- Gamma distributon random variable.
- Test file for random.h
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2007
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 /// \ingroup graph_concepts
21 /// \brief The concept of Bipartite Undirected Graphs.
23 #ifndef LEMON_CONCEPT_BPUGRAPH_H
24 #define LEMON_CONCEPT_BPUGRAPH_H
26 #include <lemon/concepts/graph_components.h>
28 #include <lemon/concepts/graph.h>
29 #include <lemon/concepts/ugraph.h>
31 #include <lemon/bits/utility.h>
36 /// \addtogroup graph_concepts
39 /// \brief Class describing the concept of Bipartite Undirected Graphs.
41 /// This class describes the common interface of all
42 /// Undirected Bipartite Graphs.
44 /// As all concept describing classes it provides only interface
45 /// without any sensible implementation. So any algorithm for
46 /// bipartite undirected graph should compile with this class, but it
47 /// will not run properly, of course.
49 /// In LEMON bipartite undirected graphs also fulfill the concept of
50 /// the undirected graphs (\ref lemon::concepts::UGraph "UGraph Concept").
52 /// You can assume that all undirected bipartite graph can be handled
53 /// as an undirected graph and consequently as a static graph.
55 /// The bipartite graph stores two types of nodes which are named
56 /// ANode and BNode. The graph type contains two types ANode and
57 /// BNode which are inherited from Node type. Moreover they have
58 /// constructor which converts Node to either ANode or BNode when
59 /// it is possible. Therefor everywhere the Node type can be used
60 /// instead of ANode and BNode. So the usage of the ANode and
61 /// BNode is not suggested.
63 /// The iteration on the partition can be done with the ANodeIt and
64 /// BNodeIt classes. The node map can be used to map values to the nodes
65 /// and similarly we can use to map values for just the ANodes and
66 /// BNodes the ANodeMap and BNodeMap template classes.
70 /// \brief The undirected graph should be tagged by the
73 /// The undirected graph should be tagged by the UndirectedTag. This
74 /// tag helps the enable_if technics to make compile time
75 /// specializations for undirected graphs.
76 typedef True UndirectedTag;
78 /// \brief The base type of node iterators,
79 /// or in other words, the trivial node iterator.
81 /// This is the base type of each node iterator,
82 /// thus each kind of node iterator converts to this.
83 /// More precisely each kind of node iterator should be inherited
84 /// from the trivial node iterator. The Node class represents
85 /// both of two types of nodes.
88 /// Default constructor
90 /// @warning The default constructor sets the iterator
91 /// to an undefined value.
99 /// Invalid constructor \& conversion.
101 /// This constructor initializes the iterator to be invalid.
102 /// \sa Invalid for more details.
104 /// Equality operator
106 /// Two iterators are equal if and only if they point to the
107 /// same object or both are invalid.
108 bool operator==(Node) const { return true; }
110 /// Inequality operator
112 /// \sa operator==(Node n)
114 bool operator!=(Node) const { return true; }
116 /// Artificial ordering operator.
118 /// To allow the use of graph descriptors as key type in std::map or
119 /// similar associative container we require this.
121 /// \note This operator only have to define some strict ordering of
122 /// the items; this order has nothing to do with the iteration
123 /// ordering of the items.
124 bool operator<(Node) const { return false; }
128 /// \brief Helper class for ANodes.
130 /// This class is just a helper class for ANodes, it is not
131 /// suggested to use it directly. It can be converted easily to
132 /// node and vice versa. The usage of this class is limited
133 /// to use just as template parameters for special map types.
134 class ANode : public Node {
136 /// Default constructor
138 /// @warning The default constructor sets the iterator
139 /// to an undefined value.
141 /// Copy constructor.
143 /// Copy constructor.
145 ANode(const ANode&) : Node() { }
147 /// Construct the same node as ANode.
149 /// Construct the same node as ANode. It may throws assertion
150 /// when the given node is from the BNode set.
151 ANode(const Node&) : Node() { }
153 /// Assign node to A-node.
155 /// Besides the core graph item functionality each node should
156 /// be convertible to the represented A-node if it is it possible.
157 ANode& operator=(const Node&) { return *this; }
159 /// Invalid constructor \& conversion.
161 /// This constructor initializes the iterator to be invalid.
162 /// \sa Invalid for more details.
164 /// Equality operator
166 /// Two iterators are equal if and only if they point to the
167 /// same object or both are invalid.
168 bool operator==(ANode) const { return true; }
170 /// Inequality operator
172 /// \sa operator==(ANode n)
174 bool operator!=(ANode) const { return true; }
176 /// Artificial ordering operator.
178 /// To allow the use of graph descriptors as key type in std::map or
179 /// similar associative container we require this.
181 /// \note This operator only have to define some strict ordering of
182 /// the items; this order has nothing to do with the iteration
183 /// ordering of the items.
184 bool operator<(ANode) const { return false; }
188 /// \brief Helper class for BNodes.
190 /// This class is just a helper class for BNodes, it is not
191 /// suggested to use it directly. It can be converted easily to
192 /// node and vice versa. The usage of this class is limited
193 /// to use just as template parameters for special map types.
194 class BNode : public Node {
196 /// Default constructor
198 /// @warning The default constructor sets the iterator
199 /// to an undefined value.
201 /// Copy constructor.
203 /// Copy constructor.
205 BNode(const BNode&) : Node() { }
207 /// Construct the same node as BNode.
209 /// Construct the same node as BNode. It may throws assertion
210 /// when the given node is from the ANode set.
211 BNode(const Node&) : Node() { }
213 /// Assign node to B-node.
215 /// Besides the core graph item functionality each node should
216 /// be convertible to the represented B-node if it is it possible.
217 BNode& operator=(const Node&) { return *this; }
219 /// Invalid constructor \& conversion.
221 /// This constructor initializes the iterator to be invalid.
222 /// \sa Invalid for more details.
224 /// Equality operator
226 /// Two iterators are equal if and only if they point to the
227 /// same object or both are invalid.
228 bool operator==(BNode) const { return true; }
230 /// Inequality operator
232 /// \sa operator==(BNode n)
234 bool operator!=(BNode) const { return true; }
236 /// Artificial ordering operator.
238 /// To allow the use of graph descriptors as key type in std::map or
239 /// similar associative container we require this.
241 /// \note This operator only have to define some strict ordering of
242 /// the items; this order has nothing to do with the iteration
243 /// ordering of the items.
244 bool operator<(BNode) const { return false; }
248 /// This iterator goes through each node.
250 /// This iterator goes through each node.
251 /// Its usage is quite simple, for example you can count the number
252 /// of nodes in graph \c g of type \c Graph like this:
255 /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
257 class NodeIt : public Node {
259 /// Default constructor
261 /// @warning The default constructor sets the iterator
262 /// to an undefined value.
264 /// Copy constructor.
266 /// Copy constructor.
268 NodeIt(const NodeIt& n) : Node(n) { }
269 /// Invalid constructor \& conversion.
271 /// Initialize the iterator to be invalid.
272 /// \sa Invalid for more details.
274 /// Sets the iterator to the first node.
276 /// Sets the iterator to the first node of \c g.
278 NodeIt(const BpUGraph&) { }
279 /// Node -> NodeIt conversion.
281 /// Sets the iterator to the node of \c the graph pointed by
282 /// the trivial iterator.
283 /// This feature necessitates that each time we
284 /// iterate the edge-set, the iteration order is the same.
285 NodeIt(const BpUGraph&, const Node&) { }
288 /// Assign the iterator to the next node.
290 NodeIt& operator++() { return *this; }
293 /// This iterator goes through each ANode.
295 /// This iterator goes through each ANode.
296 /// Its usage is quite simple, for example you can count the number
297 /// of nodes in graph \c g of type \c Graph like this:
300 /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
302 class ANodeIt : public Node {
304 /// Default constructor
306 /// @warning The default constructor sets the iterator
307 /// to an undefined value.
309 /// Copy constructor.
311 /// Copy constructor.
313 ANodeIt(const ANodeIt& n) : Node(n) { }
314 /// Invalid constructor \& conversion.
316 /// Initialize the iterator to be invalid.
317 /// \sa Invalid for more details.
319 /// Sets the iterator to the first node.
321 /// Sets the iterator to the first node of \c g.
323 ANodeIt(const BpUGraph&) { }
324 /// Node -> ANodeIt conversion.
326 /// Sets the iterator to the node of \c the graph pointed by
327 /// the trivial iterator.
328 /// This feature necessitates that each time we
329 /// iterate the edge-set, the iteration order is the same.
330 ANodeIt(const BpUGraph&, const Node&) { }
333 /// Assign the iterator to the next node.
335 ANodeIt& operator++() { return *this; }
338 /// This iterator goes through each BNode.
340 /// This iterator goes through each BNode.
341 /// Its usage is quite simple, for example you can count the number
342 /// of nodes in graph \c g of type \c Graph like this:
345 /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
347 class BNodeIt : public Node {
349 /// Default constructor
351 /// @warning The default constructor sets the iterator
352 /// to an undefined value.
354 /// Copy constructor.
356 /// Copy constructor.
358 BNodeIt(const BNodeIt& n) : Node(n) { }
359 /// Invalid constructor \& conversion.
361 /// Initialize the iterator to be invalid.
362 /// \sa Invalid for more details.
364 /// Sets the iterator to the first node.
366 /// Sets the iterator to the first node of \c g.
368 BNodeIt(const BpUGraph&) { }
369 /// Node -> BNodeIt conversion.
371 /// Sets the iterator to the node of \c the graph pointed by
372 /// the trivial iterator.
373 /// This feature necessitates that each time we
374 /// iterate the edge-set, the iteration order is the same.
375 BNodeIt(const BpUGraph&, const Node&) { }
378 /// Assign the iterator to the next node.
380 BNodeIt& operator++() { return *this; }
384 /// The base type of the undirected edge iterators.
386 /// The base type of the undirected edge iterators.
390 /// Default constructor
392 /// @warning The default constructor sets the iterator
393 /// to an undefined value.
395 /// Copy constructor.
397 /// Copy constructor.
399 UEdge(const UEdge&) { }
400 /// Initialize the iterator to be invalid.
402 /// Initialize the iterator to be invalid.
405 /// Equality operator
407 /// Two iterators are equal if and only if they point to the
408 /// same object or both are invalid.
409 bool operator==(UEdge) const { return true; }
410 /// Inequality operator
412 /// \sa operator==(UEdge n)
414 bool operator!=(UEdge) const { return true; }
416 /// Artificial ordering operator.
418 /// To allow the use of graph descriptors as key type in std::map or
419 /// similar associative container we require this.
421 /// \note This operator only have to define some strict ordering of
422 /// the items; this order has nothing to do with the iteration
423 /// ordering of the items.
424 bool operator<(UEdge) const { return false; }
427 /// This iterator goes through each undirected edge.
429 /// This iterator goes through each undirected edge of a graph.
430 /// Its usage is quite simple, for example you can count the number
431 /// of undirected edges in a graph \c g of type \c Graph as follows:
434 /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
436 class UEdgeIt : public UEdge {
438 /// Default constructor
440 /// @warning The default constructor sets the iterator
441 /// to an undefined value.
443 /// Copy constructor.
445 /// Copy constructor.
447 UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
448 /// Initialize the iterator to be invalid.
450 /// Initialize the iterator to be invalid.
453 /// This constructor sets the iterator to the first undirected edge.
455 /// This constructor sets the iterator to the first undirected edge.
456 UEdgeIt(const BpUGraph&) { }
457 /// UEdge -> UEdgeIt conversion
459 /// Sets the iterator to the value of the trivial iterator.
460 /// This feature necessitates that each time we
461 /// iterate the undirected edge-set, the iteration order is the
463 UEdgeIt(const BpUGraph&, const UEdge&) { }
464 /// Next undirected edge
466 /// Assign the iterator to the next undirected edge.
467 UEdgeIt& operator++() { return *this; }
470 /// \brief This iterator goes trough the incident undirected
473 /// This iterator goes trough the incident undirected edges
474 /// of a certain node
476 /// Its usage is quite simple, for example you can compute the
477 /// degree (i.e. count the number
478 /// of incident edges of a node \c n
479 /// in graph \c g of type \c Graph as follows.
482 /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
484 class IncEdgeIt : public UEdge {
486 /// Default constructor
488 /// @warning The default constructor sets the iterator
489 /// to an undefined value.
491 /// Copy constructor.
493 /// Copy constructor.
495 IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
496 /// Initialize the iterator to be invalid.
498 /// Initialize the iterator to be invalid.
500 IncEdgeIt(Invalid) { }
501 /// This constructor sets the iterator to first incident edge.
503 /// This constructor set the iterator to the first incident edge of
505 IncEdgeIt(const BpUGraph&, const Node&) { }
506 /// UEdge -> IncEdgeIt conversion
508 /// Sets the iterator to the value of the trivial iterator \c e.
509 /// This feature necessitates that each time we
510 /// iterate the edge-set, the iteration order is the same.
511 IncEdgeIt(const BpUGraph&, const UEdge&) { }
512 /// Next incident edge
514 /// Assign the iterator to the next incident edge
515 /// of the corresponding node.
516 IncEdgeIt& operator++() { return *this; }
519 /// The directed edge type.
521 /// The directed edge type. It can be converted to the
523 class Edge : public UEdge {
525 /// Default constructor
527 /// @warning The default constructor sets the iterator
528 /// to an undefined value.
530 /// Copy constructor.
532 /// Copy constructor.
534 Edge(const Edge& e) : UEdge(e) { }
535 /// Initialize the iterator to be invalid.
537 /// Initialize the iterator to be invalid.
540 /// Equality operator
542 /// Two iterators are equal if and only if they point to the
543 /// same object or both are invalid.
544 bool operator==(Edge) const { return true; }
545 /// Inequality operator
547 /// \sa operator==(Edge n)
549 bool operator!=(Edge) const { return true; }
551 /// Artificial ordering operator.
553 /// To allow the use of graph descriptors as key type in std::map or
554 /// similar associative container we require this.
556 /// \note This operator only have to define some strict ordering of
557 /// the items; this order has nothing to do with the iteration
558 /// ordering of the items.
559 bool operator<(Edge) const { return false; }
562 /// This iterator goes through each directed edge.
564 /// This iterator goes through each edge of a graph.
565 /// Its usage is quite simple, for example you can count the number
566 /// of edges in a graph \c g of type \c Graph as follows:
569 /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
571 class EdgeIt : public Edge {
573 /// Default constructor
575 /// @warning The default constructor sets the iterator
576 /// to an undefined value.
578 /// Copy constructor.
580 /// Copy constructor.
582 EdgeIt(const EdgeIt& e) : Edge(e) { }
583 /// Initialize the iterator to be invalid.
585 /// Initialize the iterator to be invalid.
588 /// This constructor sets the iterator to the first edge.
590 /// This constructor sets the iterator to the first edge of \c g.
591 ///@param g the graph
592 EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
593 /// Edge -> EdgeIt conversion
595 /// Sets the iterator to the value of the trivial iterator \c e.
596 /// This feature necessitates that each time we
597 /// iterate the edge-set, the iteration order is the same.
598 EdgeIt(const BpUGraph&, const Edge&) { }
601 /// Assign the iterator to the next edge.
602 EdgeIt& operator++() { return *this; }
605 /// This iterator goes trough the outgoing directed edges of a node.
607 /// This iterator goes trough the \e outgoing edges of a certain node
609 /// Its usage is quite simple, for example you can count the number
610 /// of outgoing edges of a node \c n
611 /// in graph \c g of type \c Graph as follows.
614 /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
617 class OutEdgeIt : public Edge {
619 /// Default constructor
621 /// @warning The default constructor sets the iterator
622 /// to an undefined value.
624 /// Copy constructor.
626 /// Copy constructor.
628 OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
629 /// Initialize the iterator to be invalid.
631 /// Initialize the iterator to be invalid.
633 OutEdgeIt(Invalid) { }
634 /// This constructor sets the iterator to the first outgoing edge.
636 /// This constructor sets the iterator to the first outgoing edge of
639 ///@param g the graph
640 OutEdgeIt(const BpUGraph& n, const Node& g) {
641 ignore_unused_variable_warning(n);
642 ignore_unused_variable_warning(g);
644 /// Edge -> OutEdgeIt conversion
646 /// Sets the iterator to the value of the trivial iterator.
647 /// This feature necessitates that each time we
648 /// iterate the edge-set, the iteration order is the same.
649 OutEdgeIt(const BpUGraph&, const Edge&) { }
650 ///Next outgoing edge
652 /// Assign the iterator to the next
653 /// outgoing edge of the corresponding node.
654 OutEdgeIt& operator++() { return *this; }
657 /// This iterator goes trough the incoming directed edges of a node.
659 /// This iterator goes trough the \e incoming edges of a certain node
661 /// Its usage is quite simple, for example you can count the number
662 /// of outgoing edges of a node \c n
663 /// in graph \c g of type \c Graph as follows.
666 /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
669 class InEdgeIt : public Edge {
671 /// Default constructor
673 /// @warning The default constructor sets the iterator
674 /// to an undefined value.
676 /// Copy constructor.
678 /// Copy constructor.
680 InEdgeIt(const InEdgeIt& e) : Edge(e) { }
681 /// Initialize the iterator to be invalid.
683 /// Initialize the iterator to be invalid.
685 InEdgeIt(Invalid) { }
686 /// This constructor sets the iterator to first incoming edge.
688 /// This constructor set the iterator to the first incoming edge of
691 ///@param g the graph
692 InEdgeIt(const BpUGraph& g, const Node& n) {
693 ignore_unused_variable_warning(n);
694 ignore_unused_variable_warning(g);
696 /// Edge -> InEdgeIt conversion
698 /// Sets the iterator to the value of the trivial iterator \c e.
699 /// This feature necessitates that each time we
700 /// iterate the edge-set, the iteration order is the same.
701 InEdgeIt(const BpUGraph&, const Edge&) { }
702 /// Next incoming edge
704 /// Assign the iterator to the next inedge of the corresponding node.
706 InEdgeIt& operator++() { return *this; }
709 /// \brief Read write map of the nodes to type \c T.
711 /// ReadWrite map of the nodes to type \c T.
713 /// \todo Wrong documentation
715 class NodeMap : public ReadWriteMap< Node, T >
720 NodeMap(const BpUGraph&) { }
722 NodeMap(const BpUGraph&, T) { }
725 NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
726 ///Assignment operator
727 NodeMap& operator=(const NodeMap&) { return *this; }
728 ///Assignment operator
729 template <typename CMap>
730 NodeMap& operator=(const CMap&) {
731 checkConcept<ReadMap<Node, T>, CMap>();
736 /// \brief Read write map of the ANodes to type \c T.
738 /// ReadWrite map of the ANodes to type \c T.
740 /// \todo Wrong documentation
742 class ANodeMap : public ReadWriteMap< Node, T >
747 ANodeMap(const BpUGraph&) { }
749 ANodeMap(const BpUGraph&, T) { }
752 ANodeMap(const ANodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
753 ///Assignment operator
754 ANodeMap& operator=(const ANodeMap&) { return *this; }
755 ///Assignment operator
756 template <typename CMap>
757 ANodeMap& operator=(const CMap&) {
758 checkConcept<ReadMap<Node, T>, CMap>();
763 /// \brief Read write map of the BNodes to type \c T.
765 /// ReadWrite map of the BNodes to type \c T.
767 /// \todo Wrong documentation
769 class BNodeMap : public ReadWriteMap< Node, T >
774 BNodeMap(const BpUGraph&) { }
776 BNodeMap(const BpUGraph&, T) { }
779 BNodeMap(const BNodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
780 ///Assignment operator
781 BNodeMap& operator=(const BNodeMap&) { return *this; }
782 ///Assignment operator
783 template <typename CMap>
784 BNodeMap& operator=(const CMap&) {
785 checkConcept<ReadMap<Node, T>, CMap>();
790 /// \brief Read write map of the directed edges to type \c T.
792 /// Reference map of the directed edges to type \c T.
794 /// \todo Wrong documentation
796 class EdgeMap : public ReadWriteMap<Edge,T>
801 EdgeMap(const BpUGraph&) { }
803 EdgeMap(const BpUGraph&, T) { }
805 EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
806 ///Assignment operator
807 EdgeMap& operator=(const EdgeMap&) { return *this; }
808 ///Assignment operator
809 template <typename CMap>
810 EdgeMap& operator=(const CMap&) {
811 checkConcept<ReadMap<Edge, T>, CMap>();
816 /// Read write map of the undirected edges to type \c T.
818 /// Reference map of the edges to type \c T.
820 /// \todo Wrong documentation
822 class UEdgeMap : public ReadWriteMap<UEdge,T>
827 UEdgeMap(const BpUGraph&) { }
829 UEdgeMap(const BpUGraph&, T) { }
831 UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
832 ///Assignment operator
833 UEdgeMap &operator=(const UEdgeMap&) { return *this; }
834 ///Assignment operator
835 template <typename CMap>
836 UEdgeMap& operator=(const CMap&) {
837 checkConcept<ReadMap<UEdge, T>, CMap>();
842 /// \brief Direct the given undirected edge.
844 /// Direct the given undirected edge. The returned edge source
845 /// will be the given node.
846 Edge direct(const UEdge&, const Node&) const {
850 /// \brief Direct the given undirected edge.
852 /// Direct the given undirected edge. The returned edge
853 /// represents the given undirected edge and the direction comes
854 /// from the given bool. The source of the undirected edge and
855 /// the directed edge is the same when the given bool is true.
856 Edge direct(const UEdge&, bool) const {
860 /// \brief Returns true when the given node is an ANode.
862 /// Returns true when the given node is an ANode.
863 bool aNode(Node) const { return true;}
865 /// \brief Returns true when the given node is an BNode.
867 /// Returns true when the given node is an BNode.
868 bool bNode(Node) const { return true;}
870 /// \brief Returns the edge's end node which is in the ANode set.
872 /// Returns the edge's end node which is in the ANode set.
873 Node aNode(UEdge) const { return INVALID;}
875 /// \brief Returns the edge's end node which is in the BNode set.
877 /// Returns the edge's end node which is in the BNode set.
878 Node bNode(UEdge) const { return INVALID;}
880 /// \brief Returns true if the edge has default orientation.
882 /// Returns whether the given directed edge is same orientation as
883 /// the corresponding undirected edge's default orientation.
884 bool direction(Edge) const { return true; }
886 /// \brief Returns the opposite directed edge.
888 /// Returns the opposite directed edge.
889 Edge oppositeEdge(Edge) const { return INVALID; }
891 /// \brief Opposite node on an edge
893 /// \return the opposite of the given Node on the given UEdge
894 Node oppositeNode(Node, UEdge) const { return INVALID; }
896 /// \brief First node of the undirected edge.
898 /// \return the first node of the given UEdge.
900 /// Naturally undirected edges don't have direction and thus
901 /// don't have source and target node. But we use these two methods
902 /// to query the two endnodes of the edge. The direction of the edge
903 /// which arises this way is called the inherent direction of the
904 /// undirected edge, and is used to define the "default" direction
905 /// of the directed versions of the edges.
907 Node source(UEdge) const { return INVALID; }
909 /// \brief Second node of the undirected edge.
910 Node target(UEdge) const { return INVALID; }
912 /// \brief Source node of the directed edge.
913 Node source(Edge) const { return INVALID; }
915 /// \brief Target node of the directed edge.
916 Node target(Edge) const { return INVALID; }
918 /// \brief Base node of the iterator
920 /// Returns the base node (the source in this case) of the iterator
921 Node baseNode(OutEdgeIt e) const {
925 /// \brief Running node of the iterator
927 /// Returns the running node (the target in this case) of the
929 Node runningNode(OutEdgeIt e) const {
933 /// \brief Base node of the iterator
935 /// Returns the base node (the target in this case) of the iterator
936 Node baseNode(InEdgeIt e) const {
939 /// \brief Running node of the iterator
941 /// Returns the running node (the source in this case) of the
943 Node runningNode(InEdgeIt e) const {
947 /// \brief Base node of the iterator
949 /// Returns the base node of the iterator
950 Node baseNode(IncEdgeIt) const {
954 /// \brief Running node of the iterator
956 /// Returns the running node of the iterator
957 Node runningNode(IncEdgeIt) const {
961 void first(Node&) const {}
962 void next(Node&) const {}
964 void first(Edge&) const {}
965 void next(Edge&) const {}
967 void first(UEdge&) const {}
968 void next(UEdge&) const {}
970 void firstANode(Node&) const {}
971 void nextANode(Node&) const {}
973 void firstBNode(Node&) const {}
974 void nextBNode(Node&) const {}
976 void firstIn(Edge&, const Node&) const {}
977 void nextIn(Edge&) const {}
979 void firstOut(Edge&, const Node&) const {}
980 void nextOut(Edge&) const {}
982 void firstInc(UEdge &, bool &, const Node &) const {}
983 void nextInc(UEdge &, bool &) const {}
985 void firstFromANode(UEdge&, const Node&) const {}
986 void nextFromANode(UEdge&) const {}
988 void firstFromBNode(UEdge&, const Node&) const {}
989 void nextFromBNode(UEdge&) const {}
991 template <typename Graph>
994 checkConcept<IterableBpUGraphComponent<>, Graph>();
995 checkConcept<MappableBpUGraphComponent<>, Graph>();