
   101       PRE_FLOW,
   102       NO_FLOW
   103     };
   104 
   105     enum StatusEnum {
   106       AFTER_NOTHING,
   107       AFTER_AUGMENTING,
   108       AFTER_FAST_AUGMENTING, 
   109       AFTER_PRE_FLOW_PHASE_1,      
   110       AFTER_PRE_FLOW_PHASE_2
   111     };
   112 
   113     /// Don not needle this flag only if necessary.
   114     StatusEnum status;
   115 
   116 //     int number_of_augmentations;
   117 
   118 
   119 //     template<typename IntMap>
   120 //     class TrickyReachedMap {
   121 //     protected:
   122 //       IntMap* map;
   123 //       int* number_of_augmentations;
   124 //     public:
   125 //       TrickyReachedMap(IntMap& _map, int& _number_of_augmentations) : 
   126 // 	map(&_map), number_of_augmentations(&_number_of_augmentations) { }
   127 //       void set(const Node& n, bool b) {
   128 // 	if (b)
   129 // 	  map->set(n, *number_of_augmentations);
   130 // 	else 
   131 // 	  map->set(n, *number_of_augmentations-1);
   132 //       }
   133 //       bool operator[](const Node& n) const { 
   134 // 	return (*map)[n]==*number_of_augmentations; 
   135 //       }
   136 //     };
   137     
   138     ///Constructor
   139 
   140     ///\todo Document, please.
   141     ///
   142     MaxFlow(const Graph& _G, Node _s, Node _t,
   143 	    const CapMap& _capacity, FlowMap& _flow) :
   144       g(&_G), s(_s), t(_t), capacity(&_capacity),
   145       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), 
   146       status(AFTER_NOTHING) { }
   147 
   148     ///Runs a maximum flow algorithm.
   149 
   150     ///Runs a preflow algorithm, which is the fastest maximum flow
   151     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   152     ///\pre The starting flow must be
   153     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   154     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   155     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   156     /// - any map if \c fe is NO_FLOW.
   157     void run(FlowEnum fe=ZERO_FLOW) {
   158       preflow(fe);
   159     }
   160 
   161                                                                               
   162     ///Runs a preflow algorithm.  
   163 
   164     ///Runs a preflow algorithm. The preflow algorithms provide the
   165     ///fastest way to compute a maximum flow in a directed graph.
   166     ///\pre The starting flow must be
   167     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   168     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   169     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   170     /// - any map if \c fe is NO_FLOW.
   171     ///
   172     ///\todo NO_FLOW should be the default flow.
   173     void preflow(FlowEnum fe) {
   174       preflowPhase1(fe);
   175       preflowPhase2();
   176     }
   177     // Heuristics:
   178     //   2 phase
   179     //   gap
   180     //   list 'level_list' on the nodes on level i implemented by hand
   181     //   stack 'active' on the active nodes on level i                                                                                    
   182     //   runs heuristic 'highest label' for H1*n relabels
   183     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   184     //   Parameters H0 and H1 are initialized to 20 and 1.
   185 
   186     ///Runs the first phase of the preflow algorithm.
   187 
   188     ///The preflow algorithm consists of two phases, this method runs the
   189     ///first phase. After the first phase the maximum flow value and a
   190     ///minimum value cut can already be computed, though a maximum flow
   191     ///is net yet obtained. So after calling this method \ref flowValue
   192     ///and \ref actMinCut gives proper results.
   193     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   194     ///give minimum value cuts unless calling \ref preflowPhase2.
   195     ///\pre The starting flow must be
   196     /// - a constant zero flow if \c fe is \c ZERO_FLOW,
   197     /// - an arbitary flow if \c fe is \c GEN_FLOW,
   198     /// - an arbitary preflow if \c fe is \c PRE_FLOW,
   199     /// - any map if \c fe is NO_FLOW.
   200     void preflowPhase1(FlowEnum fe)
   201     {
   202 
   203       int heur0=(int)(H0*n);  //time while running 'bound decrease'
   204       int heur1=(int)(H1*n);  //time while running 'highest label'
   205       int heur=heur1;         //starting time interval (#of relabels)
   206       int numrelabel=0;
   207 
   208       bool what_heur=1;
   209       //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   210 
   211       bool end=false;
   212       //Needed for 'bound decrease', true means no active nodes are above bound
   213       //b.
   214 
   215       int k=n-2;  //bound on the highest level under n containing a node
   216       int b=k;    //bound on the highest level under n of an active node
   217 
   218       VecFirst first(n, INVALID);
   219       NNMap next(*g, INVALID); //maybe INVALID is not needed
   220 
   221       NNMap left(*g, INVALID);
   222       NNMap right(*g, INVALID);
   223       VecNode level_list(n,INVALID);
   224       //List of the nodes in level i<n, set to n.
   225 
   226       NodeIt v;
   227       for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   228       //setting each node to level n
   229 
   230       if ( fe == NO_FLOW ) {
   231 	EdgeIt e;
   232 	for(g->first(e); g->valid(e); g->next(e)) flow->set(e,0);
   233       }
   234 
   235       switch (fe) { //computing the excess
   236       case PRE_FLOW:
   237 	{
   238 	  NodeIt v;
   239 	  for(g->first(v); g->valid(v); g->next(v)) {
   240 	    Num exc=0;
   241 
   242 	    InEdgeIt e;
   243 	    for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   244 	    OutEdgeIt f;
   245 	    for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   246 
   247 	    excess.set(v,exc);
   248 
   249 	    //putting the active nodes into the stack
   250 	    int lev=level[v];
   251 	    if ( exc > 0 && lev < n && v != t ) 
   252 	      {
   253 		next.set(v,first[lev]);
   254 		first[lev]=v;
   255 	      }
   256 	  }
   257 	  break;
   258 	}
   259       case GEN_FLOW:
   260 	{
   261 	  NodeIt v;
   262 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   263 
   264 	  Num exc=0;
   265 	  InEdgeIt e;
   266 	  for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   267 	  OutEdgeIt f;
   268 	  for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   269 	  excess.set(t,exc);
   270 	  break;
   271 	}
   272       case ZERO_FLOW:
   273       case NO_FLOW:
   274 	{
   275 	  NodeIt v;
   276 	  for(g->first(v); g->valid(v); g->next(v)) excess.set(v,0);
   277 	  break;
   278 	}
   279       }
   280 
   281       preflowPreproc(fe, next, first, level_list, left, right);
   282       //End of preprocessing
   283 
   284 
   285       //Push/relabel on the highest level active nodes.
   286       while ( true ) {
   287 	if ( b == 0 ) {
   288 	  if ( !what_heur && !end && k > 0 ) {
   289 	    b=k;
   290 	    end=true;
   291 	  } else break;
   292 	}
   293 
   294 	if ( !g->valid(first[b]) ) --b;
   295 	else {
   296 	  end=false;
   297 	  Node w=first[b];
   298 	  first[b]=next[w];
   299 	  int newlevel=push(w, next, first);
   300 	  if ( excess[w] > 0 ) relabel(w, newlevel, next, first, level_list,
   301 				       left, right, b, k, what_heur);
   302 
   303 	  ++numrelabel;
   304 	  if ( numrelabel >= heur ) {
   305 	    numrelabel=0;
   306 	    if ( what_heur ) {
   307 	      what_heur=0;
   308 	      heur=heur0;
   309 	      end=false;
   310 	    } else {
   311 	      what_heur=1;
   312 	      heur=heur1;
   313 	      b=k;
   314 	    }
   315 	  }
   316 	}
   317       }
   318 
   319       status=AFTER_PRE_FLOW_PHASE_1;
   320     }
   321 
   322 
   323     ///Runs the second phase of the preflow algorithm.
   324 
   325     ///The preflow algorithm consists of two phases, this method runs
   326     ///the second phase. After calling \ref preflowPhase1 and then
   327     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   328     ///\ref minMinCut and \ref maxMinCut give proper results.
   329     ///\pre \ref preflowPhase1 must be called before.
   330     void preflowPhase2()
   331     {
   332 
   333       int k=n-2;  //bound on the highest level under n containing a node
   334       int b=k;    //bound on the highest level under n of an active node
   335 
   336     
   337       VecFirst first(n, INVALID);
   338       NNMap next(*g, INVALID); //maybe INVALID is not needed
   339       level.set(s,0);
   340       std::queue<Node> bfs_queue;
   341       bfs_queue.push(s);
   342 
   343       while (!bfs_queue.empty()) {
   344 
   345 	Node v=bfs_queue.front();
   346 	bfs_queue.pop();
   347 	int l=level[v]+1;
   348 
   349 	InEdgeIt e;
   350 	for(g->first(e,v); g->valid(e); g->next(e)) {
   351 	  if ( (*capacity)[e] <= (*flow)[e] ) continue;
   352 	  Node u=g->tail(e);
   353 	  if ( level[u] >= n ) {
   354 	    bfs_queue.push(u);
   355 	    level.set(u, l);
   356 	    if ( excess[u] > 0 ) {
   357 	      next.set(u,first[l]);
   358 	      first[l]=u;
   359 	    }
   360 	  }
   361 	}
   362 
   363 	OutEdgeIt f;
   364 	for(g->first(f,v); g->valid(f); g->next(f)) {
   365 	  if ( 0 >= (*flow)[f] ) continue;
   366 	  Node u=g->head(f);
   367 	  if ( level[u] >= n ) {
   368 	    bfs_queue.push(u);
   369 	    level.set(u, l);
   370 	    if ( excess[u] > 0 ) {
   371 	      next.set(u,first[l]);
   372 	      first[l]=u;
   373 	    }
   374 	  }
   375 	}
   376       }
   377       b=n-2;
   378 
   379       while ( true ) {
   380 
   381 	if ( b == 0 ) break;
   382 
   383 	if ( !g->valid(first[b]) ) --b;
   384 	else {
   385 
   386 	  Node w=first[b];
   387 	  first[b]=next[w];
   388 	  int newlevel=push(w,next, first/*active*/);
   389 
   390 	  //relabel
   391 	  if ( excess[w] > 0 ) {
   392 	    level.set(w,++newlevel);
   393 	    next.set(w,first[newlevel]);
   394 	    first[newlevel]=w;
   395 	    b=newlevel;
   396 	  }
   397 	}  // if stack[b] is nonempty
   398       } // while(true)
   399 
   400       status=AFTER_PRE_FLOW_PHASE_2;
   401     }
   402 
   403 
   404     /// Returns the maximum value of a flow.
   405 
   406     /// Returns the maximum value of a flow, by counting the 
   407     /// over-flow of the target node \ref t.
   408     /// It can be called already after running \ref preflowPhase1.
   409     Num flowValue() const {
   410       Num a=0;
   411       for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e];
   412       for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e];
   413       return a;
   414       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan   
   415     }
   416     Num flowValue2() const {
   417       return excess[t];
   418 //       Num a=0;
   419 //       for(InEdgeIt e(*g,t);g->valid(e);g->next(e)) a+=(*flow)[e];
   420 //       for(OutEdgeIt e(*g,t);g->valid(e);g->next(e)) a-=(*flow)[e];
   421 //       return a;
   422 //       //marci figyu: excess[t] epp ezt adja preflow 1. fazisa utan  
   423       
   424     }
   425 
   426     ///Returns a minimum value cut after calling \ref preflowPhase1.
   427 
   428     ///After the first phase of the preflow algorithm the maximum flow
   429     ///value and a minimum value cut can already be computed. This
   430     ///method can be called after running \ref preflowPhase1 for
   431     ///obtaining a minimum value cut.
   432     /// \warning Gives proper result only right after calling \ref
   433     /// preflowPhase1.
   434     /// \todo We have to make some status variable which shows the
   435     /// actual state
   436     /// of the class. This enables us to determine which methods are valid
   437     /// for MinCut computation
   438     template<typename _CutMap>
   439     void actMinCut(_CutMap& M) const {
   440       NodeIt v;
   441       switch (status) {
   442       case AFTER_PRE_FLOW_PHASE_1:
   443 	for(g->first(v); g->valid(v); g->next(v)) {
   444 	  if (level[v] < n) {
   445 	    M.set(v, false);
   446 	  } else {
   447 	    M.set(v, true);
   448 	  }
   449 	}
   450 	break;
   451       case AFTER_PRE_FLOW_PHASE_2:
   452       case AFTER_NOTHING:
   453       case AFTER_AUGMENTING:
   454       case AFTER_FAST_AUGMENTING:
   455 	minMinCut(M);
   456 	break;
   457       }
   458     }
   459 
   460     ///Returns the inclusionwise minimum of the minimum value cuts.
   461 
   462     ///Sets \c M to the characteristic vector of the minimum value cut
   463     ///which is inclusionwise minimum. It is computed by processing
   464     ///a bfs from the source node \c s in the residual graph.
   465     ///\pre M should be a node map of bools initialized to false.
   466     ///\pre \c flow must be a maximum flow.
   467     template<typename _CutMap>
   468     void minMinCut(_CutMap& M) const {
   469       std::queue<Node> queue;
   470 
   471       M.set(s,true);
   472       queue.push(s);
   473 
   474       while (!queue.empty()) {
   475         Node w=queue.front();
   476 	queue.pop();
   477 
   478 	OutEdgeIt e;
   479 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   480 	  Node v=g->head(e);
   481 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   482 	    queue.push(v);
   483 	    M.set(v, true);
   484 	  }
   485 	}
   486 
   487 	InEdgeIt f;
   488 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   489 	  Node v=g->tail(f);
   490 	  if (!M[v] && (*flow)[f] > 0 ) {
   491 	    queue.push(v);
   492 	    M.set(v, true);
   493 	  }
   494 	}
   495       }
   496     }
   497 
   498     ///Returns the inclusionwise maximum of the minimum value cuts.
   499 
   500     ///Sets \c M to the characteristic vector of the minimum value cut
   501     ///which is inclusionwise maximum. It is computed by processing a
   502     ///backward bfs from the target node \c t in the residual graph.
   503     ///\pre M should be a node map of bools initialized to false.
   504     ///\pre \c flow must be a maximum flow. 
   505     template<typename _CutMap>
   506     void maxMinCut(_CutMap& M) const {
   507 
   508       NodeIt v;
   509       for(g->first(v) ; g->valid(v); g->next(v)) {
   510 	M.set(v, true);
   511       }
   512 
   513       std::queue<Node> queue;
   514 
   515       M.set(t,false);
   516       queue.push(t);
   517 
   518       while (!queue.empty()) {
   519         Node w=queue.front();
   520 	queue.pop();
   521 
   522 	InEdgeIt e;
   523 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   524 	  Node v=g->tail(e);
   525 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   526 	    queue.push(v);
   527 	    M.set(v, false);
   528 	  }
   529 	}
   530 
   531 	OutEdgeIt f;
   532 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   533 	  Node v=g->head(f);
   534 	  if (M[v] && (*flow)[f] > 0 ) {
   535 	    queue.push(v);
   536 	    M.set(v, false);
   537 	  }
   538 	}
   539       }
   540     }
   541 
   542     ///Returns a minimum value cut.
   543 
   544     ///Sets \c M to the characteristic vector of a minimum value cut.
   545     ///\pre M should be a node map of bools initialized to false.
   546     ///\pre \c flow must be a maximum flow.    
   547     template<typename CutMap>
   548     void minCut(CutMap& M) const { minMinCut(M); }
   549 
   550     ///Resets the source node to \c _s.
   551 
   552     ///Resets the source node to \c _s.
   553     /// 
   554     void resetSource(Node _s) { s=_s; status=AFTER_NOTHING; }
   555 
   556     ///Resets the target node to \c _t.
   557 
   558     ///Resets the target node to \c _t.
   559     ///
   560     void resetTarget(Node _t) { t=_t; status=AFTER_NOTHING; }
   561 
   562     /// Resets the edge map of the capacities to _cap.
   563 
   564     /// Resets the edge map of the capacities to _cap.
   565     /// 
   566     void resetCap(const CapMap& _cap)
   567     { capacity=&_cap; status=AFTER_NOTHING; }
   568 
   569     /// Resets the edge map of the flows to _flow.
   570 
   571     /// Resets the edge map of the flows to _flow.
   572     /// 
   573     void resetFlow(FlowMap& _flow) { flow=&_flow; status=AFTER_NOTHING; }
   574 
   575 
   576   private:
   577 
   578     int push(Node w, NNMap& next, VecFirst& first) {
   579 
   580       int lev=level[w];
   581       Num exc=excess[w];
   582       int newlevel=n;       //bound on the next level of w
   583 
   584       OutEdgeIt e;
   585       for(g->first(e,w); g->valid(e); g->next(e)) {
   586 
   587 	if ( (*flow)[e] >= (*capacity)[e] ) continue;
   588 	Node v=g->head(e);
   589 
   590 	if( lev > level[v] ) { //Push is allowed now
   591 
   592 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   593 	    next.set(v,first[level[v]]);
   594 	    first[level[v]]=v;
   595 	  }
   596 
   597 	  Num cap=(*capacity)[e];
   598 	  Num flo=(*flow)[e];
   599 	  Num remcap=cap-flo;
   600 
   601 	  if ( remcap >= exc ) { //A nonsaturating push.
   602 
   603 	    flow->set(e, flo+exc);
   604 	    excess.set(v, excess[v]+exc);
   605 	    exc=0;
   606 	    break;
   607 
   608 	  } else { //A saturating push.
   609 	    flow->set(e, cap);
   610 	    excess.set(v, excess[v]+remcap);
   611 	    exc-=remcap;
   612 	  }
   613 	} else if ( newlevel > level[v] ) newlevel = level[v];
   614       } //for out edges wv
   615 
   616       if ( exc > 0 ) {
   617 	InEdgeIt e;
   618 	for(g->first(e,w); g->valid(e); g->next(e)) {
   619 
   620 	  if( (*flow)[e] <= 0 ) continue;
   621 	  Node v=g->tail(e);
   622 
   623 	  if( lev > level[v] ) { //Push is allowed now
   624 
   625 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   626 	      next.set(v,first[level[v]]);
   627 	      first[level[v]]=v;
   628 	    }
   629 
   630 	    Num flo=(*flow)[e];
   631 
   632 	    if ( flo >= exc ) { //A nonsaturating push.
   633 
   634 	      flow->set(e, flo-exc);
   635 	      excess.set(v, excess[v]+exc);
   636 	      exc=0;
   637 	      break;
   638 	    } else {  //A saturating push.
   639 
   640 	      excess.set(v, excess[v]+flo);
   641 	      exc-=flo;
   642 	      flow->set(e,0);
   643 	    }
   644 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   645 	} //for in edges vw
   646 
   647       } // if w still has excess after the out edge for cycle
   648 
   649       excess.set(w, exc);
   650 
   651       return newlevel;
   652     }
   653 
   654 
   655     void preflowPreproc(FlowEnum fe, NNMap& next, VecFirst& first,
   656 			VecNode& level_list, NNMap& left, NNMap& right)
   657     {
   658       std::queue<Node> bfs_queue;
   659 
   660       switch (fe) {
   661       case NO_FLOW:   //flow is already set to const zero in this case
   662       case ZERO_FLOW:
   663 	{
   664 	  //Reverse_bfs from t, to find the starting level.
   665 	  level.set(t,0);
   666 	  bfs_queue.push(t);
   667 
   668 	  while (!bfs_queue.empty()) {
   669 
   670 	    Node v=bfs_queue.front();
   671 	    bfs_queue.pop();
   672 	    int l=level[v]+1;
   673 
   674 	    InEdgeIt e;
   675 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   676 	      Node w=g->tail(e);
   677 	      if ( level[w] == n && w != s ) {
   678 		bfs_queue.push(w);
   679 		Node z=level_list[l];
   680 		if ( g->valid(z) ) left.set(z,w);
   681 		right.set(w,z);
   682 		level_list[l]=w;
   683 		level.set(w, l);
   684 	      }
   685 	    }
   686 	  }
   687 
   688 	  //the starting flow
   689 	  OutEdgeIt e;
   690 	  for(g->first(e,s); g->valid(e); g->next(e))
   691 	    {
   692 	      Num c=(*capacity)[e];
   693 	      if ( c <= 0 ) continue;
   694 	      Node w=g->head(e);
   695 	      if ( level[w] < n ) {
   696 		if ( excess[w] <= 0 && w!=t ) 
   697 		  {
   698 		    next.set(w,first[level[w]]);
   699 		    first[level[w]]=w;
   700 		  }
   701 		flow->set(e, c);
   702 		excess.set(w, excess[w]+c);
   703 	      }
   704 	    }
   705 	  break;
   706 	}
   707 
   708       case GEN_FLOW:
   709       case PRE_FLOW:
   710 	{
   711 	  //Reverse_bfs from t in the residual graph,
   712 	  //to find the starting level.
   713 	  level.set(t,0);
   714 	  bfs_queue.push(t);
   715 
   716 	  while (!bfs_queue.empty()) {
   717 
   718 	    Node v=bfs_queue.front();
   719 	    bfs_queue.pop();
   720 	    int l=level[v]+1;
   721 
   722 	    InEdgeIt e;
   723 	    for(g->first(e,v); g->valid(e); g->next(e)) {
   724 	      if ( (*capacity)[e] <= (*flow)[e] ) continue;
   725 	      Node w=g->tail(e);
   726 	      if ( level[w] == n && w != s ) {
   727 		bfs_queue.push(w);
   728 		Node z=level_list[l];
   729 		if ( g->valid(z) ) left.set(z,w);
   730 		right.set(w,z);
   731 		level_list[l]=w;
   732 		level.set(w, l);
   733 	      }
   734 	    }
   735 
   736 	    OutEdgeIt f;
   737 	    for(g->first(f,v); g->valid(f); g->next(f)) {
   738 	      if ( 0 >= (*flow)[f] ) continue;
   739 	      Node w=g->head(f);
   740 	      if ( level[w] == n && w != s ) {
   741 		bfs_queue.push(w);
   742 		Node z=level_list[l];
   743 		if ( g->valid(z) ) left.set(z,w);
   744 		right.set(w,z);
   745 		level_list[l]=w;
   746 		level.set(w, l);
   747 	      }
   748 	    }
   749 	  }
   750 
   751 
   752 	  //the starting flow
   753 	  OutEdgeIt e;
   754 	  for(g->first(e,s); g->valid(e); g->next(e))
   755 	    {
   756 	      Num rem=(*capacity)[e]-(*flow)[e];
   757 	      if ( rem <= 0 ) continue;
   758 	      Node w=g->head(e);
   759 	      if ( level[w] < n ) {
   760 		if ( excess[w] <= 0 && w!=t )
   761 		  {
   762 		    next.set(w,first[level[w]]);
   763 		    first[level[w]]=w;
   764 		  }   
   765 		flow->set(e, (*capacity)[e]);
   766 		excess.set(w, excess[w]+rem);
   767 	      }
   768 	    }
   769 
   770 	  InEdgeIt f;
   771 	  for(g->first(f,s); g->valid(f); g->next(f))
   772 	    {
   773 	      if ( (*flow)[f] <= 0 ) continue;
   774 	      Node w=g->tail(f);
   775 	      if ( level[w] < n ) {
   776 		if ( excess[w] <= 0 && w!=t )
   777 		  {
   778 		    next.set(w,first[level[w]]);
   779 		    first[level[w]]=w;
   780 		  }   
   781 		excess.set(w, excess[w]+(*flow)[f]);
   782 		flow->set(f, 0);
   783 	      }
   784 	    }
   785 	  break;
   786 	} //case PRE_FLOW
   787       }
   788     } //preflowPreproc
   789 
   790 
   791 
   792     void relabel(Node w, int newlevel, NNMap& next, VecFirst& first,
   793 		 VecNode& level_list, NNMap& left,
   794 		 NNMap& right, int& b, int& k, bool what_heur )
   795     {
   796 
   797       Num lev=level[w];
   798 
   799       Node right_n=right[w];
   800       Node left_n=left[w];
   801 
   802       //unlacing starts
   803       if ( g->valid(right_n) ) {
   804 	if ( g->valid(left_n) ) {
   805 	  right.set(left_n, right_n);
   806 	  left.set(right_n, left_n);
   807 	} else {
   808 	  level_list[lev]=right_n;
   809 	  left.set(right_n, INVALID);
   810 	}
   811       } else {
   812 	if ( g->valid(left_n) ) {
   813 	  right.set(left_n, INVALID);
   814 	} else {
   815 	  level_list[lev]=INVALID;
   816 	}
   817       }
   818       //unlacing ends
   819 
   820       if ( !g->valid(level_list[lev]) ) {
   821 
   822 	//gapping starts
   823 	for (int i=lev; i!=k ; ) {
   824 	  Node v=level_list[++i];
   825 	  while ( g->valid(v) ) {
   826 	    level.set(v,n);
   827 	    v=right[v];
   828 	  }
   829 	  level_list[i]=INVALID;
   830 	  if ( !what_heur ) first[i]=INVALID;
   831 	}
   832 
   833 	level.set(w,n);
   834 	b=lev-1;
   835 	k=b;
   836 	//gapping ends
   837 
   838       } else {
   839 
   840 	if ( newlevel == n ) level.set(w,n);
   841 	else {
   842 	  level.set(w,++newlevel);
   843 	  next.set(w,first[newlevel]);
   844 	  first[newlevel]=w;
   845 	  if ( what_heur ) b=newlevel;
   846 	  if ( k < newlevel ) ++k;      //now k=newlevel
   847 	  Node z=level_list[newlevel];
   848 	  if ( g->valid(z) ) left.set(z,w);
   849 	  right.set(w,z);
   850 	  left.set(w,INVALID);
   851 	  level_list[newlevel]=w;
   852 	}
   853       }
   854     } //relabel
   855   };  //class MaxFlow
   856 } //namespace hugo
   857 
   858 #endif //HUGO_MAX_FLOW_H
   859 
   860 
   861 
   862