lemon/topology.h
author deba
Wed, 02 Nov 2005 15:28:37 +0000
changeset 1755 bf267b301a5e
parent 1740 4cade8579363
child 1763 49045f2d28d4
permissions -rw-r--r--
Make constructor explicit
Indentation changed
     1 /* -*- C++ -*-
     2  * lemon/topology.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_TOPOLOGY_H
    18 #define LEMON_TOPOLOGY_H
    19 
    20 #include <lemon/dfs.h>
    21 #include <lemon/bfs.h>
    22 #include <lemon/graph_utils.h>
    23 #include <lemon/graph_adaptor.h>
    24 #include <lemon/maps.h>
    25 
    26 #include <lemon/concept/graph.h>
    27 #include <lemon/concept/undir_graph.h>
    28 #include <lemon/concept_check.h>
    29 
    30 #include <lemon/bin_heap.h>
    31 #include <lemon/linear_heap.h>
    32 
    33 #include <stack>
    34 #include <functional>
    35 
    36 /// \ingroup topology
    37 /// \file
    38 /// \brief Topology related algorithms
    39 ///
    40 /// Topology related algorithms
    41 
    42 namespace lemon {
    43 
    44   /// \ingroup topology
    45   ///
    46   /// \brief Check that the given undirected graph is connected.
    47   ///
    48   /// Check that the given undirected graph connected.
    49   /// \param graph The undirected graph.
    50   /// \return %True when there is path between any two nodes in the graph.
    51   /// \warning The empty graph is not connected.
    52   template <typename UndirGraph>
    53   bool connected(const UndirGraph& graph) {
    54     checkConcept<concept::UndirGraph, UndirGraph>();
    55     typedef typename UndirGraph::NodeIt NodeIt;
    56     if (NodeIt(graph) == INVALID) return false;
    57     Dfs<UndirGraph> dfs(graph);
    58     dfs.run(NodeIt(graph));
    59     for (NodeIt it(graph); it != INVALID; ++it) {
    60       if (!dfs.reached(it)) {
    61 	return false;
    62       }
    63     }
    64     return true;
    65   }
    66 
    67   /// \ingroup topology
    68   ///
    69   /// \brief Count the number of connected components of an undirected graph
    70   ///
    71   /// Count the number of connected components of an undirected graph
    72   ///
    73   /// \param g The graph. In must be undirected.
    74   /// \return The number of components
    75   template <typename UndirGraph>
    76   int countConnectedComponents(const UndirGraph &graph) {
    77     checkConcept<concept::UndirGraph, UndirGraph>();
    78     typedef typename UndirGraph::Node Node;
    79     typedef typename UndirGraph::Edge Edge;
    80 
    81     typedef NullMap<Node, Edge> PredMap;
    82     typedef NullMap<Node, int> DistMap;
    83 
    84     int compNum = 0;
    85     typename Bfs<UndirGraph>::
    86       template DefPredMap<PredMap>::
    87       template DefDistMap<DistMap>::
    88       Create bfs(graph);
    89 
    90     PredMap predMap;
    91     bfs.predMap(predMap);
    92 
    93     DistMap distMap;
    94     bfs.distMap(distMap);
    95 
    96     bfs.init();
    97     for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) {
    98       if (!bfs.reached(n)) {
    99 	bfs.addSource(n);
   100 	bfs.start();
   101 	++compNum;
   102       }
   103     }
   104     return compNum;
   105   }
   106 
   107   /// \ingroup topology
   108   ///
   109   /// \brief Find the connected components of an undirected graph
   110   ///
   111   /// Find the connected components of an undirected graph.
   112   ///
   113   /// \param g The graph. In must be undirected.
   114   /// \retval comp A writable node map. The values will be set from 0 to
   115   /// the number of the connected components minus one. Each values of the map
   116   /// will be set exactly once, the values of a certain component will be
   117   /// set continuously.
   118   /// \return The number of components
   119   template <class UndirGraph, class NodeMap>
   120   int connectedComponents(const UndirGraph &graph, NodeMap &compMap) {
   121     checkConcept<concept::UndirGraph, UndirGraph>();
   122     typedef typename UndirGraph::Node Node;
   123     typedef typename UndirGraph::Edge Edge;
   124     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   125 
   126     typedef NullMap<Node, Edge> PredMap;
   127     typedef NullMap<Node, int> DistMap;
   128 
   129     int compNum = 0;
   130     typename Bfs<UndirGraph>::
   131       template DefPredMap<PredMap>::
   132       template DefDistMap<DistMap>::
   133       Create bfs(graph);
   134 
   135     PredMap predMap;
   136     bfs.predMap(predMap);
   137 
   138     DistMap distMap;
   139     bfs.distMap(distMap);
   140     
   141     bfs.init();
   142     for(typename UndirGraph::NodeIt n(graph); n != INVALID; ++n) {
   143       if(!bfs.reached(n)) {
   144 	bfs.addSource(n);
   145 	while (!bfs.emptyQueue()) {
   146 	  compMap.set(bfs.nextNode(), compNum);
   147 	  bfs.processNextNode();
   148 	}
   149 	++compNum;
   150       }
   151     }
   152     return compNum;
   153   }
   154 
   155   namespace _topology_bits {
   156 
   157     template <typename Graph, typename Iterator >
   158     struct LeaveOrderVisitor : public DfsVisitor<Graph> {
   159     public:
   160       typedef typename Graph::Node Node;
   161       LeaveOrderVisitor(Iterator it) : _it(it) {}
   162 
   163       void leave(const Node& node) {
   164 	*(_it++) = node;
   165       }
   166 
   167     private:
   168       Iterator _it;
   169     };
   170 
   171     template <typename Graph, typename Map>
   172     struct FillMapVisitor : public DfsVisitor<Graph> {
   173     public:
   174       typedef typename Graph::Node Node;
   175       typedef typename Map::Value Value;
   176 
   177       FillMapVisitor(Map& map, Value& value) 
   178 	: _map(map), _value(value) {}
   179 
   180       void reach(const Node& node) {
   181 	_map.set(node, _value);
   182       }
   183     private:
   184       Map& _map;
   185       Value& _value;
   186     };
   187 
   188     template <typename Graph, typename EdgeMap>
   189     struct StronglyConnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   190     public:
   191       typedef typename Graph::Node Node;
   192       typedef typename Graph::Edge Edge;
   193 
   194       StronglyConnectedCutEdgesVisitor(const Graph& graph, EdgeMap& cutMap, 
   195 				       int& cutNum) 
   196 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   197 	  _compMap(graph), _num(0) {
   198       }
   199 
   200       void stop(const Node&) {
   201 	++_num;
   202       }
   203 
   204       void reach(const Node& node) {
   205 	_compMap.set(node, _num);
   206       }
   207 
   208       void examine(const Edge& edge) {
   209  	if (_compMap[_graph.source(edge)] != _compMap[_graph.target(edge)]) {
   210  	  _cutMap.set(edge, true);
   211  	  ++_cutNum;
   212  	}
   213       }
   214     private:
   215       const Graph& _graph;
   216       EdgeMap& _cutMap;
   217       int& _cutNum;
   218 
   219       typename Graph::template NodeMap<int> _compMap;
   220       int _num;
   221     };
   222 
   223   }
   224 
   225 
   226   /// \ingroup topology
   227   ///
   228   /// \brief Check that the given directed graph is strongly connected.
   229   ///
   230   /// Check that the given directed graph is strongly connected. The
   231   /// graph is strongly connected when any two nodes of the graph are
   232   /// connected with directed pathes in both direction.
   233   /// \return %False when the graph is not strongly connected.
   234   /// \see connected
   235   ///
   236   /// \waning Empty graph is not strongly connected.
   237   template <typename Graph>
   238   bool stronglyConnected(const Graph& graph) {
   239     checkConcept<concept::StaticGraph, Graph>();
   240     if (NodeIt(graph) == INVALID) return false;
   241 
   242     typedef typename Graph::Node Node;
   243     typedef typename Graph::NodeIt NodeIt;
   244 
   245     using namespace _topology_bits;
   246 
   247     typedef DfsVisitor<Graph> Visitor;
   248     Visitor visitor;
   249 
   250     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   251     dfs.init();
   252     dfs.addSource(NodeIt(graph));
   253     dfs.start();
   254 
   255     for (NodeIt it(graph); it != INVALID; ++it) {
   256       if (!dfs.reached(it)) {
   257 	return false;
   258       }
   259     }
   260 
   261     typedef RevGraphAdaptor<const Graph> RGraph;
   262     RGraph rgraph(graph);
   263 
   264     typedef DfsVisitor<Graph> RVisitor;
   265     RVisitor rvisitor;
   266 
   267     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   268     rdfs.init();    
   269     rdfs.addSource(NodeIt(graph));
   270     rdfs.start();
   271 
   272     for (NodeIt it(graph); it != INVALID; ++it) {
   273       if (!rdfs.reached(it)) {
   274 	return false;
   275       }
   276     }
   277 
   278     return true;
   279   }
   280 
   281   /// \ingroup topology
   282   ///
   283   /// \brief Count the strongly connected components of a directed graph
   284   ///
   285   /// Count the strongly connected components of a directed graph.
   286   /// The strongly connected components are the classes of an equivalence
   287   /// relation on the nodes of the graph. Two nodes are connected with
   288   /// directed paths in both direction.
   289   ///
   290   /// \param g The graph.
   291   /// \return The number of components
   292   template <typename Graph>
   293   int countStronglyConnectedComponents(const Graph& graph) {
   294     checkConcept<concept::StaticGraph, Graph>();
   295 
   296     using namespace _topology_bits;
   297 
   298     typedef typename Graph::Node Node;
   299     typedef typename Graph::Edge Edge;
   300     typedef typename Graph::NodeIt NodeIt;
   301     typedef typename Graph::EdgeIt EdgeIt;
   302     
   303     typedef std::vector<Node> Container;
   304     typedef typename Container::iterator Iterator;
   305 
   306     Container nodes(countNodes(graph));
   307     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   308     Visitor visitor(nodes.begin());
   309       
   310     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   311     dfs.init();
   312     for (NodeIt it(graph); it != INVALID; ++it) {
   313       if (!dfs.reached(it)) {
   314 	dfs.addSource(it);
   315 	dfs.start();
   316       }
   317     }
   318 
   319     typedef typename Container::reverse_iterator RIterator;
   320     typedef RevGraphAdaptor<const Graph> RGraph;
   321 
   322     RGraph rgraph(graph);
   323 
   324     typedef DfsVisitor<Graph> RVisitor;
   325     RVisitor rvisitor;
   326 
   327     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   328 
   329     int compNum = 0;
   330 
   331     rdfs.init();
   332     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   333       if (!rdfs.reached(*it)) {
   334 	rdfs.addSource(*it);
   335 	rdfs.start();
   336 	++compNum;
   337       }
   338     }
   339     return compNum;
   340   }
   341 
   342   /// \ingroup topology
   343   ///
   344   /// \brief Find the strongly connected components of a directed graph
   345   ///
   346   /// Find the strongly connected components of a directed graph.
   347   /// The strongly connected components are the classes of an equivalence
   348   /// relation on the nodes of the graph. Two nodes are in relationship
   349   /// when there are directed paths between them in both direction.
   350   ///
   351   /// \param g The graph.
   352   /// \retval comp A writable node map. The values will be set from 0 to
   353   /// the number of the strongly connected components minus one. Each values 
   354   /// of the map will be set exactly once, the values of a certain component 
   355   /// will be set continuously.
   356   /// \return The number of components
   357   template <typename Graph, typename NodeMap>
   358   int stronglyConnectedComponents(const Graph& graph, NodeMap& compMap) {
   359     checkConcept<concept::StaticGraph, Graph>();
   360     typedef typename Graph::Node Node;
   361     typedef typename Graph::NodeIt NodeIt;
   362     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
   363 
   364     using namespace _topology_bits;
   365     
   366     typedef std::vector<Node> Container;
   367     typedef typename Container::iterator Iterator;
   368 
   369     Container nodes(countNodes(graph));
   370     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   371     Visitor visitor(nodes.begin());
   372       
   373     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   374     dfs.init();
   375     for (NodeIt it(graph); it != INVALID; ++it) {
   376       if (!dfs.reached(it)) {
   377 	dfs.addSource(it);
   378 	dfs.start();
   379       }
   380     }
   381 
   382     typedef typename Container::reverse_iterator RIterator;
   383     typedef RevGraphAdaptor<const Graph> RGraph;
   384 
   385     RGraph rgraph(graph);
   386 
   387     int compNum = 0;
   388 
   389     typedef FillMapVisitor<RGraph, NodeMap> RVisitor;
   390     RVisitor rvisitor(compMap, compNum);
   391 
   392     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   393 
   394     rdfs.init();
   395     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   396       if (!rdfs.reached(*it)) {
   397 	rdfs.addSource(*it);
   398 	rdfs.start();
   399 	++compNum;
   400       }
   401     }
   402     return compNum;
   403   }
   404 
   405   /// \ingroup topology
   406   ///
   407   /// \brief Find the cut edges of the strongly connected components.
   408   ///
   409   /// Find the cut edges of the strongly connected components.
   410   /// The strongly connected components are the classes of an equivalence
   411   /// relation on the nodes of the graph. Two nodes are in relationship
   412   /// when there are directed paths between them in both direction.
   413   /// The strongly connected components are separated by the cut edges.
   414   ///
   415   /// \param g The graph.
   416   /// \retval comp A writable edge map. The values will be set true when
   417   /// the edge is cut edge otherwise false.
   418   ///
   419   /// \return The number of cut edges
   420   template <typename Graph, typename EdgeMap>
   421   int stronglyConnectedCutEdges(const Graph& graph, EdgeMap& cutMap) {
   422     checkConcept<concept::StaticGraph, Graph>();
   423     typedef typename Graph::Node Node;
   424     typedef typename Graph::Edge Edge;
   425     typedef typename Graph::NodeIt NodeIt;
   426     checkConcept<concept::WriteMap<Edge, bool>, EdgeMap>();
   427 
   428     using namespace _topology_bits;
   429     
   430     typedef std::vector<Node> Container;
   431     typedef typename Container::iterator Iterator;
   432 
   433     Container nodes(countNodes(graph));
   434     typedef LeaveOrderVisitor<Graph, Iterator> Visitor;
   435     Visitor visitor(nodes.begin());
   436       
   437     DfsVisit<Graph, Visitor> dfs(graph, visitor);
   438     dfs.init();
   439     for (NodeIt it(graph); it != INVALID; ++it) {
   440       if (!dfs.reached(it)) {
   441 	dfs.addSource(it);
   442 	dfs.start();
   443       }
   444     }
   445 
   446     typedef typename Container::reverse_iterator RIterator;
   447     typedef RevGraphAdaptor<const Graph> RGraph;
   448 
   449     RGraph rgraph(graph);
   450 
   451     int cutNum = 0;
   452 
   453     typedef StronglyConnectedCutEdgesVisitor<RGraph, EdgeMap> RVisitor;
   454     RVisitor rvisitor(rgraph, cutMap, cutNum);
   455 
   456     DfsVisit<RGraph, RVisitor> rdfs(rgraph, rvisitor);
   457 
   458     rdfs.init();
   459     for (RIterator it = nodes.rbegin(); it != nodes.rend(); ++it) {
   460       if (!rdfs.reached(*it)) {
   461 	rdfs.addSource(*it);
   462 	rdfs.start();
   463       }
   464     }
   465     return cutNum;
   466   }
   467 
   468   namespace _topology_bits {
   469     
   470     template <typename Graph>
   471     class CountNodeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   472     public:
   473       typedef typename Graph::Node Node;
   474       typedef typename Graph::Edge Edge;
   475       typedef typename Graph::UndirEdge UndirEdge;
   476 
   477       CountNodeBiconnectedComponentsVisitor(const Graph& graph, int &compNum) 
   478 	: _graph(graph), _compNum(compNum), 
   479 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   480 
   481       void start(const Node& node) {
   482 	_predMap.set(node, INVALID);
   483       }
   484       
   485       void reach(const Node& node) {
   486 	_numMap.set(node, _num);
   487 	_retMap.set(node, _num);
   488 	++_num;
   489       }
   490 
   491       void discover(const Edge& edge) {
   492 	_predMap.set(_graph.target(edge), _graph.source(edge));
   493       }
   494 
   495       void examine(const Edge& edge) {
   496 	if (_graph.source(edge) == _graph.target(edge) && 
   497 	    _graph.direction(edge)) {
   498 	  ++_compNum;
   499 	  return;
   500 	}
   501 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) {
   502 	  return;
   503 	}
   504 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   505 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   506 	}
   507       }
   508 
   509       void backtrack(const Edge& edge) {
   510 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   511 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   512 	}  
   513 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   514 	  ++_compNum;
   515 	}
   516       }
   517       
   518     private:
   519       const Graph& _graph;
   520       int& _compNum; 
   521 
   522       typename Graph::template NodeMap<int> _numMap;
   523       typename Graph::template NodeMap<int> _retMap;
   524       typename Graph::template NodeMap<Node> _predMap;
   525       int _num;
   526     };
   527 
   528     template <typename Graph, typename EdgeMap>
   529     class NodeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   530     public:
   531       typedef typename Graph::Node Node;
   532       typedef typename Graph::Edge Edge;
   533       typedef typename Graph::UndirEdge UndirEdge;
   534 
   535       NodeBiconnectedComponentsVisitor(const Graph& graph, 
   536 				       EdgeMap& compMap, int &compNum) 
   537 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   538 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   539 
   540       void start(const Node& node) {
   541 	_predMap.set(node, INVALID);
   542       }
   543       
   544       void reach(const Node& node) {
   545 	_numMap.set(node, _num);
   546 	_retMap.set(node, _num);
   547 	++_num;
   548       }
   549 
   550       void discover(const Edge& edge) {
   551 	Node target = _graph.target(edge);
   552 	_predMap.set(target, edge);
   553 	_edgeStack.push(edge);
   554       }
   555 
   556       void examine(const Edge& edge) {
   557 	Node source = _graph.source(edge);
   558 	Node target = _graph.target(edge);
   559 	if (source == target && _graph.direction(edge)) {
   560 	  _compMap.set(edge, _compNum);
   561 	  ++_compNum;
   562 	  return;
   563 	}
   564 	if (_numMap[target] < _numMap[source]) {
   565 	  if (_predMap[source] != _graph.oppositeEdge(edge)) {
   566 	    _edgeStack.push(edge);
   567 	  }
   568 	}
   569 	if (_predMap[source] != INVALID && 
   570 	    target == _graph.source(_predMap[source])) {
   571 	  return;
   572 	}
   573 	if (_retMap[source] > _numMap[target]) {
   574 	  _retMap.set(source, _numMap[target]);
   575 	}
   576       }
   577 
   578       void backtrack(const Edge& edge) {
   579 	Node source = _graph.source(edge);
   580 	Node target = _graph.target(edge);
   581 	if (_retMap[source] > _retMap[target]) {
   582 	  _retMap.set(source, _retMap[target]);
   583 	}  
   584 	if (_numMap[source] <= _retMap[target]) {
   585 	  while (_edgeStack.top() != edge) {
   586 	    _compMap.set(_edgeStack.top(), _compNum);
   587 	    _edgeStack.pop();
   588 	  }
   589 	  _compMap.set(edge, _compNum);
   590 	  _edgeStack.pop();
   591 	  ++_compNum;
   592 	}
   593       }
   594       
   595     private:
   596       const Graph& _graph;
   597       EdgeMap& _compMap;
   598       int& _compNum; 
   599 
   600       typename Graph::template NodeMap<int> _numMap;
   601       typename Graph::template NodeMap<int> _retMap;
   602       typename Graph::template NodeMap<Edge> _predMap;
   603       std::stack<UndirEdge> _edgeStack;
   604       int _num;
   605     };
   606 
   607 
   608     template <typename Graph, typename NodeMap>
   609     class NodeBiconnectedCutNodesVisitor : public DfsVisitor<Graph> {
   610     public:
   611       typedef typename Graph::Node Node;
   612       typedef typename Graph::Edge Edge;
   613       typedef typename Graph::UndirEdge UndirEdge;
   614 
   615       NodeBiconnectedCutNodesVisitor(const Graph& graph, NodeMap& cutMap,
   616 				     int& cutNum) 
   617 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum),
   618 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   619 
   620       void start(const Node& node) {
   621 	_predMap.set(node, INVALID);
   622 	rootCut = false;
   623       }
   624       
   625       void reach(const Node& node) {
   626 	_numMap.set(node, _num);
   627 	_retMap.set(node, _num);
   628 	++_num;
   629       }
   630 
   631       void discover(const Edge& edge) {
   632 	_predMap.set(_graph.target(edge), _graph.source(edge));
   633       }
   634 
   635       void examine(const Edge& edge) {
   636 	if (_graph.source(edge) == _graph.target(edge) && 
   637 	    _graph.direction(edge)) {
   638 	  if (!_cutMap[_graph.source(edge)]) {
   639 	    _cutMap.set(_graph.source(edge), true);
   640 	    ++_cutNum;
   641 	  }
   642 	  return;
   643 	}
   644 	if (_predMap[_graph.source(edge)] == _graph.target(edge)) return;
   645 	if (_retMap[_graph.source(edge)] > _numMap[_graph.target(edge)]) {
   646 	  _retMap.set(_graph.source(edge), _numMap[_graph.target(edge)]);
   647 	}
   648       }
   649 
   650       void backtrack(const Edge& edge) {
   651 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   652 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   653 	}  
   654 	if (_numMap[_graph.source(edge)] <= _retMap[_graph.target(edge)]) {
   655 	  if (_predMap[_graph.source(edge)] != INVALID) {
   656 	    if (!_cutMap[_graph.source(edge)]) {
   657 	      _cutMap.set(_graph.source(edge), true);
   658 	      ++_cutNum;
   659 	    }
   660 	  } else if (rootCut) {
   661 	    if (!_cutMap[_graph.source(edge)]) {
   662 	      _cutMap.set(_graph.source(edge), true);
   663 	      ++_cutNum;
   664 	    }
   665 	  } else {
   666 	    rootCut = true;
   667 	  }
   668 	}
   669       }
   670       
   671     private:
   672       const Graph& _graph;
   673       NodeMap& _cutMap;
   674       int& _cutNum; 
   675 
   676       typename Graph::template NodeMap<int> _numMap;
   677       typename Graph::template NodeMap<int> _retMap;
   678       typename Graph::template NodeMap<Node> _predMap;
   679       std::stack<UndirEdge> _edgeStack;
   680       int _num;
   681       bool rootCut;
   682     };
   683 
   684   }
   685 
   686   template <typename UndirGraph>
   687   int countNodeBiconnectedComponents(const UndirGraph& graph);
   688 
   689   /// \ingroup topology
   690   ///
   691   /// \brief Checks the graph is node biconnected.
   692   ///
   693   /// This function checks that the undirected graph is node biconnected  
   694   /// graph. The graph is node biconnected if any two undirected edge is 
   695   /// on same circle.
   696   ///
   697   /// \param graph The graph.
   698   /// \return %True when the graph node biconnected.
   699   /// \todo Make it faster.
   700   template <typename UndirGraph>
   701   bool nodeBiconnected(const UndirGraph& graph) {
   702     return countNodeBiconnectedComponents(graph) == 1;
   703   }
   704 
   705   /// \ingroup topology
   706   ///
   707   /// \brief Count the biconnected components.
   708   ///
   709   /// This function finds the node biconnected components in an undirected 
   710   /// graph. The biconnected components are the classes of an equivalence 
   711   /// relation on the undirected edges. Two undirected edge is in relationship
   712   /// when they are on same circle.
   713   ///
   714   /// \param graph The graph.
   715   /// \return The number of components.
   716   template <typename UndirGraph>
   717   int countNodeBiconnectedComponents(const UndirGraph& graph) {
   718     checkConcept<concept::UndirGraph, UndirGraph>();
   719     typedef typename UndirGraph::NodeIt NodeIt;
   720 
   721     using namespace _topology_bits;
   722 
   723     typedef CountNodeBiconnectedComponentsVisitor<UndirGraph> Visitor;
   724 
   725     int compNum = 0;
   726     Visitor visitor(graph, compNum);
   727 
   728     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   729     dfs.init();
   730     
   731     for (NodeIt it(graph); it != INVALID; ++it) {
   732       if (!dfs.reached(it)) {
   733 	dfs.addSource(it);
   734 	dfs.start();
   735       }
   736     }
   737     return compNum;
   738   }
   739 
   740   /// \ingroup topology
   741   ///
   742   /// \brief Find the node biconnected components.
   743   ///
   744   /// This function finds the node biconnected components in an undirected 
   745   /// graph. The node biconnected components are the classes of an equivalence
   746   /// relation on the undirected edges. Two undirected edge are in relationship
   747   /// when they are on same circle.
   748   ///
   749   /// \param graph The graph.
   750   /// \retval comp A writable undir edge map. The values will be set from 0 to
   751   /// the number of the biconnected components minus one. Each values 
   752   /// of the map will be set exactly once, the values of a certain component 
   753   /// will be set continuously.
   754   /// \return The number of components.
   755   template <typename UndirGraph, typename UndirEdgeMap>
   756   int nodeBiconnectedComponents(const UndirGraph& graph, 
   757 				UndirEdgeMap& compMap) {
   758     checkConcept<concept::UndirGraph, UndirGraph>();
   759     typedef typename UndirGraph::NodeIt NodeIt;
   760     typedef typename UndirGraph::UndirEdge UndirEdge;
   761     checkConcept<concept::WriteMap<UndirEdge, int>, UndirEdgeMap>();
   762 
   763     using namespace _topology_bits;
   764 
   765     typedef NodeBiconnectedComponentsVisitor<UndirGraph, UndirEdgeMap> Visitor;
   766     
   767     int compNum = 0;
   768     Visitor visitor(graph, compMap, compNum);
   769 
   770     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   771     dfs.init();
   772     
   773     for (NodeIt it(graph); it != INVALID; ++it) {
   774       if (!dfs.reached(it)) {
   775 	dfs.addSource(it);
   776 	dfs.start();
   777       }
   778     }
   779     return compNum;
   780   }
   781 
   782   /// \ingroup topology
   783   ///
   784   /// \brief Find the node biconnected cut nodes.
   785   ///
   786   /// This function finds the node biconnected cut nodes in an undirected 
   787   /// graph. The node biconnected components are the classes of an equivalence
   788   /// relation on the undirected edges. Two undirected edges are in 
   789   /// relationship when they are on same circle. The biconnected components 
   790   /// are separted by nodes which are the cut nodes of the components.
   791   ///
   792   /// \param graph The graph.
   793   /// \retval comp A writable edge map. The values will be set true when
   794   /// the node separate two or more components.
   795   /// \return The number of the cut nodes.
   796   template <typename UndirGraph, typename NodeMap>
   797   int nodeBiconnectedCutNodes(const UndirGraph& graph, NodeMap& cutMap) {
   798     checkConcept<concept::UndirGraph, UndirGraph>();
   799     typedef typename UndirGraph::Node Node;
   800     typedef typename UndirGraph::NodeIt NodeIt;
   801     checkConcept<concept::WriteMap<Node, bool>, NodeMap>();
   802 
   803     using namespace _topology_bits;
   804 
   805     typedef NodeBiconnectedCutNodesVisitor<UndirGraph, NodeMap> Visitor;
   806     
   807     int cutNum = 0;
   808     Visitor visitor(graph, cutMap, cutNum);
   809 
   810     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
   811     dfs.init();
   812     
   813     for (NodeIt it(graph); it != INVALID; ++it) {
   814       if (!dfs.reached(it)) {
   815 	dfs.addSource(it);
   816 	dfs.start();
   817       }
   818     }
   819     return cutNum;
   820   }
   821 
   822   namespace _topology_bits {
   823     
   824     template <typename Graph>
   825     class CountEdgeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   826     public:
   827       typedef typename Graph::Node Node;
   828       typedef typename Graph::Edge Edge;
   829       typedef typename Graph::UndirEdge UndirEdge;
   830 
   831       CountEdgeBiconnectedComponentsVisitor(const Graph& graph, int &compNum) 
   832 	: _graph(graph), _compNum(compNum), 
   833 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   834 
   835       void start(const Node& node) {
   836 	_predMap.set(node, INVALID);
   837       }
   838       
   839       void reach(const Node& node) {
   840 	_numMap.set(node, _num);
   841 	_retMap.set(node, _num);
   842 	++_num;
   843       }
   844       
   845       void leave(const Node& node) {
   846 	if (_numMap[node] <= _retMap[node]) {
   847 	  ++_compNum;
   848 	}	
   849       }
   850 
   851       void discover(const Edge& edge) {
   852 	_predMap.set(_graph.target(edge), edge);
   853       }
   854 
   855       void examine(const Edge& edge) {
   856 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   857 	  return;
   858 	}
   859 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   860 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   861 	}
   862       }
   863 
   864       void backtrack(const Edge& edge) {
   865 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   866 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   867 	}  
   868       }
   869       
   870     private:
   871       const Graph& _graph;
   872       int& _compNum; 
   873 
   874       typename Graph::template NodeMap<int> _numMap;
   875       typename Graph::template NodeMap<int> _retMap;
   876       typename Graph::template NodeMap<Edge> _predMap;
   877       int _num;
   878     };
   879 
   880     template <typename Graph, typename NodeMap>
   881     class EdgeBiconnectedComponentsVisitor : public DfsVisitor<Graph> {
   882     public:
   883       typedef typename Graph::Node Node;
   884       typedef typename Graph::Edge Edge;
   885       typedef typename Graph::UndirEdge UndirEdge;
   886 
   887       EdgeBiconnectedComponentsVisitor(const Graph& graph, 
   888 				       NodeMap& compMap, int &compNum) 
   889 	: _graph(graph), _compMap(compMap), _compNum(compNum), 
   890 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   891 
   892       void start(const Node& node) {
   893 	_predMap.set(node, INVALID);
   894       }
   895       
   896       void reach(const Node& node) {
   897 	_numMap.set(node, _num);
   898 	_retMap.set(node, _num);
   899 	_nodeStack.push(node);
   900 	++_num;
   901       }
   902       
   903       void leave(const Node& node) {
   904 	if (_numMap[node] <= _retMap[node]) {
   905 	  while (_nodeStack.top() != node) {
   906 	    _compMap.set(_nodeStack.top(), _compNum);
   907 	    _nodeStack.pop();
   908 	  }
   909 	  _compMap.set(node, _compNum);
   910 	  _nodeStack.pop();
   911 	  ++_compNum;
   912 	}	
   913       }
   914 
   915       void discover(const Edge& edge) {
   916 	_predMap.set(_graph.target(edge), edge);
   917       }
   918 
   919       void examine(const Edge& edge) {
   920 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   921 	  return;
   922 	}
   923 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   924 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   925 	}
   926       }
   927 
   928       void backtrack(const Edge& edge) {
   929 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   930 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   931 	}  
   932       }
   933       
   934     private:
   935       const Graph& _graph;
   936       NodeMap& _compMap;
   937       int& _compNum; 
   938 
   939       typename Graph::template NodeMap<int> _numMap;
   940       typename Graph::template NodeMap<int> _retMap;
   941       typename Graph::template NodeMap<Edge> _predMap;
   942       std::stack<Node> _nodeStack;
   943       int _num;
   944     };
   945 
   946 
   947     template <typename Graph, typename EdgeMap>
   948     class EdgeBiconnectedCutEdgesVisitor : public DfsVisitor<Graph> {
   949     public:
   950       typedef typename Graph::Node Node;
   951       typedef typename Graph::Edge Edge;
   952       typedef typename Graph::UndirEdge UndirEdge;
   953 
   954       EdgeBiconnectedCutEdgesVisitor(const Graph& graph, 
   955 				     EdgeMap& cutMap, int &cutNum) 
   956 	: _graph(graph), _cutMap(cutMap), _cutNum(cutNum), 
   957 	  _numMap(graph), _retMap(graph), _predMap(graph), _num(0) {}
   958 
   959       void start(const Node& node) {
   960 	_predMap[node] = INVALID;
   961       }
   962       
   963       void reach(const Node& node) {
   964 	_numMap.set(node, _num);
   965 	_retMap.set(node, _num);
   966 	++_num;
   967       }
   968       
   969       void leave(const Node& node) {
   970 	if (_numMap[node] <= _retMap[node]) {
   971 	  if (_predMap[node] != INVALID) {
   972 	    _cutMap.set(_predMap[node], true);
   973 	    ++_cutNum;
   974 	  }
   975 	}	
   976       }
   977 
   978       void discover(const Edge& edge) {
   979 	_predMap.set(_graph.target(edge), edge);
   980       }
   981 
   982       void examine(const Edge& edge) {
   983 	if (_predMap[_graph.source(edge)] == _graph.oppositeEdge(edge)) {
   984 	  return;
   985 	}
   986 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   987 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   988 	}
   989       }
   990 
   991       void backtrack(const Edge& edge) {
   992 	if (_retMap[_graph.source(edge)] > _retMap[_graph.target(edge)]) {
   993 	  _retMap.set(_graph.source(edge), _retMap[_graph.target(edge)]);
   994 	}  
   995       }
   996       
   997     private:
   998       const Graph& _graph;
   999       EdgeMap& _cutMap;
  1000       int& _cutNum; 
  1001 
  1002       typename Graph::template NodeMap<int> _numMap;
  1003       typename Graph::template NodeMap<int> _retMap;
  1004       typename Graph::template NodeMap<Edge> _predMap;
  1005       int _num;
  1006     };
  1007   }
  1008 
  1009   template <typename UndirGraph>
  1010   int countEdgeBiconnectedComponents(const UndirGraph& graph);
  1011 
  1012   /// \ingroup topology
  1013   ///
  1014   /// \brief Checks that the graph is edge biconnected.
  1015   ///
  1016   /// This function checks that the graph is edge biconnected. The undirected
  1017   /// graph is edge biconnected when any two nodes are connected with two
  1018   /// edge-disjoint paths.
  1019   ///
  1020   /// \param graph The undirected graph.
  1021   /// \return The number of components.
  1022   /// \todo Make it faster.
  1023   template <typename UndirGraph>
  1024   bool edgeBiconnected(const UndirGraph& graph) { 
  1025     return countEdgeBiconnectedComponents(graph) == 1;
  1026   }
  1027 
  1028   /// \ingroup topology
  1029   ///
  1030   /// \brief Count the edge biconnected components.
  1031   ///
  1032   /// This function count the edge biconnected components in an undirected 
  1033   /// graph. The edge biconnected components are the classes of an equivalence
  1034   /// relation on the nodes. Two nodes are in relationship when they are  
  1035   /// connected with at least two edge-disjoint paths.
  1036   ///
  1037   /// \param graph The undirected graph.
  1038   /// \return The number of components.
  1039   template <typename UndirGraph>
  1040   int countEdgeBiconnectedComponents(const UndirGraph& graph) { 
  1041     checkConcept<concept::UndirGraph, UndirGraph>();
  1042     typedef typename UndirGraph::NodeIt NodeIt;
  1043 
  1044     using namespace _topology_bits;
  1045 
  1046     typedef CountEdgeBiconnectedComponentsVisitor<UndirGraph> Visitor;
  1047     
  1048     int compNum = 0;
  1049     Visitor visitor(graph, compNum);
  1050 
  1051     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1052     dfs.init();
  1053     
  1054     for (NodeIt it(graph); it != INVALID; ++it) {
  1055       if (!dfs.reached(it)) {
  1056 	dfs.addSource(it);
  1057 	dfs.start();
  1058       }
  1059     }
  1060     return compNum;
  1061   }
  1062 
  1063   /// \ingroup topology
  1064   ///
  1065   /// \brief Find the edge biconnected components.
  1066   ///
  1067   /// This function finds the edge biconnected components in an undirected 
  1068   /// graph. The edge biconnected components are the classes of an equivalence
  1069   /// relation on the nodes. Two nodes are in relationship when they are  
  1070   /// connected at least two edge-disjoint paths.
  1071   ///
  1072   /// \param graph The graph.
  1073   /// \retval comp A writable node map. The values will be set from 0 to
  1074   /// the number of the biconnected components minus one. Each values 
  1075   /// of the map will be set exactly once, the values of a certain component 
  1076   /// will be set continuously.
  1077   /// \return The number of components.
  1078   template <typename UndirGraph, typename NodeMap>
  1079   int edgeBiconnectedComponents(const UndirGraph& graph, NodeMap& compMap) { 
  1080     checkConcept<concept::UndirGraph, UndirGraph>();
  1081     typedef typename UndirGraph::NodeIt NodeIt;
  1082     typedef typename UndirGraph::Node Node;
  1083     checkConcept<concept::WriteMap<Node, int>, NodeMap>();
  1084 
  1085     using namespace _topology_bits;
  1086 
  1087     typedef EdgeBiconnectedComponentsVisitor<UndirGraph, NodeMap> Visitor;
  1088     
  1089     int compNum = 0;
  1090     Visitor visitor(graph, compMap, compNum);
  1091 
  1092     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1093     dfs.init();
  1094     
  1095     for (NodeIt it(graph); it != INVALID; ++it) {
  1096       if (!dfs.reached(it)) {
  1097 	dfs.addSource(it);
  1098 	dfs.start();
  1099       }
  1100     }
  1101     return compNum;
  1102   }
  1103 
  1104   /// \ingroup topology
  1105   ///
  1106   /// \brief Find the edge biconnected cut edges.
  1107   ///
  1108   /// This function finds the edge biconnected components in an undirected 
  1109   /// graph. The edge biconnected components are the classes of an equivalence
  1110   /// relation on the nodes. Two nodes are in relationship when they are 
  1111   /// connected with at least two edge-disjoint paths. The edge biconnected 
  1112   /// components are separted by edges which are the cut edges of the 
  1113   /// components.
  1114   ///
  1115   /// \param graph The graph.
  1116   /// \retval comp A writable node map. The values will be set true when the
  1117   /// edge is a cut edge.
  1118   /// \return The number of cut edges.
  1119   template <typename UndirGraph, typename UndirEdgeMap>
  1120   int edgeBiconnectedCutEdges(const UndirGraph& graph, UndirEdgeMap& cutMap) { 
  1121     checkConcept<concept::UndirGraph, UndirGraph>();
  1122     typedef typename UndirGraph::NodeIt NodeIt;
  1123     typedef typename UndirGraph::UndirEdge UndirEdge;
  1124     checkConcept<concept::WriteMap<UndirEdge, bool>, UndirEdgeMap>();
  1125 
  1126     using namespace _topology_bits;
  1127 
  1128     typedef EdgeBiconnectedCutEdgesVisitor<UndirGraph, UndirEdgeMap> Visitor;
  1129     
  1130     int cutNum = 0;
  1131     Visitor visitor(graph, cutMap, cutNum);
  1132 
  1133     DfsVisit<UndirGraph, Visitor> dfs(graph, visitor);
  1134     dfs.init();
  1135     
  1136     for (NodeIt it(graph); it != INVALID; ++it) {
  1137       if (!dfs.reached(it)) {
  1138 	dfs.addSource(it);
  1139 	dfs.start();
  1140       }
  1141     }
  1142     return cutNum;
  1143   }
  1144 
  1145 
  1146   namespace _topology_bits {
  1147     
  1148     template <typename Graph, typename IntNodeMap>
  1149     class TopologicalSortVisitor : public DfsVisitor<Graph> {
  1150     public:
  1151       typedef typename Graph::Node Node;
  1152       typedef typename Graph::Edge edge;
  1153 
  1154       TopologicalSortVisitor(IntNodeMap& order, int num) 
  1155 	: _order(order), _num(num) {}
  1156       
  1157       void leave(const Node& node) {
  1158 	_order.set(node, --_num);
  1159       }
  1160 
  1161     private:
  1162       IntNodeMap& _order;
  1163       int _num;
  1164     };
  1165     
  1166   }
  1167 
  1168   /// \ingroup topology
  1169   ///
  1170   /// \brief Sort the nodes of a DAG into topolgical order.
  1171   ///
  1172   /// Sort the nodes of a DAG into topolgical order.
  1173   ///
  1174   /// \param g The graph. In must be directed and acyclic.
  1175   /// \retval comp A writable node map. The values will be set from 0 to
  1176   /// the number of the nodes in the graph minus one. Each values of the map
  1177   /// will be set exactly once, the values  will be set descending order.
  1178   ///
  1179   /// \see checkedTopologicalSort
  1180   /// \see dag
  1181   template <typename Graph, typename NodeMap>
  1182   void topologicalSort(const Graph& graph, NodeMap& order) {
  1183     using namespace _topology_bits;
  1184 
  1185     checkConcept<concept::StaticGraph, Graph>();
  1186     checkConcept<concept::WriteMap<typename Graph::Node, int>, NodeMap>();
  1187 
  1188     typedef typename Graph::Node Node;
  1189     typedef typename Graph::NodeIt NodeIt;
  1190     typedef typename Graph::Edge Edge;
  1191 
  1192     TopologicalSortVisitor<Graph, NodeMap> 
  1193       visitor(order, countNodes(graph)); 
  1194 
  1195     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1196       dfs(graph, visitor);
  1197 
  1198     dfs.init();
  1199     for (NodeIt it(graph); it != INVALID; ++it) {
  1200       if (!dfs.reached(it)) {
  1201 	dfs.addSource(it);
  1202 	dfs.start();
  1203       }
  1204     }    
  1205   }
  1206 
  1207   /// \ingroup topology
  1208   ///
  1209   /// \brief Sort the nodes of a DAG into topolgical order.
  1210   ///
  1211   /// Sort the nodes of a DAG into topolgical order. It also checks
  1212   /// that the given graph is DAG.
  1213   ///
  1214   /// \param g The graph. In must be directed and acyclic.
  1215   /// \retval order A readable - writable node map. The values will be set 
  1216   /// from 0 to the number of the nodes in the graph minus one. Each values 
  1217   /// of the map will be set exactly once, the values will be set descending 
  1218   /// order.
  1219   /// \return %False when the graph is not DAG.
  1220   ///
  1221   /// \see topologicalSort
  1222   /// \see dag
  1223   template <typename Graph, typename NodeMap>
  1224   bool checkedTopologicalSort(const Graph& graph, NodeMap& order) {
  1225     using namespace _topology_bits;
  1226 
  1227     checkConcept<concept::StaticGraph, Graph>();
  1228     checkConcept<concept::ReadWriteMap<typename Graph::Node, int>, NodeMap>();
  1229 
  1230     typedef typename Graph::Node Node;
  1231     typedef typename Graph::NodeIt NodeIt;
  1232     typedef typename Graph::Edge Edge;
  1233 
  1234     order = constMap<Node, int, -1>();
  1235 
  1236     TopologicalSortVisitor<Graph, NodeMap> 
  1237       visitor(order, countNodes(graph)); 
  1238 
  1239     DfsVisit<Graph, TopologicalSortVisitor<Graph, NodeMap> >
  1240       dfs(graph, visitor);
  1241 
  1242     dfs.init();
  1243     for (NodeIt it(graph); it != INVALID; ++it) {
  1244       if (!dfs.reached(it)) {
  1245 	dfs.addSource(it);
  1246 	while (!dfs.emptyQueue()) {
  1247  	  Edge edge = dfs.nextEdge();
  1248  	  Node target = graph.target(edge);
  1249  	  if (dfs.reached(target) && order[target] == -1) {
  1250  	    return false;
  1251  	  }
  1252  	  dfs.processNextEdge();
  1253  	}
  1254       }
  1255     }
  1256     return true;
  1257   }
  1258 
  1259   /// \ingroup topology
  1260   ///
  1261   /// \brief Check that the given directed graph is a DAG.
  1262   ///
  1263   /// Check that the given directed graph is a DAG. The DAG is
  1264   /// an Directed Acyclic Graph.
  1265   /// \return %False when the graph is not DAG.
  1266   /// \see acyclic
  1267   template <typename Graph>
  1268   bool dag(const Graph& graph) {
  1269 
  1270     checkConcept<concept::StaticGraph, Graph>();
  1271 
  1272     typedef typename Graph::Node Node;
  1273     typedef typename Graph::NodeIt NodeIt;
  1274     typedef typename Graph::Edge Edge;
  1275 
  1276     typedef typename Graph::template NodeMap<bool> ProcessedMap;
  1277 
  1278     typename Dfs<Graph>::template DefProcessedMap<ProcessedMap>::
  1279       Create dfs(graph);
  1280 
  1281     ProcessedMap processed(graph);
  1282     dfs.processedMap(processed);
  1283 
  1284     dfs.init();
  1285     for (NodeIt it(graph); it != INVALID; ++it) {
  1286       if (!dfs.reached(it)) {
  1287 	dfs.addSource(it);
  1288 	while (!dfs.emptyQueue()) {
  1289 	  Edge edge = dfs.nextEdge();
  1290 	  Node target = graph.target(edge);
  1291 	  if (dfs.reached(target) && !processed[target]) {
  1292 	    return false;
  1293 	  }
  1294 	  dfs.processNextEdge();
  1295 	}
  1296       }
  1297     }    
  1298     return true;
  1299   }
  1300 
  1301   /// \ingroup topology
  1302   ///
  1303   /// \brief Check that the given undirected graph is acyclic.
  1304   ///
  1305   /// Check that the given undirected graph acyclic.
  1306   /// \param graph The undirected graph.
  1307   /// \return %True when there is no circle in the graph.
  1308   /// \see dag
  1309   template <typename UndirGraph>
  1310   bool acyclic(const UndirGraph& graph) {
  1311     checkConcept<concept::UndirGraph, UndirGraph>();
  1312     typedef typename UndirGraph::Node Node;
  1313     typedef typename UndirGraph::NodeIt NodeIt;
  1314     typedef typename UndirGraph::Edge Edge;
  1315     Dfs<UndirGraph> dfs(graph);
  1316     dfs.init();
  1317     for (NodeIt it(graph); it != INVALID; ++it) {
  1318       if (!dfs.reached(it)) {
  1319 	dfs.addSource(it);
  1320 	while (!dfs.emptyQueue()) {
  1321 	  Edge edge = dfs.nextEdge();
  1322 	  Node source = graph.source(edge);
  1323 	  Node target = graph.target(edge);
  1324 	  if (dfs.reached(target) && 
  1325 	      dfs.pred(source) != graph.oppositeEdge(edge)) {
  1326 	    return false;
  1327 	  }
  1328 	  dfs.processNextEdge();
  1329 	}
  1330       }
  1331     }
  1332     return true;
  1333   }
  1334 
  1335   /// \ingroup topology
  1336   ///
  1337   /// \brief Check that the given undirected graph is tree.
  1338   ///
  1339   /// Check that the given undirected graph is tree.
  1340   /// \param graph The undirected graph.
  1341   /// \return %True when the graph is acyclic and connected.
  1342   template <typename UndirGraph>
  1343   bool tree(const UndirGraph& graph) {
  1344     checkConcept<concept::UndirGraph, UndirGraph>();
  1345     typedef typename UndirGraph::Node Node;
  1346     typedef typename UndirGraph::NodeIt NodeIt;
  1347     typedef typename UndirGraph::Edge Edge;
  1348     Dfs<UndirGraph> dfs(graph);
  1349     dfs.init();
  1350     dfs.addSource(NodeIt(graph));
  1351     while (!dfs.emptyQueue()) {
  1352       Edge edge = dfs.nextEdge();
  1353       Node source = graph.source(edge);
  1354       Node target = graph.target(edge);
  1355       if (dfs.reached(target) && 
  1356 	  dfs.pred(source) != graph.oppositeEdge(edge)) {
  1357 	return false;
  1358       }
  1359       dfs.processNextEdge();
  1360     }
  1361     for (NodeIt it(graph); it != INVALID; ++it) {
  1362       if (!dfs.reached(it)) {
  1363 	return false;
  1364       }
  1365     }    
  1366     return true;
  1367   }
  1368 
  1369   /// \ingroup topology
  1370   ///
  1371   /// \brief Check that the given undirected graph is bipartite.
  1372   ///
  1373   /// Check that the given undirected graph is bipartite.
  1374   /// \param graph The undirected graph.
  1375   /// \return %True when the nodes can be separated into two sets that
  1376   /// there are not connected nodes in neither sets.
  1377   template <typename UndirGraph>
  1378   bool bipartite(const UndirGraph& graph) {
  1379     checkConcept<concept::UndirGraph, UndirGraph>();
  1380     typedef typename UndirGraph::Node Node;
  1381     typedef typename UndirGraph::NodeIt NodeIt;
  1382     typedef typename UndirGraph::Edge Edge;
  1383     if (NodeIt(graph) == INVALID) return false;
  1384     Dfs<UndirGraph> dfs(graph);
  1385     dfs.init();
  1386     typename UndirGraph::template NodeMap<bool> red(graph);
  1387     for (NodeIt it(graph); it != INVALID; ++it) {
  1388       if (!dfs.reached(it)) {
  1389 	dfs.addSource(it);
  1390 	red[it] = true;
  1391 	while (!dfs.emptyQueue()) {
  1392 	  Edge edge = dfs.nextEdge();
  1393 	  Node source = graph.source(edge);
  1394 	  Node target = graph.target(edge);
  1395 	  if (dfs.reached(target) && red[source] == red[target]) {
  1396 	    return false;
  1397 	  } else {
  1398 	    red[target] = !red[source];
  1399 	  }
  1400 	  dfs.processNextEdge();
  1401 	}
  1402       }
  1403     }
  1404     return true;
  1405   }
  1406    
  1407 } //namespace lemon
  1408 
  1409 #endif //LEMON_TOPOLOGY_H