lemon/concepts/bpugraph.h
author alpar
Mon, 01 Oct 2007 18:57:21 +0000
changeset 2483 bf6d7b624d5c
parent 2391 14a343be7a5a
child 2485 88aa7870756a
permissions -rw-r--r--
- Gamma distributon random variable.
- Test file for random.h
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 /// \ingroup graph_concepts
    20 /// \file
    21 /// \brief The concept of Bipartite Undirected Graphs.
    22 
    23 #ifndef LEMON_CONCEPT_BPUGRAPH_H
    24 #define LEMON_CONCEPT_BPUGRAPH_H
    25 
    26 #include <lemon/concepts/graph_components.h>
    27 
    28 #include <lemon/concepts/graph.h>
    29 #include <lemon/concepts/ugraph.h>
    30 
    31 #include <lemon/bits/utility.h>
    32 
    33 namespace lemon {
    34   namespace concepts {
    35 
    36     /// \addtogroup graph_concepts
    37     /// @{
    38     ///
    39     /// \brief Class describing the concept of Bipartite Undirected Graphs.
    40     ///
    41     /// This class describes the common interface of all 
    42     /// Undirected Bipartite Graphs.
    43     ///
    44     /// As all concept describing classes it provides only interface
    45     /// without any sensible implementation. So any algorithm for
    46     /// bipartite undirected graph should compile with this class, but it 
    47     /// will not run properly, of course.
    48     ///
    49     /// In LEMON bipartite undirected graphs also fulfill the concept of 
    50     /// the undirected graphs (\ref lemon::concepts::UGraph "UGraph Concept"). 
    51     ///
    52     /// You can assume that all undirected bipartite graph can be handled
    53     /// as an undirected graph and consequently as a static graph.
    54     ///
    55     /// The bipartite graph stores two types of nodes which are named
    56     /// ANode and BNode. The graph type contains two types ANode and
    57     /// BNode which are inherited from Node type. Moreover they have
    58     /// constructor which converts Node to either ANode or BNode when
    59     /// it is possible. Therefor everywhere the Node type can be used
    60     /// instead of ANode and BNode. So the usage of the ANode and
    61     /// BNode is not suggested.
    62     ///
    63     /// The iteration on the partition can be done with the ANodeIt and 
    64     /// BNodeIt classes. The node map can be used to map values to the nodes
    65     /// and similarly we can use to map values for just the ANodes and
    66     /// BNodes the ANodeMap and BNodeMap template classes.
    67 
    68     class BpUGraph {
    69     public:
    70       /// \brief The undirected graph should be tagged by the
    71       /// UndirectedTag.
    72       ///
    73       /// The undirected graph should be tagged by the UndirectedTag. This
    74       /// tag helps the enable_if technics to make compile time 
    75       /// specializations for undirected graphs.  
    76       typedef True UndirectedTag;
    77 
    78       /// \brief The base type of node iterators, 
    79       /// or in other words, the trivial node iterator.
    80       ///
    81       /// This is the base type of each node iterator,
    82       /// thus each kind of node iterator converts to this.
    83       /// More precisely each kind of node iterator should be inherited 
    84       /// from the trivial node iterator. The Node class represents
    85       /// both of two types of nodes. 
    86       class Node {
    87       public:
    88         /// Default constructor
    89 
    90         /// @warning The default constructor sets the iterator
    91         /// to an undefined value.
    92         Node() { }
    93         /// Copy constructor.
    94 
    95         /// Copy constructor.
    96         ///
    97         Node(const Node&) { }
    98 
    99         /// Invalid constructor \& conversion.
   100 
   101         /// This constructor initializes the iterator to be invalid.
   102         /// \sa Invalid for more details.
   103         Node(Invalid) { }
   104         /// Equality operator
   105 
   106         /// Two iterators are equal if and only if they point to the
   107         /// same object or both are invalid.
   108         bool operator==(Node) const { return true; }
   109 
   110         /// Inequality operator
   111         
   112         /// \sa operator==(Node n)
   113         ///
   114         bool operator!=(Node) const { return true; }
   115 
   116 	/// Artificial ordering operator.
   117 	
   118 	/// To allow the use of graph descriptors as key type in std::map or
   119 	/// similar associative container we require this.
   120 	///
   121 	/// \note This operator only have to define some strict ordering of
   122 	/// the items; this order has nothing to do with the iteration
   123 	/// ordering of the items.
   124 	bool operator<(Node) const { return false; }
   125 
   126       };
   127 
   128       /// \brief Helper class for ANodes.
   129       ///
   130       /// This class is just a helper class for ANodes, it is not
   131       /// suggested to use it directly. It can be converted easily to
   132       /// node and vice versa. The usage of this class is limited
   133       /// to use just as template parameters for special map types. 
   134       class ANode : public Node {
   135       public:
   136         /// Default constructor
   137 
   138         /// @warning The default constructor sets the iterator
   139         /// to an undefined value.
   140         ANode() : Node() { }
   141         /// Copy constructor.
   142 
   143         /// Copy constructor.
   144         ///
   145         ANode(const ANode&) : Node() { }
   146 
   147         /// Construct the same node as ANode.
   148 
   149         /// Construct the same node as ANode. It may throws assertion
   150         /// when the given node is from the BNode set.
   151         ANode(const Node&) : Node() { }
   152 
   153         /// Assign node to A-node.
   154 
   155         /// Besides the core graph item functionality each node should
   156         /// be convertible to the represented A-node if it is it possible. 
   157         ANode& operator=(const Node&) { return *this; }
   158 
   159         /// Invalid constructor \& conversion.
   160 
   161         /// This constructor initializes the iterator to be invalid.
   162         /// \sa Invalid for more details.
   163         ANode(Invalid) { }
   164         /// Equality operator
   165 
   166         /// Two iterators are equal if and only if they point to the
   167         /// same object or both are invalid.
   168         bool operator==(ANode) const { return true; }
   169 
   170         /// Inequality operator
   171         
   172         /// \sa operator==(ANode n)
   173         ///
   174         bool operator!=(ANode) const { return true; }
   175 
   176 	/// Artificial ordering operator.
   177 	
   178 	/// To allow the use of graph descriptors as key type in std::map or
   179 	/// similar associative container we require this.
   180 	///
   181 	/// \note This operator only have to define some strict ordering of
   182 	/// the items; this order has nothing to do with the iteration
   183 	/// ordering of the items.
   184 	bool operator<(ANode) const { return false; }
   185 
   186       };
   187 
   188       /// \brief Helper class for BNodes.
   189       ///
   190       /// This class is just a helper class for BNodes, it is not
   191       /// suggested to use it directly. It can be converted easily to
   192       /// node and vice versa. The usage of this class is limited
   193       /// to use just as template parameters for special map types. 
   194       class BNode : public Node {
   195       public:
   196         /// Default constructor
   197 
   198         /// @warning The default constructor sets the iterator
   199         /// to an undefined value.
   200         BNode() : Node() { }
   201         /// Copy constructor.
   202 
   203         /// Copy constructor.
   204         ///
   205         BNode(const BNode&) : Node() { }
   206 
   207         /// Construct the same node as BNode.
   208 
   209         /// Construct the same node as BNode. It may throws assertion
   210         /// when the given node is from the ANode set.
   211         BNode(const Node&) : Node() { }
   212 
   213         /// Assign node to B-node.
   214 
   215         /// Besides the core graph item functionality each node should
   216         /// be convertible to the represented B-node if it is it possible. 
   217         BNode& operator=(const Node&) { return *this; }
   218 
   219         /// Invalid constructor \& conversion.
   220 
   221         /// This constructor initializes the iterator to be invalid.
   222         /// \sa Invalid for more details.
   223         BNode(Invalid) { }
   224         /// Equality operator
   225 
   226         /// Two iterators are equal if and only if they point to the
   227         /// same object or both are invalid.
   228         bool operator==(BNode) const { return true; }
   229 
   230         /// Inequality operator
   231         
   232         /// \sa operator==(BNode n)
   233         ///
   234         bool operator!=(BNode) const { return true; }
   235 
   236 	/// Artificial ordering operator.
   237 	
   238 	/// To allow the use of graph descriptors as key type in std::map or
   239 	/// similar associative container we require this.
   240 	///
   241 	/// \note This operator only have to define some strict ordering of
   242 	/// the items; this order has nothing to do with the iteration
   243 	/// ordering of the items.
   244 	bool operator<(BNode) const { return false; }
   245 
   246       };
   247     
   248       /// This iterator goes through each node.
   249 
   250       /// This iterator goes through each node.
   251       /// Its usage is quite simple, for example you can count the number
   252       /// of nodes in graph \c g of type \c Graph like this:
   253       ///\code
   254       /// int count=0;
   255       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   256       ///\endcode
   257       class NodeIt : public Node {
   258       public:
   259         /// Default constructor
   260 
   261         /// @warning The default constructor sets the iterator
   262         /// to an undefined value.
   263         NodeIt() { }
   264         /// Copy constructor.
   265         
   266         /// Copy constructor.
   267         ///
   268         NodeIt(const NodeIt& n) : Node(n) { }
   269         /// Invalid constructor \& conversion.
   270 
   271         /// Initialize the iterator to be invalid.
   272         /// \sa Invalid for more details.
   273         NodeIt(Invalid) { }
   274         /// Sets the iterator to the first node.
   275 
   276         /// Sets the iterator to the first node of \c g.
   277         ///
   278         NodeIt(const BpUGraph&) { }
   279         /// Node -> NodeIt conversion.
   280 
   281         /// Sets the iterator to the node of \c the graph pointed by 
   282 	/// the trivial iterator.
   283         /// This feature necessitates that each time we 
   284         /// iterate the edge-set, the iteration order is the same.
   285         NodeIt(const BpUGraph&, const Node&) { }
   286         /// Next node.
   287 
   288         /// Assign the iterator to the next node.
   289         ///
   290         NodeIt& operator++() { return *this; }
   291       };
   292 
   293       /// This iterator goes through each ANode.
   294 
   295       /// This iterator goes through each ANode.
   296       /// Its usage is quite simple, for example you can count the number
   297       /// of nodes in graph \c g of type \c Graph like this:
   298       ///\code
   299       /// int count=0;
   300       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   301       ///\endcode
   302       class ANodeIt : public Node {
   303       public:
   304         /// Default constructor
   305 
   306         /// @warning The default constructor sets the iterator
   307         /// to an undefined value.
   308         ANodeIt() { }
   309         /// Copy constructor.
   310         
   311         /// Copy constructor.
   312         ///
   313         ANodeIt(const ANodeIt& n) : Node(n) { }
   314         /// Invalid constructor \& conversion.
   315 
   316         /// Initialize the iterator to be invalid.
   317         /// \sa Invalid for more details.
   318         ANodeIt(Invalid) { }
   319         /// Sets the iterator to the first node.
   320 
   321         /// Sets the iterator to the first node of \c g.
   322         ///
   323         ANodeIt(const BpUGraph&) { }
   324         /// Node -> ANodeIt conversion.
   325 
   326         /// Sets the iterator to the node of \c the graph pointed by 
   327 	/// the trivial iterator.
   328         /// This feature necessitates that each time we 
   329         /// iterate the edge-set, the iteration order is the same.
   330         ANodeIt(const BpUGraph&, const Node&) { }
   331         /// Next node.
   332 
   333         /// Assign the iterator to the next node.
   334         ///
   335         ANodeIt& operator++() { return *this; }
   336       };
   337 
   338       /// This iterator goes through each BNode.
   339 
   340       /// This iterator goes through each BNode.
   341       /// Its usage is quite simple, for example you can count the number
   342       /// of nodes in graph \c g of type \c Graph like this:
   343       ///\code
   344       /// int count=0;
   345       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   346       ///\endcode
   347       class BNodeIt : public Node {
   348       public:
   349         /// Default constructor
   350 
   351         /// @warning The default constructor sets the iterator
   352         /// to an undefined value.
   353         BNodeIt() { }
   354         /// Copy constructor.
   355         
   356         /// Copy constructor.
   357         ///
   358         BNodeIt(const BNodeIt& n) : Node(n) { }
   359         /// Invalid constructor \& conversion.
   360 
   361         /// Initialize the iterator to be invalid.
   362         /// \sa Invalid for more details.
   363         BNodeIt(Invalid) { }
   364         /// Sets the iterator to the first node.
   365 
   366         /// Sets the iterator to the first node of \c g.
   367         ///
   368         BNodeIt(const BpUGraph&) { }
   369         /// Node -> BNodeIt conversion.
   370 
   371         /// Sets the iterator to the node of \c the graph pointed by 
   372 	/// the trivial iterator.
   373         /// This feature necessitates that each time we 
   374         /// iterate the edge-set, the iteration order is the same.
   375         BNodeIt(const BpUGraph&, const Node&) { }
   376         /// Next node.
   377 
   378         /// Assign the iterator to the next node.
   379         ///
   380         BNodeIt& operator++() { return *this; }
   381       };
   382     
   383     
   384       /// The base type of the undirected edge iterators.
   385 
   386       /// The base type of the undirected edge iterators.
   387       ///
   388       class UEdge {
   389       public:
   390         /// Default constructor
   391 
   392         /// @warning The default constructor sets the iterator
   393         /// to an undefined value.
   394         UEdge() { }
   395         /// Copy constructor.
   396 
   397         /// Copy constructor.
   398         ///
   399         UEdge(const UEdge&) { }
   400         /// Initialize the iterator to be invalid.
   401 
   402         /// Initialize the iterator to be invalid.
   403         ///
   404         UEdge(Invalid) { }
   405         /// Equality operator
   406 
   407         /// Two iterators are equal if and only if they point to the
   408         /// same object or both are invalid.
   409         bool operator==(UEdge) const { return true; }
   410         /// Inequality operator
   411 
   412         /// \sa operator==(UEdge n)
   413         ///
   414         bool operator!=(UEdge) const { return true; }
   415 
   416 	/// Artificial ordering operator.
   417 	
   418 	/// To allow the use of graph descriptors as key type in std::map or
   419 	/// similar associative container we require this.
   420 	///
   421 	/// \note This operator only have to define some strict ordering of
   422 	/// the items; this order has nothing to do with the iteration
   423 	/// ordering of the items.
   424 	bool operator<(UEdge) const { return false; }
   425       };
   426 
   427       /// This iterator goes through each undirected edge.
   428 
   429       /// This iterator goes through each undirected edge of a graph.
   430       /// Its usage is quite simple, for example you can count the number
   431       /// of undirected edges in a graph \c g of type \c Graph as follows:
   432       ///\code
   433       /// int count=0;
   434       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   435       ///\endcode
   436       class UEdgeIt : public UEdge {
   437       public:
   438         /// Default constructor
   439 
   440         /// @warning The default constructor sets the iterator
   441         /// to an undefined value.
   442         UEdgeIt() { }
   443         /// Copy constructor.
   444 
   445         /// Copy constructor.
   446         ///
   447         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   448         /// Initialize the iterator to be invalid.
   449 
   450         /// Initialize the iterator to be invalid.
   451         ///
   452         UEdgeIt(Invalid) { }
   453         /// This constructor sets the iterator to the first undirected edge.
   454     
   455         /// This constructor sets the iterator to the first undirected edge.
   456         UEdgeIt(const BpUGraph&) { }
   457         /// UEdge -> UEdgeIt conversion
   458 
   459         /// Sets the iterator to the value of the trivial iterator.
   460         /// This feature necessitates that each time we
   461         /// iterate the undirected edge-set, the iteration order is the 
   462 	/// same.
   463         UEdgeIt(const BpUGraph&, const UEdge&) { } 
   464         /// Next undirected edge
   465         
   466         /// Assign the iterator to the next undirected edge.
   467         UEdgeIt& operator++() { return *this; }
   468       };
   469 
   470       /// \brief This iterator goes trough the incident undirected 
   471       /// edges of a node.
   472       ///
   473       /// This iterator goes trough the incident undirected edges
   474       /// of a certain node
   475       /// of a graph.
   476       /// Its usage is quite simple, for example you can compute the
   477       /// degree (i.e. count the number
   478       /// of incident edges of a node \c n
   479       /// in graph \c g of type \c Graph as follows.
   480       ///\code
   481       /// int count=0;
   482       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   483       ///\endcode
   484       class IncEdgeIt : public UEdge {
   485       public:
   486         /// Default constructor
   487 
   488         /// @warning The default constructor sets the iterator
   489         /// to an undefined value.
   490         IncEdgeIt() { }
   491         /// Copy constructor.
   492 
   493         /// Copy constructor.
   494         ///
   495         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   496         /// Initialize the iterator to be invalid.
   497 
   498         /// Initialize the iterator to be invalid.
   499         ///
   500         IncEdgeIt(Invalid) { }
   501         /// This constructor sets the iterator to first incident edge.
   502     
   503         /// This constructor set the iterator to the first incident edge of
   504         /// the node.
   505         IncEdgeIt(const BpUGraph&, const Node&) { }
   506         /// UEdge -> IncEdgeIt conversion
   507 
   508         /// Sets the iterator to the value of the trivial iterator \c e.
   509         /// This feature necessitates that each time we 
   510         /// iterate the edge-set, the iteration order is the same.
   511         IncEdgeIt(const BpUGraph&, const UEdge&) { }
   512         /// Next incident edge
   513 
   514         /// Assign the iterator to the next incident edge
   515 	/// of the corresponding node.
   516         IncEdgeIt& operator++() { return *this; }
   517       };
   518 
   519       /// The directed edge type.
   520 
   521       /// The directed edge type. It can be converted to the
   522       /// undirected edge.
   523       class Edge : public UEdge {
   524       public:
   525         /// Default constructor
   526 
   527         /// @warning The default constructor sets the iterator
   528         /// to an undefined value.
   529         Edge() { }
   530         /// Copy constructor.
   531 
   532         /// Copy constructor.
   533         ///
   534         Edge(const Edge& e) : UEdge(e) { }
   535         /// Initialize the iterator to be invalid.
   536 
   537         /// Initialize the iterator to be invalid.
   538         ///
   539         Edge(Invalid) { }
   540         /// Equality operator
   541 
   542         /// Two iterators are equal if and only if they point to the
   543         /// same object or both are invalid.
   544         bool operator==(Edge) const { return true; }
   545         /// Inequality operator
   546 
   547         /// \sa operator==(Edge n)
   548         ///
   549         bool operator!=(Edge) const { return true; }
   550 
   551 	/// Artificial ordering operator.
   552 	
   553 	/// To allow the use of graph descriptors as key type in std::map or
   554 	/// similar associative container we require this.
   555 	///
   556 	/// \note This operator only have to define some strict ordering of
   557 	/// the items; this order has nothing to do with the iteration
   558 	/// ordering of the items.
   559 	bool operator<(Edge) const { return false; }
   560 	
   561       }; 
   562       /// This iterator goes through each directed edge.
   563 
   564       /// This iterator goes through each edge of a graph.
   565       /// Its usage is quite simple, for example you can count the number
   566       /// of edges in a graph \c g of type \c Graph as follows:
   567       ///\code
   568       /// int count=0;
   569       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   570       ///\endcode
   571       class EdgeIt : public Edge {
   572       public:
   573         /// Default constructor
   574 
   575         /// @warning The default constructor sets the iterator
   576         /// to an undefined value.
   577         EdgeIt() { }
   578         /// Copy constructor.
   579 
   580         /// Copy constructor.
   581         ///
   582         EdgeIt(const EdgeIt& e) : Edge(e) { }
   583         /// Initialize the iterator to be invalid.
   584 
   585         /// Initialize the iterator to be invalid.
   586         ///
   587         EdgeIt(Invalid) { }
   588         /// This constructor sets the iterator to the first edge.
   589     
   590         /// This constructor sets the iterator to the first edge of \c g.
   591         ///@param g the graph
   592         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   593         /// Edge -> EdgeIt conversion
   594 
   595         /// Sets the iterator to the value of the trivial iterator \c e.
   596         /// This feature necessitates that each time we 
   597         /// iterate the edge-set, the iteration order is the same.
   598         EdgeIt(const BpUGraph&, const Edge&) { } 
   599         ///Next edge
   600         
   601         /// Assign the iterator to the next edge.
   602         EdgeIt& operator++() { return *this; }
   603       };
   604    
   605       /// This iterator goes trough the outgoing directed edges of a node.
   606 
   607       /// This iterator goes trough the \e outgoing edges of a certain node
   608       /// of a graph.
   609       /// Its usage is quite simple, for example you can count the number
   610       /// of outgoing edges of a node \c n
   611       /// in graph \c g of type \c Graph as follows.
   612       ///\code
   613       /// int count=0;
   614       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   615       ///\endcode
   616     
   617       class OutEdgeIt : public Edge {
   618       public:
   619         /// Default constructor
   620 
   621         /// @warning The default constructor sets the iterator
   622         /// to an undefined value.
   623         OutEdgeIt() { }
   624         /// Copy constructor.
   625 
   626         /// Copy constructor.
   627         ///
   628         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   629         /// Initialize the iterator to be invalid.
   630 
   631         /// Initialize the iterator to be invalid.
   632         ///
   633         OutEdgeIt(Invalid) { }
   634         /// This constructor sets the iterator to the first outgoing edge.
   635     
   636         /// This constructor sets the iterator to the first outgoing edge of
   637         /// the node.
   638         ///@param n the node
   639         ///@param g the graph
   640         OutEdgeIt(const BpUGraph& n, const Node& g) {
   641 	  ignore_unused_variable_warning(n);
   642 	  ignore_unused_variable_warning(g);
   643 	}
   644         /// Edge -> OutEdgeIt conversion
   645 
   646         /// Sets the iterator to the value of the trivial iterator.
   647 	/// This feature necessitates that each time we 
   648         /// iterate the edge-set, the iteration order is the same.
   649         OutEdgeIt(const BpUGraph&, const Edge&) { }
   650         ///Next outgoing edge
   651         
   652         /// Assign the iterator to the next 
   653         /// outgoing edge of the corresponding node.
   654         OutEdgeIt& operator++() { return *this; }
   655       };
   656 
   657       /// This iterator goes trough the incoming directed edges of a node.
   658 
   659       /// This iterator goes trough the \e incoming edges of a certain node
   660       /// of a graph.
   661       /// Its usage is quite simple, for example you can count the number
   662       /// of outgoing edges of a node \c n
   663       /// in graph \c g of type \c Graph as follows.
   664       ///\code
   665       /// int count=0;
   666       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   667       ///\endcode
   668 
   669       class InEdgeIt : public Edge {
   670       public:
   671         /// Default constructor
   672 
   673         /// @warning The default constructor sets the iterator
   674         /// to an undefined value.
   675         InEdgeIt() { }
   676         /// Copy constructor.
   677 
   678         /// Copy constructor.
   679         ///
   680         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   681         /// Initialize the iterator to be invalid.
   682 
   683         /// Initialize the iterator to be invalid.
   684         ///
   685         InEdgeIt(Invalid) { }
   686         /// This constructor sets the iterator to first incoming edge.
   687     
   688         /// This constructor set the iterator to the first incoming edge of
   689         /// the node.
   690         ///@param n the node
   691         ///@param g the graph
   692         InEdgeIt(const BpUGraph& g, const Node& n) { 
   693 	  ignore_unused_variable_warning(n);
   694 	  ignore_unused_variable_warning(g);
   695 	}
   696         /// Edge -> InEdgeIt conversion
   697 
   698         /// Sets the iterator to the value of the trivial iterator \c e.
   699         /// This feature necessitates that each time we 
   700         /// iterate the edge-set, the iteration order is the same.
   701         InEdgeIt(const BpUGraph&, const Edge&) { }
   702         /// Next incoming edge
   703 
   704         /// Assign the iterator to the next inedge of the corresponding node.
   705         ///
   706         InEdgeIt& operator++() { return *this; }
   707       };
   708 
   709       /// \brief Read write map of the nodes to type \c T.
   710       /// 
   711       /// ReadWrite map of the nodes to type \c T.
   712       /// \sa Reference
   713       /// \todo Wrong documentation
   714       template<class T> 
   715       class NodeMap : public ReadWriteMap< Node, T >
   716       {
   717       public:
   718 
   719         ///\e
   720         NodeMap(const BpUGraph&) { }
   721         ///\e
   722         NodeMap(const BpUGraph&, T) { }
   723 
   724         ///Copy constructor
   725         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   726         ///Assignment operator
   727         NodeMap& operator=(const NodeMap&) { return *this; }
   728         ///Assignment operator
   729         template <typename CMap>
   730         NodeMap& operator=(const CMap&) { 
   731           checkConcept<ReadMap<Node, T>, CMap>();
   732           return *this; 
   733         }
   734       };
   735 
   736       /// \brief Read write map of the ANodes to type \c T.
   737       /// 
   738       /// ReadWrite map of the ANodes to type \c T.
   739       /// \sa Reference
   740       /// \todo Wrong documentation
   741       template<class T> 
   742       class ANodeMap : public ReadWriteMap< Node, T >
   743       {
   744       public:
   745 
   746         ///\e
   747         ANodeMap(const BpUGraph&) { }
   748         ///\e
   749         ANodeMap(const BpUGraph&, T) { }
   750 
   751         ///Copy constructor
   752         ANodeMap(const ANodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   753         ///Assignment operator
   754         ANodeMap& operator=(const ANodeMap&) { return *this; }
   755         ///Assignment operator
   756         template <typename CMap>
   757         ANodeMap& operator=(const CMap&) { 
   758           checkConcept<ReadMap<Node, T>, CMap>();
   759           return *this; 
   760         }
   761       };
   762 
   763       /// \brief Read write map of the BNodes to type \c T.
   764       /// 
   765       /// ReadWrite map of the BNodes to type \c T.
   766       /// \sa Reference
   767       /// \todo Wrong documentation
   768       template<class T> 
   769       class BNodeMap : public ReadWriteMap< Node, T >
   770       {
   771       public:
   772 
   773         ///\e
   774         BNodeMap(const BpUGraph&) { }
   775         ///\e
   776         BNodeMap(const BpUGraph&, T) { }
   777 
   778         ///Copy constructor
   779         BNodeMap(const BNodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   780         ///Assignment operator
   781         BNodeMap& operator=(const BNodeMap&) { return *this; }
   782         ///Assignment operator
   783         template <typename CMap>
   784         BNodeMap& operator=(const CMap&) { 
   785           checkConcept<ReadMap<Node, T>, CMap>();
   786           return *this; 
   787         }
   788       };
   789 
   790       /// \brief Read write map of the directed edges to type \c T.
   791       ///
   792       /// Reference map of the directed edges to type \c T.
   793       /// \sa Reference
   794       /// \todo Wrong documentation
   795       template<class T> 
   796       class EdgeMap : public ReadWriteMap<Edge,T>
   797       {
   798       public:
   799 
   800         ///\e
   801         EdgeMap(const BpUGraph&) { }
   802         ///\e
   803         EdgeMap(const BpUGraph&, T) { }
   804         ///Copy constructor
   805         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   806         ///Assignment operator
   807         EdgeMap& operator=(const EdgeMap&) { return *this; }
   808         ///Assignment operator
   809         template <typename CMap>
   810         EdgeMap& operator=(const CMap&) { 
   811           checkConcept<ReadMap<Edge, T>, CMap>();
   812           return *this; 
   813         }
   814       };
   815 
   816       /// Read write map of the undirected edges to type \c T.
   817 
   818       /// Reference map of the edges to type \c T.
   819       /// \sa Reference
   820       /// \todo Wrong documentation
   821       template<class T> 
   822       class UEdgeMap : public ReadWriteMap<UEdge,T>
   823       {
   824       public:
   825 
   826         ///\e
   827         UEdgeMap(const BpUGraph&) { }
   828         ///\e
   829         UEdgeMap(const BpUGraph&, T) { }
   830         ///Copy constructor
   831         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   832         ///Assignment operator
   833         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   834         ///Assignment operator
   835         template <typename CMap>
   836         UEdgeMap& operator=(const CMap&) { 
   837           checkConcept<ReadMap<UEdge, T>, CMap>();
   838           return *this; 
   839         }
   840       };
   841 
   842       /// \brief Direct the given undirected edge.
   843       ///
   844       /// Direct the given undirected edge. The returned edge source
   845       /// will be the given node.
   846       Edge direct(const UEdge&, const Node&) const {
   847 	return INVALID;
   848       }
   849 
   850       /// \brief Direct the given undirected edge.
   851       ///
   852       /// Direct the given undirected edge. The returned edge
   853       /// represents the given undirected edge and the direction comes
   854       /// from the given bool.  The source of the undirected edge and
   855       /// the directed edge is the same when the given bool is true.
   856       Edge direct(const UEdge&, bool) const {
   857 	return INVALID;
   858       }
   859 
   860       /// \brief Returns true when the given node is an ANode.
   861       ///
   862       /// Returns true when the given node is an ANode.
   863       bool aNode(Node) const { return true;}
   864 
   865       /// \brief Returns true when the given node is an BNode.
   866       ///
   867       /// Returns true when the given node is an BNode.
   868       bool bNode(Node) const { return true;}
   869 
   870       /// \brief Returns the edge's end node which is in the ANode set.
   871       ///
   872       /// Returns the edge's end node which is in the ANode set.
   873       Node aNode(UEdge) const { return INVALID;}
   874 
   875       /// \brief Returns the edge's end node which is in the BNode set.
   876       ///
   877       /// Returns the edge's end node which is in the BNode set.
   878       Node bNode(UEdge) const { return INVALID;}
   879 
   880       /// \brief Returns true if the edge has default orientation.
   881       ///
   882       /// Returns whether the given directed edge is same orientation as
   883       /// the corresponding undirected edge's default orientation.
   884       bool direction(Edge) const { return true; }
   885 
   886       /// \brief Returns the opposite directed edge.
   887       ///
   888       /// Returns the opposite directed edge.
   889       Edge oppositeEdge(Edge) const { return INVALID; }
   890 
   891       /// \brief Opposite node on an edge
   892       ///
   893       /// \return the opposite of the given Node on the given UEdge
   894       Node oppositeNode(Node, UEdge) const { return INVALID; }
   895 
   896       /// \brief First node of the undirected edge.
   897       ///
   898       /// \return the first node of the given UEdge.
   899       ///
   900       /// Naturally undirected edges don't have direction and thus
   901       /// don't have source and target node. But we use these two methods
   902       /// to query the two endnodes of the edge. The direction of the edge
   903       /// which arises this way is called the inherent direction of the
   904       /// undirected edge, and is used to define the "default" direction
   905       /// of the directed versions of the edges.
   906       /// \sa direction
   907       Node source(UEdge) const { return INVALID; }
   908 
   909       /// \brief Second node of the undirected edge.
   910       Node target(UEdge) const { return INVALID; }
   911 
   912       /// \brief Source node of the directed edge.
   913       Node source(Edge) const { return INVALID; }
   914 
   915       /// \brief Target node of the directed edge.
   916       Node target(Edge) const { return INVALID; }
   917 
   918       /// \brief Base node of the iterator
   919       ///
   920       /// Returns the base node (the source in this case) of the iterator
   921       Node baseNode(OutEdgeIt e) const {
   922 	return source(e);
   923       }
   924 
   925       /// \brief Running node of the iterator
   926       ///
   927       /// Returns the running node (the target in this case) of the
   928       /// iterator
   929       Node runningNode(OutEdgeIt e) const {
   930 	return target(e);
   931       }
   932 
   933       /// \brief Base node of the iterator
   934       ///
   935       /// Returns the base node (the target in this case) of the iterator
   936       Node baseNode(InEdgeIt e) const {
   937 	return target(e);
   938       }
   939       /// \brief Running node of the iterator
   940       ///
   941       /// Returns the running node (the source in this case) of the
   942       /// iterator
   943       Node runningNode(InEdgeIt e) const {
   944 	return source(e);
   945       }
   946 
   947       /// \brief Base node of the iterator
   948       ///
   949       /// Returns the base node of the iterator
   950       Node baseNode(IncEdgeIt) const {
   951 	return INVALID;
   952       }
   953       
   954       /// \brief Running node of the iterator
   955       ///
   956       /// Returns the running node of the iterator
   957       Node runningNode(IncEdgeIt) const {
   958 	return INVALID;
   959       }
   960 
   961       void first(Node&) const {}
   962       void next(Node&) const {}
   963 
   964       void first(Edge&) const {}
   965       void next(Edge&) const {}
   966 
   967       void first(UEdge&) const {}
   968       void next(UEdge&) const {}
   969 
   970       void firstANode(Node&) const {}
   971       void nextANode(Node&) const {}
   972 
   973       void firstBNode(Node&) const {}
   974       void nextBNode(Node&) const {}
   975 
   976       void firstIn(Edge&, const Node&) const {}
   977       void nextIn(Edge&) const {}
   978 
   979       void firstOut(Edge&, const Node&) const {}
   980       void nextOut(Edge&) const {}
   981 
   982       void firstInc(UEdge &, bool &, const Node &) const {}
   983       void nextInc(UEdge &, bool &) const {}
   984 
   985       void firstFromANode(UEdge&, const Node&) const {}
   986       void nextFromANode(UEdge&) const {}
   987 
   988       void firstFromBNode(UEdge&, const Node&) const {}
   989       void nextFromBNode(UEdge&) const {}
   990 
   991       template <typename Graph>
   992       struct Constraints {
   993 	void constraints() {
   994 	  checkConcept<IterableBpUGraphComponent<>, Graph>();
   995 	  checkConcept<MappableBpUGraphComponent<>, Graph>();
   996 	}
   997       };
   998 
   999     };
  1000 
  1001 
  1002     /// @}
  1003 
  1004   }
  1005 
  1006 }
  1007 
  1008 #endif