src/work/klao/path.h
author marci
Thu, 29 Jul 2004 17:20:51 +0000
changeset 747 be163d94c109
parent 683 3cbf51510180
child 803 c3d832275e69
permissions -rw-r--r--
a bug test for preflow with preflow_bug_8 dimacs file
     1 // -*- c++ -*- //
     2 
     3 /**
     4 @defgroup paths Path Structures
     5 @ingroup datas
     6 \brief Path structures implemented in Hugo.
     7 
     8 Hugolib provides flexible data structures
     9 to work with paths.
    10 
    11 All of them have the same interface, especially they can be built or extended
    12 using a standard Builder subclass. This make is easy to have e.g. the Dijkstra
    13 algorithm to store its result in any kind of path structure.
    14 
    15 */
    16 
    17 ///\ingroup paths
    18 ///\file
    19 ///\brief Classes for representing paths in graphs.
    20 
    21 #ifndef HUGO_PATH_H
    22 #define HUGO_PATH_H
    23 
    24 #include <deque>
    25 #include <vector>
    26 #include <algorithm>
    27 
    28 #include <hugo/invalid.h>
    29 #include <hugo/error.h>
    30 #include <debug.h>
    31 
    32 namespace hugo {
    33 
    34   /// \addtogroup paths
    35   /// @{
    36 
    37 
    38   //! \brief A structure for representing directed path in a graph.
    39   //!
    40   //! A structure for representing directed path in a graph.
    41   //! \param Graph The graph type in which the path is.
    42   //! \param DM DebugMode, defaults to DefaultDebugMode.
    43   //! 
    44   //! In a sense, the path can be treated as a graph, for is has \c NodeIt
    45   //! and \c EdgeIt with the same usage. These types converts to the \c Node
    46   //! and \c Edge of the original graph.
    47   //!
    48   //! \todo Thoroughfully check all the range and consistency tests.
    49   template<typename Graph, typename DM = DefaultDebugMode>
    50   class DirPath {
    51   public:
    52     /// Edge type of the underlying graph.
    53     typedef typename Graph::Edge GraphEdge; 
    54     /// Node type of the underlying graph.
    55     typedef typename Graph::Node GraphNode;
    56     class NodeIt;
    57     class EdgeIt;
    58 
    59   protected:
    60     const Graph *gr;
    61     typedef std::vector<GraphEdge> Container;
    62     Container edges;
    63 
    64   public:
    65 
    66     /// \param _G The graph in which the path is.
    67     ///
    68     DirPath(const Graph &_G) : gr(&_G) {}
    69 
    70     /// \brief Subpath constructor.
    71     ///
    72     /// Subpath defined by two nodes.
    73     /// \warning It is an error if the two edges are not in order!
    74     DirPath(const DirPath &P, const NodeIt &a, const NodeIt &b) {
    75       if( DM::range_check && (!a.valid() || !b.valid) ) {
    76 	// FIXME: this check should be more elaborate...
    77 	fault("DirPath, subpath ctor: invalid bounding nodes");
    78       }
    79       gr = P.gr;
    80       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
    81     }
    82 
    83     /// \brief Subpath constructor.
    84     ///
    85     /// Subpath defined by two edges. Contains edges in [a,b)
    86     /// \warning It is an error if the two edges are not in order!
    87     DirPath(const DirPath &P, const EdgeIt &a, const EdgeIt &b) {
    88       if( DM::range_check && (!a.valid() || !b.valid) ) {
    89 	// FIXME: this check should be more elaborate...
    90 	fault("DirPath, subpath ctor: invalid bounding nodes");
    91       }
    92       gr = P.gr;
    93       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
    94     }
    95 
    96     /// Length of the path.
    97     size_t length() const { return edges.size(); }
    98     /// Returns whether the path is empty.
    99     bool empty() const { return edges.empty(); }
   100 
   101     /// Resets the path to an empty path.
   102     void clear() { edges.clear(); }
   103 
   104     /// \brief Starting point of the path.
   105     ///
   106     /// Starting point of the path.
   107     /// Returns INVALID if the path is empty.
   108     GraphNode from() const {
   109       return empty() ? INVALID : gr->tail(edges[0]);
   110     }
   111     /// \brief End point of the path.
   112     ///
   113     /// End point of the path.
   114     /// Returns INVALID if the path is empty.
   115     GraphNode to() const {
   116       return empty() ? INVALID : gr->head(edges[length()-1]);
   117     }
   118 
   119     /// \brief Initializes node or edge iterator to point to the first
   120     /// node or edge.
   121     ///
   122     /// \sa nth
   123     template<typename It>
   124     It& first(It &i) const { return i=It(*this); }
   125 
   126     /// \brief Initializes node iterator to point to the node of a given index.
   127     NodeIt& nth(NodeIt &i, int n) const {
   128       if( DM::range_check && (n<0 || n>int(length())) )
   129 	fault("DirPath::nth: index out of range");
   130       return i=NodeIt(*this, n);
   131     }
   132 
   133     /// \brief Initializes edge iterator to point to the edge of a given index.
   134     EdgeIt& nth(EdgeIt &i, int n) const {
   135       if( DM::range_check && (n<0 || n>=int(length())) )
   136 	fault("DirPath::nth: index out of range");
   137       return i=EdgeIt(*this, n);
   138     }
   139 
   140     /// Checks validity of a node or edge iterator.
   141     template<typename It>
   142     static
   143     bool valid(const It &i) { return i.valid(); }
   144 
   145     /// Steps the given node or edge iterator.
   146     template<typename It>
   147     static
   148     It& next(It &e) {
   149       if( DM::range_check && !e.valid() )
   150 	fault("DirPath::next() on invalid iterator");
   151       return ++e;
   152     }
   153 
   154     /// \brief Returns node iterator pointing to the head node of the
   155     /// given edge iterator.
   156     NodeIt head(const EdgeIt& e) const {
   157       if( DM::range_check && !e.valid() )
   158 	fault("DirPath::head() on invalid iterator");
   159       return NodeIt(*this, e.idx+1);
   160     }
   161 
   162     /// \brief Returns node iterator pointing to the tail node of the
   163     /// given edge iterator.
   164     NodeIt tail(const EdgeIt& e) const {
   165       if( DM::range_check && !e.valid() )
   166 	fault("DirPath::tail() on invalid iterator");
   167       return NodeIt(*this, e.idx);
   168     }
   169 
   170 
   171     /* Iterator classes */
   172 
   173     /**
   174      * \brief Iterator class to iterate on the edges of the paths
   175      * 
   176      * \ingroup paths
   177      * This class is used to iterate on the edges of the paths
   178      *
   179      * Of course it converts to Graph::Edge
   180      * 
   181      * \todo Its interface differs from the standard edge iterator.
   182      * Yes, it shouldn't.
   183      */
   184     class EdgeIt {
   185       friend class DirPath;
   186 
   187       int idx;
   188       const DirPath *p;
   189     public:
   190       /// Default constructor
   191       EdgeIt() {}
   192       /// Invalid constructor
   193       EdgeIt(Invalid) : idx(-1), p(0) {}
   194       /// Constructor with starting point
   195       EdgeIt(const DirPath &_p, int _idx = 0) :
   196 	idx(_idx), p(&_p) { validate(); }
   197 
   198       ///Validity check
   199       bool valid() const { return idx!=-1; }
   200 
   201       ///Conversion to Graph::Edge
   202       operator GraphEdge () const {
   203 	return valid() ? p->edges[idx] : INVALID;
   204       }
   205 
   206       /// Next edge
   207       EdgeIt& operator++() { ++idx; validate(); return *this; }
   208 
   209       /// Comparison operator
   210       bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   211       /// Comparison operator
   212       bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   213       /// Comparison operator
   214       bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   215 
   216     private:
   217       // FIXME: comparison between signed and unsigned...
   218       // Jo ez igy? Vagy esetleg legyen a length() int?
   219       void validate() { if( size_t(idx) >= p->length() ) idx=-1; }
   220     };
   221 
   222     /**
   223      * \brief Iterator class to iterate on the nodes of the paths
   224      * 
   225      * \ingroup paths
   226      * This class is used to iterate on the nodes of the paths
   227      *
   228      * Of course it converts to Graph::Node
   229      * 
   230      * \todo Its interface differs from the standard node iterator.
   231      * Yes, it shouldn't.
   232      */
   233     class NodeIt {
   234       friend class DirPath;
   235 
   236       int idx;
   237       const DirPath *p;
   238     public:
   239       /// Default constructor
   240       NodeIt() {}
   241       /// Invalid constructor
   242       NodeIt(Invalid) : idx(-1), p(0) {}
   243       /// Constructor with starting point
   244       NodeIt(const DirPath &_p, int _idx = 0) :
   245 	idx(_idx), p(&_p) { validate(); }
   246 
   247       ///Validity check
   248       bool valid() const { return idx!=-1; }
   249 
   250       ///Conversion to Graph::Node
   251       operator const GraphNode& () const {
   252 	if(idx >= p->length())
   253 	  return p->to();
   254 	else if(idx >= 0)
   255 	  return p->gr->tail(p->edges[idx]);
   256 	else
   257 	  return INVALID;
   258       }
   259       /// Next node
   260       NodeIt& operator++() { ++idx; validate(); return *this; }
   261 
   262       /// Comparison operator
   263       bool operator==(const NodeIt& e) const { return idx==e.idx; }
   264       /// Comparison operator
   265       bool operator!=(const NodeIt& e) const { return idx!=e.idx; }
   266       /// Comparison operator
   267       bool operator<(const NodeIt& e) const { return idx<e.idx; }
   268 
   269     private:
   270       void validate() { if( size_t(idx) > p->length() ) idx=-1; }
   271     };
   272 
   273     friend class Builder;    
   274 
   275     /**
   276      * \brief Class to build paths
   277      * 
   278      * \ingroup paths
   279      * This class is used to fill a path with edges.
   280      *
   281      * You can push new edges to the front and to the back of the path in
   282      * arbitrary order then you should commit these changes to the graph.
   283      *
   284      * Fundamentally, for most "Paths" (classes fulfilling the
   285      * PathConcept) while the builder is active (after the first modifying
   286      * operation and until the commit()) the original Path is in a
   287      * "transitional" state (operations on it have undefined result). But
   288      * in the case of DirPath the original path remains unchanged until the
   289      * commit. However we don't recomend that you use this feature.
   290      */
   291     class Builder {
   292       DirPath &P;
   293       Container front, back;
   294 
   295     public:
   296       ///\param _P the path you want to fill in.
   297       ///
   298       Builder(DirPath &_P) : P(_P) {}
   299 
   300       /// Sets the starting node of the path.
   301       
   302       /// Sets the starting node of the path. Edge added to the path
   303       /// afterwards have to be incident to this node.
   304       /// It should be called iff the path is empty and before any call to
   305       /// \ref pushFront() or \ref pushBack()
   306       void setStart(const GraphNode &) {}
   307 
   308       ///Push a new edge to the front of the path
   309 
   310       ///Push a new edge to the front of the path.
   311       ///\sa setStart
   312       void pushFront(const GraphEdge& e) {
   313 	if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) {
   314 	  fault("DirPath::Builder::pushFront: nonincident edge");
   315 	}
   316 	front.push_back(e);
   317       }
   318 
   319       ///Push a new edge to the back of the path
   320 
   321       ///Push a new edge to the back of the path.
   322       ///\sa setStart
   323       void pushBack(const GraphEdge& e) {
   324 	if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) {
   325 	  fault("DirPath::Builder::pushBack: nonincident edge");
   326 	}
   327 	back.push_back(e);
   328       }
   329 
   330       ///Commit the changes to the path.
   331       void commit() {
   332 	if( !(front.empty() && back.empty()) ) {
   333 	  Container tmp;
   334 	  tmp.reserve(front.size()+back.size()+P.length());
   335 	  tmp.insert(tmp.end(), front.rbegin(), front.rend());
   336 	  tmp.insert(tmp.end(), P.edges.begin(), P.edges.end());
   337 	  tmp.insert(tmp.end(), back.begin(), back.end());
   338 	  P.edges.swap(tmp);
   339 	  front.clear();
   340 	  back.clear();
   341 	}
   342       }
   343 
   344       // FIXME: Hmm, pontosan hogy is kene ezt csinalni?
   345       // Hogy kenyelmes egy ilyet hasznalni?
   346   
   347       ///Reserve storage in advance for the builder
   348 
   349       ///If you know an reasonable upper bound of the number of the edges
   350       ///to add, using this function you can speed up the building.
   351       void reserve(size_t r) {
   352 	front.reserve(r);
   353 	back.reserve(r);
   354       }
   355 
   356     private:
   357       bool empty() {
   358 	return front.empty() && back.empty() && P.empty();
   359       }
   360 
   361       GraphNode from() const {
   362 	if( ! front.empty() )
   363 	  return P.gr->tail(front[front.size()-1]);
   364 	else if( ! P.empty() )
   365 	  return P.gr->tail(P.edges[0]);
   366 	else if( ! back.empty() )
   367 	  return P.gr->tail(back[0]);
   368 	else
   369 	  return INVALID;
   370       }
   371       GraphNode to() const {
   372 	if( ! back.empty() )
   373 	  return P.gr->head(back[back.size()-1]);
   374 	else if( ! P.empty() )
   375 	  return P.gr->head(P.edges[P.length()-1]);
   376 	else if( ! front.empty() )
   377 	  return P.gr->head(front[0]);
   378 	else
   379 	  return INVALID;
   380       }
   381 
   382     };
   383 
   384   };
   385 
   386 
   387 
   388 
   389 
   390 
   391 
   392 
   393 
   394 
   395   /**********************************************************************/
   396 
   397 
   398   //! \brief A structure for representing undirected path in a graph.
   399   //!
   400   //! A structure for representing undirected path in a graph. Ie. this is
   401   //! a path in a \e directed graph but the edges should not be directed
   402   //! forward.
   403   //!
   404   //! \param Graph The graph type in which the path is.
   405   //! \param DM DebugMode, defaults to DefaultDebugMode.
   406   //! 
   407   //! In a sense, the path can be treated as a graph, for is has \c NodeIt
   408   //! and \c EdgeIt with the same usage. These types converts to the \c Node
   409   //! and \c Edge of the original graph.
   410   //!
   411   //! \todo Thoroughfully check all the range and consistency tests.
   412   template<typename Graph, typename DM = DefaultDebugMode>
   413   class UndirPath {
   414   public:
   415     /// Edge type of the underlying graph.
   416     typedef typename Graph::Edge GraphEdge;
   417      /// Node type of the underlying graph.
   418    typedef typename Graph::Node GraphNode;
   419     class NodeIt;
   420     class EdgeIt;
   421 
   422   protected:
   423     const Graph *gr;
   424     typedef std::vector<GraphEdge> Container;
   425     Container edges;
   426 
   427   public:
   428 
   429     /// \param _G The graph in which the path is.
   430     ///
   431     UndirPath(const Graph &_G) : gr(&_G) {}
   432 
   433     /// \brief Subpath constructor.
   434     ///
   435     /// Subpath defined by two nodes.
   436     /// \warning It is an error if the two edges are not in order!
   437     UndirPath(const UndirPath &P, const NodeIt &a, const NodeIt &b) {
   438       if( DM::range_check && (!a.valid() || !b.valid) ) {
   439 	// FIXME: this check should be more elaborate...
   440 	fault("UndirPath, subpath ctor: invalid bounding nodes");
   441       }
   442       gr = P.gr;
   443       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
   444     }
   445 
   446     /// \brief Subpath constructor.
   447     ///
   448     /// Subpath defined by two edges. Contains edges in [a,b)
   449     /// \warning It is an error if the two edges are not in order!
   450     UndirPath(const UndirPath &P, const EdgeIt &a, const EdgeIt &b) {
   451       if( DM::range_check && (!a.valid() || !b.valid) ) {
   452 	// FIXME: this check should be more elaborate...
   453 	fault("UndirPath, subpath ctor: invalid bounding nodes");
   454       }
   455       gr = P.gr;
   456       edges.insert(edges.end(), P.edges.begin()+a.idx, P.edges.begin()+b.idx);
   457     }
   458 
   459     /// Length of the path.
   460     size_t length() const { return edges.size(); }
   461     /// Returns whether the path is empty.
   462     bool empty() const { return edges.empty(); }
   463 
   464     /// Resets the path to an empty path.
   465     void clear() { edges.clear(); }
   466 
   467     /// \brief Starting point of the path.
   468     ///
   469     /// Starting point of the path.
   470     /// Returns INVALID if the path is empty.
   471     GraphNode from() const {
   472       return empty() ? INVALID : gr->tail(edges[0]);
   473     }
   474     /// \brief End point of the path.
   475     ///
   476     /// End point of the path.
   477     /// Returns INVALID if the path is empty.
   478     GraphNode to() const {
   479       return empty() ? INVALID : gr->head(edges[length()-1]);
   480     }
   481 
   482     /// \brief Initializes node or edge iterator to point to the first
   483     /// node or edge.
   484     ///
   485     /// \sa nth
   486     template<typename It>
   487     It& first(It &i) const { return i=It(*this); }
   488 
   489     /// \brief Initializes node iterator to point to the node of a given index.
   490     NodeIt& nth(NodeIt &i, int n) const {
   491       if( DM::range_check && (n<0 || n>int(length())) )
   492 	fault("UndirPath::nth: index out of range");
   493       return i=NodeIt(*this, n);
   494     }
   495 
   496     /// \brief Initializes edge iterator to point to the edge of a given index.
   497     EdgeIt& nth(EdgeIt &i, int n) const {
   498       if( DM::range_check && (n<0 || n>=int(length())) )
   499 	fault("UndirPath::nth: index out of range");
   500       return i=EdgeIt(*this, n);
   501     }
   502 
   503     /// Checks validity of a node or edge iterator.
   504     template<typename It>
   505     static
   506     bool valid(const It &i) { return i.valid(); }
   507 
   508     /// Steps the given node or edge iterator.
   509     template<typename It>
   510     static
   511     It& next(It &e) {
   512       if( DM::range_check && !e.valid() )
   513 	fault("UndirPath::next() on invalid iterator");
   514       return ++e;
   515     }
   516 
   517     /// \brief Returns node iterator pointing to the head node of the
   518     /// given edge iterator.
   519     NodeIt head(const EdgeIt& e) const {
   520       if( DM::range_check && !e.valid() )
   521 	fault("UndirPath::head() on invalid iterator");
   522       return NodeIt(*this, e.idx+1);
   523     }
   524 
   525     /// \brief Returns node iterator pointing to the tail node of the
   526     /// given edge iterator.
   527     NodeIt tail(const EdgeIt& e) const {
   528       if( DM::range_check && !e.valid() )
   529 	fault("UndirPath::tail() on invalid iterator");
   530       return NodeIt(*this, e.idx);
   531     }
   532 
   533 
   534 
   535     /**
   536      * \brief Iterator class to iterate on the edges of the paths
   537      * 
   538      * \ingroup paths
   539      * This class is used to iterate on the edges of the paths
   540      *
   541      * Of course it converts to Graph::Edge
   542      * 
   543      * \todo Its interface differs from the standard edge iterator.
   544      * Yes, it shouldn't.
   545      */
   546     class EdgeIt {
   547       friend class UndirPath;
   548 
   549       int idx;
   550       const UndirPath *p;
   551     public:
   552       /// Default constructor
   553       EdgeIt() {}
   554       /// Invalid constructor
   555       EdgeIt(Invalid) : idx(-1), p(0) {}
   556       /// Constructor with starting point
   557       EdgeIt(const UndirPath &_p, int _idx = 0) :
   558 	idx(_idx), p(&_p) { validate(); }
   559 
   560       ///Validity check
   561       bool valid() const { return idx!=-1; }
   562 
   563       ///Conversion to Graph::Edge
   564       operator GraphEdge () const {
   565 	return valid() ? p->edges[idx] : INVALID;
   566       }
   567       /// Next edge
   568      EdgeIt& operator++() { ++idx; validate(); return *this; }
   569 
   570       /// Comparison operator
   571       bool operator==(const EdgeIt& e) const { return idx==e.idx; }
   572       /// Comparison operator
   573       bool operator!=(const EdgeIt& e) const { return idx!=e.idx; }
   574       /// Comparison operator
   575       bool operator<(const EdgeIt& e) const { return idx<e.idx; }
   576 
   577     private:
   578       // FIXME: comparison between signed and unsigned...
   579       // Jo ez igy? Vagy esetleg legyen a length() int?
   580       void validate() { if( size_t(idx) >= p->length() ) idx=-1; }
   581     };
   582 
   583     /**
   584      * \brief Iterator class to iterate on the nodes of the paths
   585      * 
   586      * \ingroup paths
   587      * This class is used to iterate on the nodes of the paths
   588      *
   589      * Of course it converts to Graph::Node
   590      * 
   591      * \todo Its interface differs from the standard node iterator.
   592      * Yes, it shouldn't.
   593      */
   594     class NodeIt {
   595       friend class UndirPath;
   596 
   597       int idx;
   598       const UndirPath *p;
   599     public:
   600       /// Default constructor
   601       NodeIt() {}
   602       /// Invalid constructor
   603       NodeIt(Invalid) : idx(-1), p(0) {}
   604       /// Constructor with starting point
   605       NodeIt(const UndirPath &_p, int _idx = 0) :
   606 	idx(_idx), p(&_p) { validate(); }
   607 
   608       ///Validity check
   609       bool valid() const { return idx!=-1; }
   610 
   611       ///Conversion to Graph::Node
   612       operator const GraphNode& () const {
   613 	if(idx >= p->length())
   614 	  return p->to();
   615 	else if(idx >= 0)
   616 	  return p->gr->tail(p->edges[idx]);
   617 	else
   618 	  return INVALID;
   619       }
   620       /// Next node
   621       NodeIt& operator++() { ++idx; validate(); return *this; }
   622 
   623       /// Comparison operator
   624       bool operator==(const NodeIt& e) const { return idx==e.idx; }
   625       /// Comparison operator
   626       bool operator!=(const NodeIt& e) const { return idx!=e.idx; }
   627        /// Comparison operator
   628      bool operator<(const NodeIt& e) const { return idx<e.idx; }
   629 
   630     private:
   631       void validate() { if( size_t(idx) > p->length() ) idx=-1; }
   632     };
   633 
   634     friend class Builder;    
   635 
   636     /**
   637      * \brief Class to build paths
   638      * 
   639      * \ingroup paths
   640      * This class is used to fill a path with edges.
   641      *
   642      * You can push new edges to the front and to the back of the path in
   643      * arbitrary order then you should commit these changes to the graph.
   644      *
   645      * Fundamentally, for most "Paths" (classes fulfilling the
   646      * PathConcept) while the builder is active (after the first modifying
   647      * operation and until the commit()) the original Path is in a
   648      * "transitional" state (operations ot it have undefined result). But
   649      * in the case of UndirPath the original path is unchanged until the
   650      * commit. However we don't recomend that you use this feature.
   651      */
   652     class Builder {
   653       UndirPath &P;
   654       Container front, back;
   655 
   656     public:
   657       ///\param _P the path you want to fill in.
   658       ///
   659       Builder(UndirPath &_P) : P(_P) {}
   660 
   661       /// Sets the starting node of the path.
   662       
   663       /// Sets the starting node of the path. Edge added to the path
   664       /// afterwards have to be incident to this node.
   665       /// It should be called iff the path is empty and before any call to
   666       /// \ref pushFront() or \ref pushBack()
   667       void setStart(const GraphNode &) {}
   668 
   669       ///Push a new edge to the front of the path
   670 
   671       ///Push a new edge to the front of the path.
   672       ///\sa setStart
   673       void pushFront(const GraphEdge& e) {
   674 	if( DM::consistensy_check && !empty() && P.gr->head(e)!=from() ) {
   675 	  fault("UndirPath::Builder::pushFront: nonincident edge");
   676 	}
   677 	front.push_back(e);
   678       }
   679 
   680       ///Push a new edge to the back of the path
   681 
   682       ///Push a new edge to the back of the path.
   683       ///\sa setStart
   684       void pushBack(const GraphEdge& e) {
   685 	if( DM::consistensy_check && !empty() && P.gr->tail(e)!=to() ) {
   686 	  fault("UndirPath::Builder::pushBack: nonincident edge");
   687 	}
   688 	back.push_back(e);
   689       }
   690 
   691       ///Commit the changes to the path.
   692       void commit() {
   693 	if( !(front.empty() && back.empty()) ) {
   694 	  Container tmp;
   695 	  tmp.reserve(front.size()+back.size()+P.length());
   696 	  tmp.insert(tmp.end(), front.rbegin(), front.rend());
   697 	  tmp.insert(tmp.end(), P.edges.begin(), P.edges.end());
   698 	  tmp.insert(tmp.end(), back.begin(), back.end());
   699 	  P.edges.swap(tmp);
   700 	  front.clear();
   701 	  back.clear();
   702 	}
   703       }
   704 
   705       // FIXME: Hmm, pontosan hogy is kene ezt csinalni?
   706       // Hogy kenyelmes egy ilyet hasznalni?
   707 
   708       ///Reserve storage in advance for the builder
   709 
   710       ///If you know an reasonable upper bound of the number of the edges
   711       ///to add, using this function you can speed up the building.
   712        void reserve(size_t r) {
   713 	front.reserve(r);
   714 	back.reserve(r);
   715       }
   716 
   717     private:
   718       bool empty() {
   719 	return front.empty() && back.empty() && P.empty();
   720       }
   721 
   722       GraphNode from() const {
   723 	if( ! front.empty() )
   724 	  return P.gr->tail(front[front.size()-1]);
   725 	else if( ! P.empty() )
   726 	  return P.gr->tail(P.edges[0]);
   727 	else if( ! back.empty() )
   728 	  return P.gr->tail(back[0]);
   729 	else
   730 	  return INVALID;
   731       }
   732       GraphNode to() const {
   733 	if( ! back.empty() )
   734 	  return P.gr->head(back[back.size()-1]);
   735 	else if( ! P.empty() )
   736 	  return P.gr->head(P.edges[P.length()-1]);
   737 	else if( ! front.empty() )
   738 	  return P.gr->head(front[0]);
   739 	else
   740 	  return INVALID;
   741       }
   742 
   743     };
   744 
   745   };
   746 
   747 
   748 
   749 
   750 
   751 
   752 
   753 
   754 
   755 
   756   /**********************************************************************/
   757 
   758 
   759   /* Ennek az allocatorosdinak sokkal jobban utana kene nezni a hasznalata
   760      elott. Eleg bonyinak nez ki, ahogyan azokat az STL-ben hasznaljak. */
   761 
   762   template<typename Graph>
   763   class DynamicPath {
   764 
   765   public:
   766     typedef typename Graph::Edge GraphEdge;
   767     typedef typename Graph::Node GraphNode;
   768     class NodeIt;
   769     class EdgeIt;
   770 
   771   protected:
   772     Graph& G;
   773     // FIXME: ehelyett eleg lenne tarolni ket boolt: a ket szelso el
   774     // iranyitasat:
   775     GraphNode _first, _last;
   776     typedef std::deque<GraphEdge> Container;
   777     Container edges;
   778 
   779   public:
   780 
   781     DynamicPath(Graph &_G) : G(_G), _first(INVALID), _last(INVALID) {}
   782 
   783     /// Subpath defined by two nodes.
   784     /// Nodes may be in reversed order, then
   785     /// we contstruct the reversed path.
   786     DynamicPath(const DynamicPath &P, const NodeIt &a, const NodeIt &b);
   787     /// Subpath defined by two edges. Contains edges in [a,b)
   788     /// It is an error if the two edges are not in order!
   789     DynamicPath(const DynamicPath &P, const EdgeIt &a, const EdgeIt &b);
   790     
   791     size_t length() const { return edges.size(); }
   792     GraphNode from() const { return _first; }
   793     GraphNode to() const { return _last; }
   794 
   795     NodeIt& first(NodeIt &n) const { return nth(n, 0); }
   796     EdgeIt& first(EdgeIt &e) const { return nth(e, 0); }
   797     template<typename It>
   798     It first() const { 
   799       It e;
   800       first(e);
   801       return e; 
   802     }
   803 
   804     NodeIt& nth(NodeIt &, size_t) const;
   805     EdgeIt& nth(EdgeIt &, size_t) const;
   806     template<typename It>
   807     It nth(size_t n) const { 
   808       It e;
   809       nth(e, n);
   810       return e; 
   811     }
   812 
   813     bool valid(const NodeIt &n) const { return n.idx <= length(); }
   814     bool valid(const EdgeIt &e) const { return e.it < edges.end(); }
   815 
   816     bool isForward(const EdgeIt &e) const { return e.forw; }
   817 
   818     /// index of a node on the path. Returns length+2 for the invalid NodeIt
   819     int index(const NodeIt &n) const { return n.idx; }
   820     /// index of an edge on the path. Returns length+1 for the invalid EdgeIt
   821     int index(const EdgeIt &e) const { return e.it - edges.begin(); }
   822 
   823     EdgeIt& next(EdgeIt &e) const;
   824     NodeIt& next(NodeIt &n) const;
   825     template <typename It>
   826     It getNext(It it) const {
   827       It tmp(it); return next(tmp);
   828     }
   829 
   830     // A path is constructed using the following four functions.
   831     // They return false if the requested operation is inconsistent
   832     // with the path constructed so far.
   833     // If your path has only one edge you MUST set either "from" or "to"!
   834     // So you probably SHOULD call it in any case to be safe (and check the
   835     // returned value to check if your path is consistent with your idea).
   836     bool pushFront(const GraphEdge &e);
   837     bool pushBack(const GraphEdge &e);
   838     bool setFrom(const GraphNode &n);
   839     bool setTo(const GraphNode &n);
   840 
   841     // WARNING: these two functions return the head/tail of an edge with
   842     // respect to the direction of the path!
   843     // So G.head(P.graphEdge(e)) == P.graphNode(P.head(e)) holds only if 
   844     // P.forward(e) is true (or the edge is a loop)!
   845     NodeIt head(const EdgeIt& e) const;
   846     NodeIt tail(const EdgeIt& e) const;
   847 
   848     // FIXME: ezeknek valami jobb nev kellene!!!
   849     GraphEdge graphEdge(const EdgeIt& e) const;
   850     GraphNode graphNode(const NodeIt& n) const;
   851 
   852 
   853     /*** Iterator classes ***/
   854     class EdgeIt {
   855       friend class DynamicPath;
   856 
   857       typename Container::const_iterator it;
   858       bool forw;
   859     public:
   860       // FIXME: jarna neki ilyen is...
   861       // EdgeIt(Invalid);
   862 
   863       bool forward() const { return forw; }
   864 
   865       bool operator==(const EdgeIt& e) const { return it==e.it; }
   866       bool operator!=(const EdgeIt& e) const { return it!=e.it; }
   867       bool operator<(const EdgeIt& e) const { return it<e.it; }
   868     };
   869 
   870     class NodeIt {
   871       friend class DynamicPath;
   872 
   873       size_t idx;
   874       bool tail;  // Is this node the tail of the edge with same idx?
   875 
   876     public:
   877       // FIXME: jarna neki ilyen is...
   878       // NodeIt(Invalid);
   879 
   880       bool operator==(const NodeIt& n) const { return idx==n.idx; }
   881       bool operator!=(const NodeIt& n) const { return idx!=n.idx; }
   882       bool operator<(const NodeIt& n) const { return idx<n.idx; }
   883     };
   884 
   885   private:
   886     bool edgeIncident(const GraphEdge &e, const GraphNode &a,
   887 		      GraphNode &b);
   888     bool connectTwoEdges(const GraphEdge &e, const GraphEdge &f);
   889   };
   890 
   891   template<typename Gr>
   892   typename DynamicPath<Gr>::EdgeIt&
   893   DynamicPath<Gr>::next(DynamicPath::EdgeIt &e) const {
   894     if( e.it == edges.end() ) 
   895       return e;
   896 
   897     GraphNode common_node = ( e.forw ? G.head(*e.it) : G.tail(*e.it) );
   898     ++e.it;
   899 
   900     // Invalid edgeit is always forward :)
   901     if( e.it == edges.end() ) {
   902       e.forw = true;
   903       return e;
   904     }
   905 
   906     e.forw = ( G.tail(*e.it) == common_node );
   907     return e;
   908   }
   909 
   910   template<typename Gr>
   911   typename DynamicPath<Gr>::NodeIt& DynamicPath<Gr>::next(NodeIt &n) const {
   912     if( n.idx >= length() ) {
   913       // FIXME: invalid
   914       n.idx = length()+1;
   915       return n;
   916     }
   917 
   918     
   919     GraphNode next_node = ( n.tail ? G.head(edges[n.idx]) :
   920 			      G.tail(edges[n.idx]) );
   921     ++n.idx;
   922     if( n.idx < length() ) {
   923       n.tail = ( next_node == G.tail(edges[n.idx]) );
   924     }
   925     else {
   926       n.tail = true;
   927     }
   928 
   929     return n;
   930   }
   931 
   932   template<typename Gr>
   933   bool DynamicPath<Gr>::edgeIncident(const GraphEdge &e, const GraphNode &a,
   934 			  GraphNode &b) {
   935     if( G.tail(e) == a ) {
   936       b=G.head(e);
   937       return true;
   938     }
   939     if( G.head(e) == a ) {
   940       b=G.tail(e);
   941       return true;
   942     }
   943     return false;
   944   }
   945 
   946   template<typename Gr>
   947   bool DynamicPath<Gr>::connectTwoEdges(const GraphEdge &e,
   948 			     const GraphEdge &f) {
   949     if( edgeIncident(f, G.tail(e), _last) ) {
   950       _first = G.head(e);
   951       return true;
   952     }
   953     if( edgeIncident(f, G.head(e), _last) ) {
   954       _first = G.tail(e);
   955       return true;
   956     }
   957     return false;
   958   }
   959 
   960   template<typename Gr>
   961   bool DynamicPath<Gr>::pushFront(const GraphEdge &e) {
   962     if( G.valid(_first) ) {
   963 	if( edgeIncident(e, _first, _first) ) {
   964 	  edges.push_front(e);
   965 	  return true;
   966 	}
   967 	else
   968 	  return false;
   969     }
   970     else if( length() < 1 || connectTwoEdges(e, edges[0]) ) {
   971       edges.push_front(e);
   972       return true;
   973     }
   974     else
   975       return false;
   976   }
   977 
   978   template<typename Gr>
   979   bool DynamicPath<Gr>::pushBack(const GraphEdge &e) {
   980     if( G.valid(_last) ) {
   981 	if( edgeIncident(e, _last, _last) ) {
   982 	  edges.push_back(e);
   983 	  return true;
   984 	}
   985 	else
   986 	  return false;
   987     }
   988     else if( length() < 1 || connectTwoEdges(edges[0], e) ) {
   989       edges.push_back(e);
   990       return true;
   991     }
   992     else
   993       return false;
   994   }
   995 
   996 
   997   template<typename Gr>
   998   bool DynamicPath<Gr>::setFrom(const GraphNode &n) {
   999     if( G.valid(_first) ) {
  1000       return _first == n;
  1001     }
  1002     else {
  1003       if( length() > 0) {
  1004 	if( edgeIncident(edges[0], n, _last) ) {
  1005 	  _first = n;
  1006 	  return true;
  1007 	}
  1008 	else return false;
  1009       }
  1010       else {
  1011 	_first = _last = n;
  1012 	return true;
  1013       }
  1014     }
  1015   }
  1016 
  1017   template<typename Gr>
  1018   bool DynamicPath<Gr>::setTo(const GraphNode &n) {
  1019     if( G.valid(_last) ) {
  1020       return _last == n;
  1021     }
  1022     else {
  1023       if( length() > 0) {
  1024 	if( edgeIncident(edges[0], n, _first) ) {
  1025 	  _last = n;
  1026 	  return true;
  1027 	}
  1028 	else return false;
  1029       }
  1030       else {
  1031 	_first = _last = n;
  1032 	return true;
  1033       }
  1034     }
  1035   }
  1036 
  1037 
  1038   template<typename Gr>
  1039   typename DynamicPath<Gr>::NodeIt
  1040   DynamicPath<Gr>::tail(const EdgeIt& e) const {
  1041     NodeIt n;
  1042 
  1043     if( e.it == edges.end() ) {
  1044       // FIXME: invalid-> invalid
  1045       n.idx = length() + 1;
  1046       n.tail = true;
  1047       return n;
  1048     }
  1049 
  1050     n.idx = e.it-edges.begin();
  1051     n.tail = e.forw;
  1052     return n;
  1053   }
  1054 
  1055   template<typename Gr>
  1056   typename DynamicPath<Gr>::NodeIt
  1057   DynamicPath<Gr>::head(const EdgeIt& e) const {
  1058     if( e.it == edges.end()-1 ) {
  1059       return _last;
  1060     }
  1061 
  1062     EdgeIt next_edge = e;
  1063     next(next_edge);
  1064     return tail(next_edge);
  1065   }
  1066       
  1067   template<typename Gr>
  1068   typename DynamicPath<Gr>::GraphEdge
  1069   DynamicPath<Gr>::graphEdge(const EdgeIt& e) const {
  1070     if( e.it != edges.end() ) {
  1071       return *e.it;
  1072     }
  1073     else {
  1074       return INVALID;
  1075     }
  1076   }
  1077   
  1078   template<typename Gr>
  1079   typename DynamicPath<Gr>::GraphNode
  1080   DynamicPath<Gr>::graphNode(const NodeIt& n) const {
  1081     if( n.idx < length() ) {
  1082       return n.tail ? G.tail(edges[n.idx]) : G.head(edges[n.idx]);
  1083     }
  1084     else if( n.idx == length() ) {
  1085       return _last;
  1086     }
  1087     else {
  1088       return INVALID;
  1089     }
  1090   }
  1091 
  1092   template<typename Gr>
  1093   typename DynamicPath<Gr>::EdgeIt&
  1094   DynamicPath<Gr>::nth(EdgeIt &e, size_t k) const {
  1095     if( k>=length() ) {
  1096       // FIXME: invalid EdgeIt
  1097       e.it = edges.end();
  1098       e.forw = true;
  1099       return e;
  1100     }
  1101 
  1102     e.it = edges.begin()+k;
  1103     if(k==0) {
  1104       e.forw = ( G.tail(*e.it) == _first );
  1105     }
  1106     else {
  1107       e.forw = ( G.tail(*e.it) == G.tail(edges[k-1]) ||
  1108 		 G.tail(*e.it) == G.head(edges[k-1]) );
  1109     }
  1110     return e;
  1111   }
  1112     
  1113   template<typename Gr>
  1114   typename DynamicPath<Gr>::NodeIt&
  1115   DynamicPath<Gr>::nth(NodeIt &n, size_t k) const {
  1116     if( k>length() ) {
  1117       // FIXME: invalid NodeIt
  1118       n.idx = length()+1;
  1119       n.tail = true;
  1120       return n;
  1121     }
  1122     if( k==length() ) {
  1123       n.idx = length();
  1124       n.tail = true;
  1125       return n;
  1126     }
  1127     n = tail(nth<EdgeIt>(k));
  1128     return n;
  1129   }
  1130 
  1131   // Reszut konstruktorok:
  1132 
  1133 
  1134   template<typename Gr>
  1135   DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const EdgeIt &a,
  1136 			       const EdgeIt &b) :
  1137     G(P.G), edges(a.it, b.it)    // WARNING: if b.it < a.it this will blow up! 
  1138   {
  1139     if( G.valid(P._first) && a.it < P.edges.end() ) {
  1140       _first = ( a.forw ? G.tail(*a.it) : G.head(*a.it) );
  1141       if( b.it < P.edges.end() ) {
  1142 	_last = ( b.forw ? G.tail(*b.it) : G.head(*b.it) );
  1143       }
  1144       else {
  1145 	_last = P._last;
  1146       }
  1147     }
  1148   }
  1149 
  1150   template<typename Gr>
  1151   DynamicPath<Gr>::DynamicPath(const DynamicPath &P, const NodeIt &a,
  1152 			       const NodeIt &b) : G(P.G)
  1153   {
  1154     if( !P.valid(a) || !P.valid(b) )
  1155       return;
  1156 
  1157     int ai = a.idx, bi = b.idx;
  1158     if( bi<ai )
  1159       std::swap(ai,bi);
  1160     
  1161     edges.resize(bi-ai);
  1162     copy(P.edges.begin()+ai, P.edges.begin()+bi, edges.begin());
  1163 
  1164     _first = P.graphNode(a);
  1165     _last = P.graphNode(b);
  1166   }
  1167 
  1168   ///@}
  1169 
  1170 } // namespace hugo
  1171 
  1172 #endif // HUGO_PATH_H