lemon/johnson.h
author deba
Wed, 02 Nov 2005 15:28:37 +0000
changeset 1755 bf267b301a5e
parent 1747 bccf2379b5dd
child 1757 bd4199049036
permissions -rw-r--r--
Make constructor explicit
Indentation changed
     1 /* -*- C++ -*-
     2  * lemon/johnson.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_JOHNSON_H
    18 #define LEMON_JOHNSON_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief Johnson algorithm.
    23 ///
    24 
    25 #include <lemon/list_graph.h>
    26 #include <lemon/graph_utils.h>
    27 #include <lemon/dijkstra.h>
    28 #include <lemon/belmann_ford.h>
    29 #include <lemon/invalid.h>
    30 #include <lemon/error.h>
    31 #include <lemon/maps.h>
    32 #include <lemon/matrix_maps.h>
    33 
    34 #include <limits>
    35 
    36 namespace lemon {
    37 
    38   /// \brief Default OperationTraits for the Johnson algorithm class.
    39   ///  
    40   /// It defines all computational operations and constants which are
    41   /// used in the Floyd-Warshall algorithm. The default implementation
    42   /// is based on the numeric_limits class. If the numeric type does not
    43   /// have infinity value then the maximum value is used as extremal
    44   /// infinity value.
    45   template <
    46     typename Value, 
    47     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    48   struct JohnsonDefaultOperationTraits {
    49     /// \brief Gives back the zero value of the type.
    50     static Value zero() {
    51       return static_cast<Value>(0);
    52     }
    53     /// \brief Gives back the positive infinity value of the type.
    54     static Value infinity() {
    55       return std::numeric_limits<Value>::infinity();
    56     }
    57     /// \brief Gives back the sum of the given two elements.
    58     static Value plus(const Value& left, const Value& right) {
    59       return left + right;
    60     }
    61     /// \brief Gives back true only if the first value less than the second.
    62     static bool less(const Value& left, const Value& right) {
    63       return left < right;
    64     }
    65   };
    66 
    67   template <typename Value>
    68   struct JohnsonDefaultOperationTraits<Value, false> {
    69     static Value zero() {
    70       return static_cast<Value>(0);
    71     }
    72     static Value infinity() {
    73       return std::numeric_limits<Value>::max();
    74     }
    75     static Value plus(const Value& left, const Value& right) {
    76       if (left == infinity() || right == infinity()) return infinity();
    77       return left + right;
    78     }
    79     static bool less(const Value& left, const Value& right) {
    80       return left < right;
    81     }
    82   };
    83   
    84   /// \brief Default traits class of Johnson class.
    85   ///
    86   /// Default traits class of Johnson class.
    87   /// \param _Graph Graph type.
    88   /// \param _LegthMap Type of length map.
    89   template<class _Graph, class _LengthMap>
    90   struct JohnsonDefaultTraits {
    91     /// The graph type the algorithm runs on. 
    92     typedef _Graph Graph;
    93 
    94     /// \brief The type of the map that stores the edge lengths.
    95     ///
    96     /// The type of the map that stores the edge lengths.
    97     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    98     typedef _LengthMap LengthMap;
    99 
   100     // The type of the length of the edges.
   101     typedef typename _LengthMap::Value Value;
   102 
   103     /// \brief Operation traits for belmann-ford algorithm.
   104     ///
   105     /// It defines the infinity type on the given Value type
   106     /// and the used operation.
   107     /// \see JohnsonDefaultOperationTraits
   108     typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   109 
   110     /// The cross reference type used by heap.
   111 
   112     /// The cross reference type used by heap.
   113     /// Usually it is \c Graph::NodeMap<int>.
   114     typedef typename Graph::template NodeMap<int> HeapCrossRef;
   115 
   116     ///Instantiates a HeapCrossRef.
   117 
   118     ///This function instantiates a \ref HeapCrossRef. 
   119     /// \param graph is the graph, to which we would like to define the 
   120     /// HeapCrossRef.
   121     static HeapCrossRef *createHeapCrossRef(const Graph& graph) {
   122       return new HeapCrossRef(graph);
   123     }
   124     
   125     ///The heap type used by Dijkstra algorithm.
   126 
   127     ///The heap type used by Dijkstra algorithm.
   128     ///
   129     ///\sa BinHeap
   130     ///\sa Dijkstra
   131     typedef BinHeap<typename Graph::Node, typename LengthMap::Value,
   132 		    HeapCrossRef, std::less<Value> > Heap;
   133 
   134     ///Instantiates a Heap.
   135 
   136     ///This function instantiates a \ref Heap. 
   137     /// \param crossRef The cross reference for the heap.
   138     static Heap *createHeap(HeapCrossRef& crossRef) {
   139       return new Heap(crossRef);
   140     }
   141  
   142     /// \brief The type of the matrix map that stores the last edges of the 
   143     /// shortest paths.
   144     /// 
   145     /// The type of the map that stores the last edges of the shortest paths.
   146     /// It must be a matrix map with \c Graph::Edge value type.
   147     ///
   148     typedef DynamicMatrixMap<Graph, typename Graph::Node, 
   149 			     typename Graph::Edge> PredMap;
   150 
   151     /// \brief Instantiates a PredMap.
   152     /// 
   153     /// This function instantiates a \ref PredMap. 
   154     /// \param G is the graph, to which we would like to define the PredMap.
   155     /// \todo The graph alone may be insufficient for the initialization
   156     static PredMap *createPredMap(const Graph& graph) {
   157       return new PredMap(graph);
   158     }
   159 
   160     /// \brief The type of the matrix map that stores the dists of the nodes.
   161     ///
   162     /// The type of the matrix map that stores the dists of the nodes.
   163     /// It must meet the \ref concept::WriteMatrixMap "WriteMatrixMap" concept.
   164     ///
   165     typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
   166     
   167     /// \brief Instantiates a DistMap.
   168     ///
   169     /// This function instantiates a \ref DistMap. 
   170     /// \param G is the graph, to which we would like to define the 
   171     /// \ref DistMap
   172     static DistMap *createDistMap(const _Graph& graph) {
   173       return new DistMap(graph);
   174     }
   175 
   176   };
   177 
   178   /// \brief %Johnson algorithm class.
   179   ///
   180   /// \ingroup flowalgs
   181   /// This class provides an efficient implementation of \c %Johnson 
   182   /// algorithm. The edge lengths are passed to the algorithm using a
   183   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   184   /// kind of length.
   185   ///
   186   /// The algorithm solves the shortest path problem for each pairs
   187   /// of node when the edges can have negative length but the graph should
   188   /// not contain cycles with negative sum of length. If we can assume
   189   /// that all edge is non-negative in the graph then the dijkstra algorithm
   190   /// should be used from each node.
   191   ///
   192   /// The complexity of this algorithm is $O(n^2 * log(n) + n * log(n) * e)$ or
   193   /// with fibonacci heap O(n^2 * log(n) + n * e). Usually the fibonacci heap
   194   /// implementation is slower than either binary heap implementation or the 
   195   /// Floyd-Warshall algorithm. 
   196   ///
   197   /// The type of the length is determined by the
   198   /// \ref concept::ReadMap::Value "Value" of the length map.
   199   ///
   200   /// \param _Graph The graph type the algorithm runs on. The default value
   201   /// is \ref ListGraph. The value of _Graph is not used directly by
   202   /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   203   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   204   /// edges. It is read once for each edge, so the map may involve in
   205   /// relatively time consuming process to compute the edge length if
   206   /// it is necessary. The default map type is \ref
   207   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   208   /// of _LengthMap is not used directly by Johnson, it is only passed 
   209   /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   210   /// various data types used by the algorithm.  The default traits
   211   /// class is \ref JohnsonDefaultTraits
   212   /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   213   /// JohnsonDefaultTraits for the documentation of a Johnson traits
   214   /// class.
   215   ///
   216   /// \author Balazs Dezso
   217 
   218 #ifdef DOXYGEN
   219   template <typename _Graph, typename _LengthMap, typename _Traits>
   220 #else
   221   template <typename _Graph=ListGraph,
   222 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   223 	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   224 #endif
   225   class Johnson {
   226   public:
   227     
   228     /// \brief \ref Exception for uninitialized parameters.
   229     ///
   230     /// This error represents problems in the initialization
   231     /// of the parameters of the algorithms.
   232 
   233     class UninitializedParameter : public lemon::UninitializedParameter {
   234     public:
   235       virtual const char* exceptionName() const {
   236 	return "lemon::Johnson::UninitializedParameter";
   237       }
   238     };
   239 
   240     typedef _Traits Traits;
   241     ///The type of the underlying graph.
   242     typedef typename _Traits::Graph Graph;
   243 
   244     typedef typename Graph::Node Node;
   245     typedef typename Graph::NodeIt NodeIt;
   246     typedef typename Graph::Edge Edge;
   247     typedef typename Graph::EdgeIt EdgeIt;
   248     
   249     /// \brief The type of the length of the edges.
   250     typedef typename _Traits::LengthMap::Value Value;
   251     /// \brief The type of the map that stores the edge lengths.
   252     typedef typename _Traits::LengthMap LengthMap;
   253     /// \brief The type of the map that stores the last
   254     /// edges of the shortest paths. The type of the PredMap
   255     /// is a matrix map for Edges
   256     typedef typename _Traits::PredMap PredMap;
   257     /// \brief The type of the map that stores the dists of the nodes.
   258     /// The type of the DistMap is a matrix map for Values
   259     typedef typename _Traits::DistMap DistMap;
   260     /// \brief The operation traits.
   261     typedef typename _Traits::OperationTraits OperationTraits;
   262     ///The cross reference type used for the current heap.
   263     typedef typename _Traits::HeapCrossRef HeapCrossRef;
   264     ///The heap type used by the dijkstra algorithm.
   265     typedef typename _Traits::Heap Heap;
   266   private:
   267     /// Pointer to the underlying graph.
   268     const Graph *graph;
   269     /// Pointer to the length map
   270     const LengthMap *length;
   271     ///Pointer to the map of predecessors edges.
   272     PredMap *_pred;
   273     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   274     bool local_pred;
   275     ///Pointer to the map of distances.
   276     DistMap *_dist;
   277     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   278     bool local_dist;
   279     ///Pointer to the heap cross references.
   280     HeapCrossRef *_heap_cross_ref;
   281     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   282     bool local_heap_cross_ref;
   283     ///Pointer to the heap.
   284     Heap *_heap;
   285     ///Indicates if \ref _heap is locally allocated (\c true) or not.
   286     bool local_heap;
   287 
   288     /// Creates the maps if necessary.
   289     void create_maps() {
   290       if(!_pred) {
   291 	local_pred = true;
   292 	_pred = Traits::createPredMap(*graph);
   293       }
   294       if(!_dist) {
   295 	local_dist = true;
   296 	_dist = Traits::createDistMap(*graph);
   297       }
   298       if (!_heap_cross_ref) {
   299 	local_heap_cross_ref = true;
   300 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
   301       }
   302       if (!_heap) {
   303 	local_heap = true;
   304 	_heap = Traits::createHeap(*_heap_cross_ref);
   305       }
   306     }
   307 
   308   public :
   309 
   310     typedef Johnson Create;
   311  
   312     /// \name Named template parameters
   313 
   314     ///@{
   315 
   316     template <class T>
   317     struct DefPredMapTraits : public Traits {
   318       typedef T PredMap;
   319       static PredMap *createPredMap(const Graph& graph) {
   320 	throw UninitializedParameter();
   321       }
   322     };
   323 
   324     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   325     /// type
   326     /// \ref named-templ-param "Named parameter" for setting PredMap type
   327     ///
   328     template <class T>
   329     struct DefPredMap 
   330       : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
   331       typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
   332     };
   333     
   334     template <class T>
   335     struct DefDistMapTraits : public Traits {
   336       typedef T DistMap;
   337       static DistMap *createDistMap(const Graph& graph) {
   338 	throw UninitializedParameter();
   339       }
   340     };
   341     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   342     /// type
   343     ///
   344     /// \ref named-templ-param "Named parameter" for setting DistMap type
   345     ///
   346     template <class T>
   347     struct DefDistMap 
   348       : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
   349       typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
   350     };
   351     
   352     template <class T>
   353     struct DefOperationTraitsTraits : public Traits {
   354       typedef T OperationTraits;
   355     };
   356     
   357     /// \brief \ref named-templ-param "Named parameter" for setting 
   358     /// OperationTraits type
   359     ///
   360     /// \ref named-templ-param "Named parameter" for setting 
   361     /// OperationTraits type
   362     template <class T>
   363     struct DefOperationTraits
   364       : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   365       typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
   366     };
   367 
   368     template <class H, class CR>
   369     struct DefHeapTraits : public Traits {
   370       typedef CR HeapCrossRef;
   371       typedef H Heap;
   372       static HeapCrossRef *createHeapCrossRef(const Graph &) {
   373 	throw UninitializedParameter();
   374       }
   375       static Heap *createHeap(HeapCrossRef &) 
   376       {
   377 	throw UninitializedParameter();
   378       }
   379     };
   380     ///\brief \ref named-templ-param "Named parameter" for setting heap and 
   381     ///cross reference type
   382 
   383     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   384     ///reference type
   385     ///
   386     template <class H, class CR = typename Graph::template NodeMap<int> >
   387     struct DefHeap
   388       : public Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > { 
   389       typedef Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
   390     };
   391 
   392     template <class H, class CR>
   393     struct DefStandardHeapTraits : public Traits {
   394       typedef CR HeapCrossRef;
   395       typedef H Heap;
   396       static HeapCrossRef *createHeapCrossRef(const Graph &G) {
   397 	return new HeapCrossRef(G);
   398       }
   399       static Heap *createHeap(HeapCrossRef &R) 
   400       {
   401 	return new Heap(R);
   402       }
   403     };
   404     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   405     ///reference type with automatic allocation
   406 
   407     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   408     ///reference type. It can allocate the heap and the cross reference 
   409     ///object if the cross reference's constructor waits for the graph as 
   410     ///parameter and the heap's constructor waits for the cross reference.
   411     template <class H, class CR = typename Graph::template NodeMap<int> >
   412     struct DefStandardHeap
   413       : public Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > { 
   414       typedef Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > 
   415       Create;
   416     };
   417     
   418     ///@}
   419 
   420   protected:
   421 
   422     Johnson() {}
   423 
   424   public:      
   425 
   426     typedef Johnson Create;
   427     
   428     /// \brief Constructor.
   429     ///
   430     /// \param _graph the graph the algorithm will run on.
   431     /// \param _length the length map used by the algorithm.
   432     Johnson(const Graph& _graph, const LengthMap& _length) :
   433       graph(&_graph), length(&_length),
   434       _pred(0), local_pred(false),
   435       _dist(0), local_dist(false),
   436       _heap_cross_ref(0), local_heap_cross_ref(false),
   437       _heap(0), local_heap(false) {}
   438     
   439     ///Destructor.
   440     ~Johnson() {
   441       if (local_pred) delete _pred;
   442       if (local_dist) delete _dist;
   443       if (local_heap_cross_ref) delete _heap_cross_ref;
   444       if (local_heap) delete _heap;
   445     }
   446 
   447     /// \brief Sets the length map.
   448     ///
   449     /// Sets the length map.
   450     /// \return \c (*this)
   451     Johnson &lengthMap(const LengthMap &m) {
   452       length = &m;
   453       return *this;
   454     }
   455 
   456     /// \brief Sets the map storing the predecessor edges.
   457     ///
   458     /// Sets the map storing the predecessor edges.
   459     /// If you don't use this function before calling \ref run(),
   460     /// it will allocate one. The destuctor deallocates this
   461     /// automatically allocated map, of course.
   462     /// \return \c (*this)
   463     Johnson &predMap(PredMap &m) {
   464       if(local_pred) {
   465 	delete _pred;
   466 	local_pred=false;
   467       }
   468       _pred = &m;
   469       return *this;
   470     }
   471 
   472     /// \brief Sets the map storing the distances calculated by the algorithm.
   473     ///
   474     /// Sets the map storing the distances calculated by the algorithm.
   475     /// If you don't use this function before calling \ref run(),
   476     /// it will allocate one. The destuctor deallocates this
   477     /// automatically allocated map, of course.
   478     /// \return \c (*this)
   479     Johnson &distMap(DistMap &m) {
   480       if(local_dist) {
   481 	delete _dist;
   482 	local_dist=false;
   483       }
   484       _dist = &m;
   485       return *this;
   486     }
   487 
   488   protected:
   489     
   490     template <typename PotentialMap>
   491     void shiftedRun(const PotentialMap& potential) {
   492       
   493       typename Graph::template EdgeMap<Value> shiftlen(*graph);
   494       for (EdgeIt it(*graph);  it != INVALID; ++it) {
   495       	shiftlen[it] = (*length)[it] 
   496 	  + potential[graph->source(it)] 
   497 	  - potential[graph->target(it)];
   498       }
   499       
   500       typename Dijkstra<Graph, typename Graph::template EdgeMap<Value> >::
   501 	template DefHeap<Heap, HeapCrossRef>::
   502 	Create dijkstra(*graph, shiftlen);
   503 
   504       dijkstra.heap(*_heap, *_heap_cross_ref);
   505       
   506       for (NodeIt it(*graph); it != INVALID; ++it) {
   507 	dijkstra.run(it);
   508 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   509 	  if (dijkstra.reached(jt)) {
   510 	    _dist->set(it, jt, dijkstra.dist(jt) + 
   511 		       potential[jt] - potential[it]);
   512 	    _pred->set(it, jt, dijkstra.pred(jt));
   513 	  } else {
   514 	    _dist->set(it, jt, OperationTraits::infinity());
   515 	    _pred->set(it, jt, INVALID);
   516 	  }
   517 	}
   518       }
   519     }
   520 
   521   public:    
   522 
   523     ///\name Execution control
   524     /// The simplest way to execute the algorithm is to use
   525     /// one of the member functions called \c run(...).
   526     /// \n
   527     /// If you need more control on the execution,
   528     /// Finally \ref start() will perform the actual path
   529     /// computation.
   530 
   531     ///@{
   532 
   533     /// \brief Initializes the internal data structures.
   534     /// 
   535     /// Initializes the internal data structures.
   536     void init() {
   537       create_maps();
   538     }
   539 
   540     /// \brief Executes the algorithm.
   541     ///
   542     /// This method runs the %Johnson algorithm in order to compute 
   543     /// the shortest path to each node pairs. The algorithm 
   544     /// computes 
   545     /// - The shortest path tree for each node.
   546     /// - The distance between each node pairs.
   547     void start() {
   548 
   549       typedef typename BelmannFord<Graph, LengthMap>::
   550       template DefOperationTraits<OperationTraits>::
   551       template DefPredMap<NullMap<Node, Edge> >::
   552       Create BelmannFordType;
   553       
   554       BelmannFordType belmannford(*graph, *length);
   555 
   556       NullMap<Node, Edge> predMap;
   557 
   558       belmannford.predMap(predMap);
   559       
   560       belmannford.init(OperationTraits::zero());
   561       belmannford.start();
   562 
   563       shiftedRun(belmannford.distMap());
   564     }
   565 
   566     /// \brief Executes the algorithm and checks the negatvie cycles.
   567     ///
   568     /// This method runs the %Johnson algorithm in order to compute 
   569     /// the shortest path to each node pairs. If the graph contains
   570     /// negative cycle it gives back false. The algorithm 
   571     /// computes 
   572     /// - The shortest path tree for each node.
   573     /// - The distance between each node pairs.
   574     bool checkedStart() {
   575       
   576       typedef typename BelmannFord<Graph, LengthMap>::
   577       template DefOperationTraits<OperationTraits>::
   578       template DefPredMap<NullMap<Node, Edge> >::
   579       Create BelmannFordType;
   580 
   581       BelmannFordType belmannford(*graph, *length);
   582 
   583       NullMap<Node, Edge> predMap;
   584 
   585       belmannford.predMap(predMap);
   586       
   587       belmannford.init(OperationTraits::zero());
   588       if (!belmannford.checkedStart()) return false;
   589 
   590       shiftedRun(belmannford.distMap());
   591       return true;
   592     }
   593 
   594     
   595     /// \brief Runs %Johnson algorithm.
   596     ///    
   597     /// This method runs the %Johnson algorithm from a each node
   598     /// in order to compute the shortest path to each node pairs. 
   599     /// The algorithm computes
   600     /// - The shortest path tree for each node.
   601     /// - The distance between each node pairs.
   602     ///
   603     /// \note d.run(s) is just a shortcut of the following code.
   604     /// \code
   605     ///  d.init();
   606     ///  d.start();
   607     /// \endcode
   608     void run() {
   609       init();
   610       start();
   611     }
   612     
   613     ///@}
   614 
   615     /// \name Query Functions
   616     /// The result of the %Johnson algorithm can be obtained using these
   617     /// functions.\n
   618     /// Before the use of these functions,
   619     /// either run() or start() must be called.
   620     
   621     ///@{
   622 
   623     /// \brief Copies the shortest path to \c t into \c p
   624     ///    
   625     /// This function copies the shortest path to \c t into \c p.
   626     /// If it \c t is a source itself or unreachable, then it does not
   627     /// alter \c p.
   628     /// \todo Is it the right way to handle unreachable nodes?
   629     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   630     /// \c false otherwise.
   631     /// \sa DirPath
   632     template <typename Path>
   633     bool getPath(Path &p, Node source, Node target) {
   634       if (connected(source, target)) {
   635 	p.clear();
   636 	typename Path::Builder b(target);
   637 	for(b.setStartNode(target); pred(source, target) != INVALID;
   638 	    target = predNode(target)) {
   639 	  b.pushFront(pred(source, target));
   640 	}
   641 	b.commit();
   642 	return true;
   643       }
   644       return false;
   645     }
   646 	  
   647     /// \brief The distance between two nodes.
   648     ///
   649     /// Returns the distance between two nodes.
   650     /// \pre \ref run() must be called before using this function.
   651     /// \warning If node \c v in unreachable from the root the return value
   652     /// of this funcion is undefined.
   653     Value dist(Node source, Node target) const { 
   654       return (*_dist)(source, target); 
   655     }
   656 
   657     /// \brief Returns the 'previous edge' of the shortest path tree.
   658     ///
   659     /// For the node \c node it returns the 'previous edge' of the shortest 
   660     /// path tree to direction of the node \c root 
   661     /// i.e. it returns the last edge of a shortest path from the node \c root 
   662     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   663     /// or if \c node=root. The shortest path tree used here is equal to the 
   664     /// shortest path tree used in \ref predNode(). 
   665     /// \pre \ref run() must be called before using this function.
   666     /// \todo predEdge could be a better name.
   667     Edge pred(Node root, Node node) const { 
   668       return (*_pred)(root, node); 
   669     }
   670 
   671     /// \brief Returns the 'previous node' of the shortest path tree.
   672     ///
   673     /// For a node \c node it returns the 'previous node' of the shortest path 
   674     /// tree to direction of the node \c root, i.e. it returns the last but 
   675     /// one node from a shortest path from the \c root to \c node. It is 
   676     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   677     /// The shortest path tree used here is equal to the 
   678     /// shortest path tree used in \ref pred().  
   679     /// \pre \ref run() must be called before using this function.
   680     Node predNode(Node root, Node node) const { 
   681       return (*_pred)(root, node) == INVALID ? 
   682       INVALID : graph->source((*_pred)(root, node)); 
   683     }
   684     
   685     /// \brief Returns a reference to the matrix node map of distances.
   686     ///
   687     /// Returns a reference to the matrix node map of distances. 
   688     ///
   689     /// \pre \ref run() must be called before using this function.
   690     const DistMap &distMap() const { return *_dist;}
   691  
   692     /// \brief Returns a reference to the shortest path tree map.
   693     ///
   694     /// Returns a reference to the matrix node map of the edges of the
   695     /// shortest path tree.
   696     /// \pre \ref run() must be called before using this function.
   697     const PredMap &predMap() const { return *_pred;}
   698  
   699     /// \brief Checks if a node is reachable from the root.
   700     ///
   701     /// Returns \c true if \c v is reachable from the root.
   702     /// \pre \ref run() must be called before using this function.
   703     ///
   704     bool connected(Node source, Node target) { 
   705       return (*_dist)(source, target) != OperationTraits::infinity(); 
   706     }
   707     
   708     ///@}
   709   };
   710  
   711 } //END OF NAMESPACE LEMON
   712 
   713 #endif