lemon/dijkstra.h
author alpar
Fri, 19 Jan 2007 17:15:15 +0000
changeset 2346 c06a956a92fa
parent 2269 fb1c634fff29
child 2354 3609c77b77be
permissions -rw-r--r--
elevator.h: A class for handling item labels in push-relabel type algorithms
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_DIJKSTRA_H
    20 #define LEMON_DIJKSTRA_H
    21 
    22 ///\ingroup flowalgs
    23 ///\file
    24 ///\brief Dijkstra algorithm.
    25 ///
    26 ///\todo dijkstraZero() solution should be revised.
    27 
    28 #include <lemon/list_graph.h>
    29 #include <lemon/bin_heap.h>
    30 #include <lemon/bits/path_dump.h>
    31 #include <lemon/bits/invalid.h>
    32 #include <lemon/error.h>
    33 #include <lemon/maps.h>
    34 
    35 
    36 namespace lemon {
    37 
    38   template<class T> T dijkstraZero() {return 0;}
    39   
    40   ///Default traits class of Dijkstra class.
    41 
    42   ///Default traits class of Dijkstra class.
    43   ///\param GR Graph type.
    44   ///\param LM Type of length map.
    45   template<class GR, class LM>
    46   struct DijkstraDefaultTraits
    47   {
    48     ///The graph type the algorithm runs on. 
    49     typedef GR Graph;
    50     ///The type of the map that stores the edge lengths.
    51 
    52     ///The type of the map that stores the edge lengths.
    53     ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
    54     typedef LM LengthMap;
    55     //The type of the length of the edges.
    56     typedef typename LM::Value Value;
    57     /// The cross reference type used by heap.
    58 
    59     /// The cross reference type used by heap.
    60     /// Usually it is \c Graph::NodeMap<int>.
    61     typedef typename Graph::template NodeMap<int> HeapCrossRef;
    62     ///Instantiates a HeapCrossRef.
    63 
    64     ///This function instantiates a \ref HeapCrossRef. 
    65     /// \param G is the graph, to which we would like to define the 
    66     /// HeapCrossRef.
    67     static HeapCrossRef *createHeapCrossRef(const GR &G) 
    68     {
    69       return new HeapCrossRef(G);
    70     }
    71     
    72     ///The heap type used by Dijkstra algorithm.
    73 
    74     ///The heap type used by Dijkstra algorithm.
    75     ///
    76     ///\sa BinHeap
    77     ///\sa Dijkstra
    78     typedef BinHeap<typename LM::Value, HeapCrossRef, std::less<Value> > Heap;
    79 
    80     static Heap *createHeap(HeapCrossRef& R) 
    81     {
    82       return new Heap(R);
    83     }
    84 
    85     ///\brief The type of the map that stores the last
    86     ///edges of the shortest paths.
    87     /// 
    88     ///The type of the map that stores the last
    89     ///edges of the shortest paths.
    90     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
    91     ///
    92     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    93     ///Instantiates a PredMap.
    94  
    95     ///This function instantiates a \ref PredMap. 
    96     ///\param G is the graph, to which we would like to define the PredMap.
    97     ///\todo The graph alone may be insufficient for the initialization
    98     static PredMap *createPredMap(const GR &G) 
    99     {
   100       return new PredMap(G);
   101     }
   102 
   103     ///The type of the map that stores whether a nodes is processed.
   104  
   105     ///The type of the map that stores whether a nodes is processed.
   106     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   107     ///By default it is a NullMap.
   108     ///\todo If it is set to a real map,
   109     ///Dijkstra::processed() should read this.
   110     ///\todo named parameter to set this type, function to read and write.
   111     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   112     ///Instantiates a ProcessedMap.
   113  
   114     ///This function instantiates a \ref ProcessedMap. 
   115     ///\param g is the graph, to which
   116     ///we would like to define the \ref ProcessedMap
   117 #ifdef DOXYGEN
   118     static ProcessedMap *createProcessedMap(const GR &g)
   119 #else
   120     static ProcessedMap *createProcessedMap(const GR &)
   121 #endif
   122     {
   123       return new ProcessedMap();
   124     }
   125     ///The type of the map that stores the dists of the nodes.
   126  
   127     ///The type of the map that stores the dists of the nodes.
   128     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   129     ///
   130     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   131     ///Instantiates a DistMap.
   132  
   133     ///This function instantiates a \ref DistMap. 
   134     ///\param G is the graph, to which we would like to define the \ref DistMap
   135     static DistMap *createDistMap(const GR &G)
   136     {
   137       return new DistMap(G);
   138     }
   139   };
   140   
   141   ///%Dijkstra algorithm class.
   142   
   143   /// \ingroup flowalgs
   144   ///This class provides an efficient implementation of %Dijkstra algorithm.
   145   ///The edge lengths are passed to the algorithm using a
   146   ///\ref concepts::ReadMap "ReadMap",
   147   ///so it is easy to change it to any kind of length.
   148   ///
   149   ///The type of the length is determined by the
   150   ///\ref concepts::ReadMap::Value "Value" of the length map.
   151   ///
   152   ///It is also possible to change the underlying priority heap.
   153   ///
   154   ///\param GR The graph type the algorithm runs on. The default value
   155   ///is \ref ListGraph. The value of GR is not used directly by
   156   ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
   157   ///\param LM This read-only EdgeMap determines the lengths of the
   158   ///edges. It is read once for each edge, so the map may involve in
   159   ///relatively time consuming process to compute the edge length if
   160   ///it is necessary. The default map type is \ref
   161   ///concepts::Graph::EdgeMap "Graph::EdgeMap<int>".  The value
   162   ///of LM is not used directly by Dijkstra, it is only passed to \ref
   163   ///DijkstraDefaultTraits.  \param TR Traits class to set
   164   ///various data types used by the algorithm.  The default traits
   165   ///class is \ref DijkstraDefaultTraits
   166   ///"DijkstraDefaultTraits<GR,LM>".  See \ref
   167   ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
   168   ///class.
   169   ///
   170   ///\author Jacint Szabo and Alpar Juttner
   171 
   172 #ifdef DOXYGEN
   173   template <typename GR,
   174 	    typename LM,
   175 	    typename TR>
   176 #else
   177   template <typename GR=ListGraph,
   178 	    typename LM=typename GR::template EdgeMap<int>,
   179 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   180 #endif
   181   class Dijkstra {
   182   public:
   183     /**
   184      * \brief \ref Exception for uninitialized parameters.
   185      *
   186      * This error represents problems in the initialization
   187      * of the parameters of the algorithms.
   188      */
   189     class UninitializedParameter : public lemon::UninitializedParameter {
   190     public:
   191       virtual const char* what() const throw() {
   192 	return "lemon::Dijkstra::UninitializedParameter";
   193       }
   194     };
   195 
   196     typedef TR Traits;
   197     ///The type of the underlying graph.
   198     typedef typename TR::Graph Graph;
   199     ///\e
   200     typedef typename Graph::Node Node;
   201     ///\e
   202     typedef typename Graph::NodeIt NodeIt;
   203     ///\e
   204     typedef typename Graph::Edge Edge;
   205     ///\e
   206     typedef typename Graph::OutEdgeIt OutEdgeIt;
   207     
   208     ///The type of the length of the edges.
   209     typedef typename TR::LengthMap::Value Value;
   210     ///The type of the map that stores the edge lengths.
   211     typedef typename TR::LengthMap LengthMap;
   212     ///\brief The type of the map that stores the last
   213     ///edges of the shortest paths.
   214     typedef typename TR::PredMap PredMap;
   215     ///The type of the map indicating if a node is processed.
   216     typedef typename TR::ProcessedMap ProcessedMap;
   217     ///The type of the map that stores the dists of the nodes.
   218     typedef typename TR::DistMap DistMap;
   219     ///The cross reference type used for the current heap.
   220     typedef typename TR::HeapCrossRef HeapCrossRef;
   221     ///The heap type used by the dijkstra algorithm.
   222     typedef typename TR::Heap Heap;
   223   private:
   224     /// Pointer to the underlying graph.
   225     const Graph *G;
   226     /// Pointer to the length map
   227     const LengthMap *length;
   228     ///Pointer to the map of predecessors edges.
   229     PredMap *_pred;
   230     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   231     bool local_pred;
   232     ///Pointer to the map of distances.
   233     DistMap *_dist;
   234     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   235     bool local_dist;
   236     ///Pointer to the map of processed status of the nodes.
   237     ProcessedMap *_processed;
   238     ///Indicates if \ref _processed is locally allocated (\c true) or not.
   239     bool local_processed;
   240     ///Pointer to the heap cross references.
   241     HeapCrossRef *_heap_cross_ref;
   242     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   243     bool local_heap_cross_ref;
   244     ///Pointer to the heap.
   245     Heap *_heap;
   246     ///Indicates if \ref _heap is locally allocated (\c true) or not.
   247     bool local_heap;
   248 
   249     ///Creates the maps if necessary.
   250     
   251     ///\todo Better memory allocation (instead of new).
   252     void create_maps() 
   253     {
   254       if(!_pred) {
   255 	local_pred = true;
   256 	_pred = Traits::createPredMap(*G);
   257       }
   258       if(!_dist) {
   259 	local_dist = true;
   260 	_dist = Traits::createDistMap(*G);
   261       }
   262       if(!_processed) {
   263 	local_processed = true;
   264 	_processed = Traits::createProcessedMap(*G);
   265       }
   266       if (!_heap_cross_ref) {
   267 	local_heap_cross_ref = true;
   268 	_heap_cross_ref = Traits::createHeapCrossRef(*G);
   269       }
   270       if (!_heap) {
   271 	local_heap = true;
   272 	_heap = Traits::createHeap(*_heap_cross_ref);
   273       }
   274     }
   275     
   276   public :
   277 
   278     typedef Dijkstra Create;
   279  
   280     ///\name Named template parameters
   281 
   282     ///@{
   283 
   284     template <class T>
   285     struct DefPredMapTraits : public Traits {
   286       typedef T PredMap;
   287       static PredMap *createPredMap(const Graph &)
   288       {
   289 	throw UninitializedParameter();
   290       }
   291     };
   292     ///\ref named-templ-param "Named parameter" for setting PredMap type
   293 
   294     ///\ref named-templ-param "Named parameter" for setting PredMap type
   295     ///
   296     template <class T>
   297     struct DefPredMap 
   298       : public Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > {
   299       typedef Dijkstra< Graph,	LengthMap, DefPredMapTraits<T> > Create;
   300     };
   301     
   302     template <class T>
   303     struct DefDistMapTraits : public Traits {
   304       typedef T DistMap;
   305       static DistMap *createDistMap(const Graph &)
   306       {
   307 	throw UninitializedParameter();
   308       }
   309     };
   310     ///\ref named-templ-param "Named parameter" for setting DistMap type
   311 
   312     ///\ref named-templ-param "Named parameter" for setting DistMap type
   313     ///
   314     template <class T>
   315     struct DefDistMap 
   316       : public Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > { 
   317       typedef Dijkstra< Graph, LengthMap, DefDistMapTraits<T> > Create;
   318     };
   319     
   320     template <class T>
   321     struct DefProcessedMapTraits : public Traits {
   322       typedef T ProcessedMap;
   323       static ProcessedMap *createProcessedMap(const Graph &G) 
   324       {
   325 	throw UninitializedParameter();
   326       }
   327     };
   328     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   329 
   330     ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
   331     ///
   332     template <class T>
   333     struct DefProcessedMap 
   334       : public Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > { 
   335       typedef Dijkstra< Graph,	LengthMap, DefProcessedMapTraits<T> > Create;
   336     };
   337     
   338     struct DefGraphProcessedMapTraits : public Traits {
   339       typedef typename Graph::template NodeMap<bool> ProcessedMap;
   340       static ProcessedMap *createProcessedMap(const Graph &G) 
   341       {
   342 	return new ProcessedMap(G);
   343       }
   344     };
   345     ///\brief \ref named-templ-param "Named parameter"
   346     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   347     ///
   348     ///\ref named-templ-param "Named parameter"
   349     ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
   350     ///If you don't set it explicitely, it will be automatically allocated.
   351     template <class T>
   352     struct DefProcessedMapToBeDefaultMap 
   353       : public Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> {
   354       typedef Dijkstra< Graph, LengthMap, DefGraphProcessedMapTraits> Create;
   355     };
   356 
   357     template <class H, class CR>
   358     struct DefHeapTraits : public Traits {
   359       typedef CR HeapCrossRef;
   360       typedef H Heap;
   361       static HeapCrossRef *createHeapCrossRef(const Graph &) {
   362 	throw UninitializedParameter();
   363       }
   364       static Heap *createHeap(HeapCrossRef &) 
   365       {
   366 	throw UninitializedParameter();
   367       }
   368     };
   369     ///\brief \ref named-templ-param "Named parameter" for setting
   370     ///heap and cross reference type
   371     ///
   372     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   373     ///reference type
   374     ///
   375     template <class H, class CR = typename Graph::template NodeMap<int> >
   376     struct DefHeap
   377       : public Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > { 
   378       typedef Dijkstra< Graph,	LengthMap, DefHeapTraits<H, CR> > Create;
   379     };
   380 
   381     template <class H, class CR>
   382     struct DefStandardHeapTraits : public Traits {
   383       typedef CR HeapCrossRef;
   384       typedef H Heap;
   385       static HeapCrossRef *createHeapCrossRef(const Graph &G) {
   386 	return new HeapCrossRef(G);
   387       }
   388       static Heap *createHeap(HeapCrossRef &R) 
   389       {
   390 	return new Heap(R);
   391       }
   392     };
   393     ///\brief \ref named-templ-param "Named parameter" for setting
   394     ///heap and cross reference type with automatic allocation
   395     ///
   396     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   397     ///reference type. It can allocate the heap and the cross reference 
   398     ///object if the cross reference's constructor waits for the graph as 
   399     ///parameter and the heap's constructor waits for the cross reference.
   400     template <class H, class CR = typename Graph::template NodeMap<int> >
   401     struct DefStandardHeap
   402       : public Dijkstra< Graph,	LengthMap, DefStandardHeapTraits<H, CR> > { 
   403       typedef Dijkstra< Graph,	LengthMap, DefStandardHeapTraits<H, CR> > 
   404       Create;
   405     };
   406     
   407     ///@}
   408 
   409 
   410   protected:
   411 
   412     Dijkstra() {}
   413 
   414   public:      
   415     
   416     ///Constructor.
   417     
   418     ///\param _G the graph the algorithm will run on.
   419     ///\param _length the length map used by the algorithm.
   420     Dijkstra(const Graph& _G, const LengthMap& _length) :
   421       G(&_G), length(&_length),
   422       _pred(NULL), local_pred(false),
   423       _dist(NULL), local_dist(false),
   424       _processed(NULL), local_processed(false),
   425       _heap_cross_ref(NULL), local_heap_cross_ref(false),
   426       _heap(NULL), local_heap(false)
   427     { }
   428     
   429     ///Destructor.
   430     ~Dijkstra() 
   431     {
   432       if(local_pred) delete _pred;
   433       if(local_dist) delete _dist;
   434       if(local_processed) delete _processed;
   435       if(local_heap_cross_ref) delete _heap_cross_ref;
   436       if(local_heap) delete _heap;
   437     }
   438 
   439     ///Sets the length map.
   440 
   441     ///Sets the length map.
   442     ///\return <tt> (*this) </tt>
   443     Dijkstra &lengthMap(const LengthMap &m) 
   444     {
   445       length = &m;
   446       return *this;
   447     }
   448 
   449     ///Sets the map storing the predecessor edges.
   450 
   451     ///Sets the map storing the predecessor edges.
   452     ///If you don't use this function before calling \ref run(),
   453     ///it will allocate one. The destuctor deallocates this
   454     ///automatically allocated map, of course.
   455     ///\return <tt> (*this) </tt>
   456     Dijkstra &predMap(PredMap &m) 
   457     {
   458       if(local_pred) {
   459 	delete _pred;
   460 	local_pred=false;
   461       }
   462       _pred = &m;
   463       return *this;
   464     }
   465 
   466     ///Sets the map storing the distances calculated by the algorithm.
   467 
   468     ///Sets the map storing the distances calculated by the algorithm.
   469     ///If you don't use this function before calling \ref run(),
   470     ///it will allocate one. The destuctor deallocates this
   471     ///automatically allocated map, of course.
   472     ///\return <tt> (*this) </tt>
   473     Dijkstra &distMap(DistMap &m) 
   474     {
   475       if(local_dist) {
   476 	delete _dist;
   477 	local_dist=false;
   478       }
   479       _dist = &m;
   480       return *this;
   481     }
   482 
   483     ///Sets the heap and the cross reference used by algorithm.
   484 
   485     ///Sets the heap and the cross reference used by algorithm.
   486     ///If you don't use this function before calling \ref run(),
   487     ///it will allocate one. The destuctor deallocates this
   488     ///automatically allocated heap and cross reference, of course.
   489     ///\return <tt> (*this) </tt>
   490     Dijkstra &heap(Heap& heap, HeapCrossRef &crossRef)
   491     {
   492       if(local_heap_cross_ref) {
   493 	delete _heap_cross_ref;
   494 	local_heap_cross_ref=false;
   495       }
   496       _heap_cross_ref = &crossRef;
   497       if(local_heap) {
   498 	delete _heap;
   499 	local_heap=false;
   500       }
   501       _heap = &heap;
   502       return *this;
   503     }
   504 
   505   private:
   506     void finalizeNodeData(Node v,Value dst)
   507     {
   508       _processed->set(v,true);
   509       _dist->set(v, dst);
   510     }
   511 
   512   public:
   513     ///\name Execution control
   514     ///The simplest way to execute the algorithm is to use
   515     ///one of the member functions called \c run(...).
   516     ///\n
   517     ///If you need more control on the execution,
   518     ///first you must call \ref init(), then you can add several source nodes
   519     ///with \ref addSource().
   520     ///Finally \ref start() will perform the actual path
   521     ///computation.
   522 
   523     ///@{
   524 
   525     ///Initializes the internal data structures.
   526 
   527     ///Initializes the internal data structures.
   528     ///
   529     void init()
   530     {
   531       create_maps();
   532       _heap->clear();
   533       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   534 	_pred->set(u,INVALID);
   535 	_processed->set(u,false);
   536 	_heap_cross_ref->set(u,Heap::PRE_HEAP);
   537       }
   538     }
   539     
   540     ///Adds a new source node.
   541 
   542     ///Adds a new source node to the priority heap.
   543     ///
   544     ///The optional second parameter is the initial distance of the node.
   545     ///
   546     ///It checks if the node has already been added to the heap and
   547     ///it is pushed to the heap only if either it was not in the heap
   548     ///or the shortest path found till then is shorter than \c dst.
   549     void addSource(Node s,Value dst=dijkstraZero<Value>())
   550     {
   551       if(_heap->state(s) != Heap::IN_HEAP) {
   552 	_heap->push(s,dst);
   553       } else if((*_heap)[s]<dst) {
   554 	_heap->set(s,dst);
   555 	_pred->set(s,INVALID);
   556       }
   557     }
   558     
   559     ///Processes the next node in the priority heap
   560 
   561     ///Processes the next node in the priority heap.
   562     ///
   563     ///\return The processed node.
   564     ///
   565     ///\warning The priority heap must not be empty!
   566     Node processNextNode()
   567     {
   568       Node v=_heap->top(); 
   569       Value oldvalue=_heap->prio();
   570       _heap->pop();
   571       finalizeNodeData(v,oldvalue);
   572       
   573       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   574 	Node w=G->target(e); 
   575 	switch(_heap->state(w)) {
   576 	case Heap::PRE_HEAP:
   577 	  _heap->push(w,oldvalue+(*length)[e]); 
   578 	  _pred->set(w,e);
   579 	  break;
   580 	case Heap::IN_HEAP:
   581 	  if ( oldvalue+(*length)[e] < (*_heap)[w] ) {
   582 	    _heap->decrease(w, oldvalue+(*length)[e]); 
   583 	    _pred->set(w,e);
   584 	  }
   585 	  break;
   586 	case Heap::POST_HEAP:
   587 	  break;
   588 	}
   589       }
   590       return v;
   591     }
   592 
   593     ///Next node to be processed.
   594     
   595     ///Next node to be processed.
   596     ///
   597     ///\return The next node to be processed or INVALID if the priority heap
   598     /// is empty.
   599     Node nextNode()
   600     { 
   601       return _heap->empty()?_heap->top():INVALID;
   602     }
   603  
   604     ///\brief Returns \c false if there are nodes
   605     ///to be processed in the priority heap
   606     ///
   607     ///Returns \c false if there are nodes
   608     ///to be processed in the priority heap
   609     bool emptyQueue() { return _heap->empty(); }
   610     ///Returns the number of the nodes to be processed in the priority heap
   611 
   612     ///Returns the number of the nodes to be processed in the priority heap
   613     ///
   614     int queueSize() { return _heap->size(); }
   615     
   616     ///Executes the algorithm.
   617 
   618     ///Executes the algorithm.
   619     ///
   620     ///\pre init() must be called and at least one node should be added
   621     ///with addSource() before using this function.
   622     ///
   623     ///This method runs the %Dijkstra algorithm from the root node(s)
   624     ///in order to
   625     ///compute the
   626     ///shortest path to each node. The algorithm computes
   627     ///- The shortest path tree.
   628     ///- The distance of each node from the root(s).
   629     ///
   630     void start()
   631     {
   632       while ( !_heap->empty() ) processNextNode();
   633     }
   634     
   635     ///Executes the algorithm until \c dest is reached.
   636 
   637     ///Executes the algorithm until \c dest is reached.
   638     ///
   639     ///\pre init() must be called and at least one node should be added
   640     ///with addSource() before using this function.
   641     ///
   642     ///This method runs the %Dijkstra algorithm from the root node(s)
   643     ///in order to
   644     ///compute the
   645     ///shortest path to \c dest. The algorithm computes
   646     ///- The shortest path to \c  dest.
   647     ///- The distance of \c dest from the root(s).
   648     ///
   649     void start(Node dest)
   650     {
   651       while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
   652       if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
   653     }
   654     
   655     ///Executes the algorithm until a condition is met.
   656 
   657     ///Executes the algorithm until a condition is met.
   658     ///
   659     ///\pre init() must be called and at least one node should be added
   660     ///with addSource() before using this function.
   661     ///
   662     ///\param nm must be a bool (or convertible) node map. The algorithm
   663     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   664     template<class NodeBoolMap>
   665     void start(const NodeBoolMap &nm)
   666     {
   667       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
   668       if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
   669     }
   670     
   671     ///Runs %Dijkstra algorithm from node \c s.
   672     
   673     ///This method runs the %Dijkstra algorithm from a root node \c s
   674     ///in order to
   675     ///compute the
   676     ///shortest path to each node. The algorithm computes
   677     ///- The shortest path tree.
   678     ///- The distance of each node from the root.
   679     ///
   680     ///\note d.run(s) is just a shortcut of the following code.
   681     ///\code
   682     ///  d.init();
   683     ///  d.addSource(s);
   684     ///  d.start();
   685     ///\endcode
   686     void run(Node s) {
   687       init();
   688       addSource(s);
   689       start();
   690     }
   691     
   692     ///Finds the shortest path between \c s and \c t.
   693     
   694     ///Finds the shortest path between \c s and \c t.
   695     ///
   696     ///\return The length of the shortest s---t path if there exists one,
   697     ///0 otherwise.
   698     ///\note Apart from the return value, d.run(s) is
   699     ///just a shortcut of the following code.
   700     ///\code
   701     ///  d.init();
   702     ///  d.addSource(s);
   703     ///  d.start(t);
   704     ///\endcode
   705     Value run(Node s,Node t) {
   706       init();
   707       addSource(s);
   708       start(t);
   709       return (*_pred)[t]==INVALID?dijkstraZero<Value>():(*_dist)[t];
   710     }
   711     
   712     ///@}
   713 
   714     ///\name Query Functions
   715     ///The result of the %Dijkstra algorithm can be obtained using these
   716     ///functions.\n
   717     ///Before the use of these functions,
   718     ///either run() or start() must be called.
   719     
   720     ///@{
   721 
   722     typedef PredMapPath<Graph, PredMap> Path;
   723 
   724     ///Gives back the shortest path.
   725     
   726     ///Gives back the shortest path.
   727     ///\pre The \c t should be reachable from the source.
   728     Path path(Node t) 
   729     {
   730       return Path(*G, *_pred, t);
   731     }
   732 
   733     ///The distance of a node from the root.
   734 
   735     ///Returns the distance of a node from the root.
   736     ///\pre \ref run() must be called before using this function.
   737     ///\warning If node \c v in unreachable from the root the return value
   738     ///of this funcion is undefined.
   739     Value dist(Node v) const { return (*_dist)[v]; }
   740 
   741     ///Returns the 'previous edge' of the shortest path tree.
   742 
   743     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   744     ///i.e. it returns the last edge of a shortest path from the root to \c
   745     ///v. It is \ref INVALID
   746     ///if \c v is unreachable from the root or if \c v=s. The
   747     ///shortest path tree used here is equal to the shortest path tree used in
   748     ///\ref predNode().  \pre \ref run() must be called before using
   749     ///this function.
   750     Edge predEdge(Node v) const { return (*_pred)[v]; }
   751 
   752     ///Returns the 'previous node' of the shortest path tree.
   753 
   754     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   755     ///i.e. it returns the last but one node from a shortest path from the
   756     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   757     ///\c v=s. The shortest path tree used here is equal to the shortest path
   758     ///tree used in \ref predEdge().  \pre \ref run() must be called before
   759     ///using this function.
   760     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   761 				  G->source((*_pred)[v]); }
   762     
   763     ///Returns a reference to the NodeMap of distances.
   764 
   765     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   766     ///be called before using this function.
   767     const DistMap &distMap() const { return *_dist;}
   768  
   769     ///Returns a reference to the shortest path tree map.
   770 
   771     ///Returns a reference to the NodeMap of the edges of the
   772     ///shortest path tree.
   773     ///\pre \ref run() must be called before using this function.
   774     const PredMap &predMap() const { return *_pred;}
   775  
   776     ///Checks if a node is reachable from the root.
   777 
   778     ///Returns \c true if \c v is reachable from the root.
   779     ///\warning The source nodes are inditated as unreached.
   780     ///\pre \ref run() must be called before using this function.
   781     ///
   782     bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
   783 
   784     ///Checks if a node is processed.
   785 
   786     ///Returns \c true if \c v is processed, i.e. the shortest
   787     ///path to \c v has already found.
   788     ///\pre \ref run() must be called before using this function.
   789     ///
   790     bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
   791     
   792     ///@}
   793   };
   794 
   795 
   796 
   797 
   798  
   799   ///Default traits class of Dijkstra function.
   800 
   801   ///Default traits class of Dijkstra function.
   802   ///\param GR Graph type.
   803   ///\param LM Type of length map.
   804   template<class GR, class LM>
   805   struct DijkstraWizardDefaultTraits
   806   {
   807     ///The graph type the algorithm runs on. 
   808     typedef GR Graph;
   809     ///The type of the map that stores the edge lengths.
   810 
   811     ///The type of the map that stores the edge lengths.
   812     ///It must meet the \ref concepts::ReadMap "ReadMap" concept.
   813     typedef LM LengthMap;
   814     //The type of the length of the edges.
   815     typedef typename LM::Value Value;
   816     ///The heap type used by Dijkstra algorithm.
   817 
   818     /// The cross reference type used by heap.
   819 
   820     /// The cross reference type used by heap.
   821     /// Usually it is \c Graph::NodeMap<int>.
   822     typedef typename Graph::template NodeMap<int> HeapCrossRef;
   823     ///Instantiates a HeapCrossRef.
   824 
   825     ///This function instantiates a \ref HeapCrossRef. 
   826     /// \param G is the graph, to which we would like to define the 
   827     /// HeapCrossRef.
   828     /// \todo The graph alone may be insufficient for the initialization
   829     static HeapCrossRef *createHeapCrossRef(const GR &G) 
   830     {
   831       return new HeapCrossRef(G);
   832     }
   833     
   834     ///The heap type used by Dijkstra algorithm.
   835 
   836     ///The heap type used by Dijkstra algorithm.
   837     ///
   838     ///\sa BinHeap
   839     ///\sa Dijkstra
   840     typedef BinHeap<typename LM::Value, typename GR::template NodeMap<int>,
   841 		    std::less<Value> > Heap;
   842 
   843     static Heap *createHeap(HeapCrossRef& R) 
   844     {
   845       return new Heap(R);
   846     }
   847 
   848     ///\brief The type of the map that stores the last
   849     ///edges of the shortest paths.
   850     /// 
   851     ///The type of the map that stores the last
   852     ///edges of the shortest paths.
   853     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   854     ///
   855     typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
   856     ///Instantiates a PredMap.
   857  
   858     ///This function instantiates a \ref PredMap. 
   859     ///\param g is the graph, to which we would like to define the PredMap.
   860     ///\todo The graph alone may be insufficient for the initialization
   861 #ifdef DOXYGEN
   862     static PredMap *createPredMap(const GR &g) 
   863 #else
   864     static PredMap *createPredMap(const GR &) 
   865 #endif
   866     {
   867       return new PredMap();
   868     }
   869     ///The type of the map that stores whether a nodes is processed.
   870  
   871     ///The type of the map that stores whether a nodes is processed.
   872     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   873     ///By default it is a NullMap.
   874     ///\todo If it is set to a real map,
   875     ///Dijkstra::processed() should read this.
   876     ///\todo named parameter to set this type, function to read and write.
   877     typedef NullMap<typename Graph::Node,bool> ProcessedMap;
   878     ///Instantiates a ProcessedMap.
   879  
   880     ///This function instantiates a \ref ProcessedMap. 
   881     ///\param g is the graph, to which
   882     ///we would like to define the \ref ProcessedMap
   883 #ifdef DOXYGEN
   884     static ProcessedMap *createProcessedMap(const GR &g)
   885 #else
   886     static ProcessedMap *createProcessedMap(const GR &)
   887 #endif
   888     {
   889       return new ProcessedMap();
   890     }
   891     ///The type of the map that stores the dists of the nodes.
   892  
   893     ///The type of the map that stores the dists of the nodes.
   894     ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
   895     ///
   896     typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
   897     ///Instantiates a DistMap.
   898  
   899     ///This function instantiates a \ref DistMap. 
   900     ///\param g is the graph, to which we would like to define the \ref DistMap
   901 #ifdef DOXYGEN
   902     static DistMap *createDistMap(const GR &g)
   903 #else
   904     static DistMap *createDistMap(const GR &)
   905 #endif
   906     {
   907       return new DistMap();
   908     }
   909   };
   910   
   911   /// Default traits used by \ref DijkstraWizard
   912 
   913   /// To make it easier to use Dijkstra algorithm
   914   ///we have created a wizard class.
   915   /// This \ref DijkstraWizard class needs default traits,
   916   ///as well as the \ref Dijkstra class.
   917   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   918   /// \ref DijkstraWizard class.
   919   /// \todo More named parameters are required...
   920   template<class GR,class LM>
   921   class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
   922   {
   923 
   924     typedef DijkstraWizardDefaultTraits<GR,LM> Base;
   925   protected:
   926     /// Type of the nodes in the graph.
   927     typedef typename Base::Graph::Node Node;
   928 
   929     /// Pointer to the underlying graph.
   930     void *_g;
   931     /// Pointer to the length map
   932     void *_length;
   933     ///Pointer to the map of predecessors edges.
   934     void *_pred;
   935     ///Pointer to the map of distances.
   936     void *_dist;
   937     ///Pointer to the source node.
   938     Node _source;
   939 
   940     public:
   941     /// Constructor.
   942     
   943     /// This constructor does not require parameters, therefore it initiates
   944     /// all of the attributes to default values (0, INVALID).
   945     DijkstraWizardBase() : _g(0), _length(0), _pred(0),
   946 			   _dist(0), _source(INVALID) {}
   947 
   948     /// Constructor.
   949     
   950     /// This constructor requires some parameters,
   951     /// listed in the parameters list.
   952     /// Others are initiated to 0.
   953     /// \param g is the initial value of  \ref _g
   954     /// \param l is the initial value of  \ref _length
   955     /// \param s is the initial value of  \ref _source
   956     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   957       _g((void *)&g), _length((void *)&l), _pred(0),
   958       _dist(0), _source(s) {}
   959 
   960   };
   961   
   962   /// A class to make the usage of Dijkstra algorithm easier
   963 
   964   /// This class is created to make it easier to use Dijkstra algorithm.
   965   /// It uses the functions and features of the plain \ref Dijkstra,
   966   /// but it is much simpler to use it.
   967   ///
   968   /// Simplicity means that the way to change the types defined
   969   /// in the traits class is based on functions that returns the new class
   970   /// and not on templatable built-in classes.
   971   /// When using the plain \ref Dijkstra
   972   /// the new class with the modified type comes from
   973   /// the original class by using the ::
   974   /// operator. In the case of \ref DijkstraWizard only
   975   /// a function have to be called and it will
   976   /// return the needed class.
   977   ///
   978   /// It does not have own \ref run method. When its \ref run method is called
   979   /// it initiates a plain \ref Dijkstra class, and calls the \ref 
   980   /// Dijkstra::run method of it.
   981   template<class TR>
   982   class DijkstraWizard : public TR
   983   {
   984     typedef TR Base;
   985 
   986     ///The type of the underlying graph.
   987     typedef typename TR::Graph Graph;
   988     //\e
   989     typedef typename Graph::Node Node;
   990     //\e
   991     typedef typename Graph::NodeIt NodeIt;
   992     //\e
   993     typedef typename Graph::Edge Edge;
   994     //\e
   995     typedef typename Graph::OutEdgeIt OutEdgeIt;
   996     
   997     ///The type of the map that stores the edge lengths.
   998     typedef typename TR::LengthMap LengthMap;
   999     ///The type of the length of the edges.
  1000     typedef typename LengthMap::Value Value;
  1001     ///\brief The type of the map that stores the last
  1002     ///edges of the shortest paths.
  1003     typedef typename TR::PredMap PredMap;
  1004     ///The type of the map that stores the dists of the nodes.
  1005     typedef typename TR::DistMap DistMap;
  1006     ///The heap type used by the dijkstra algorithm.
  1007     typedef typename TR::Heap Heap;
  1008   public:
  1009     /// Constructor.
  1010     DijkstraWizard() : TR() {}
  1011 
  1012     /// Constructor that requires parameters.
  1013 
  1014     /// Constructor that requires parameters.
  1015     /// These parameters will be the default values for the traits class.
  1016     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
  1017       TR(g,l,s) {}
  1018 
  1019     ///Copy constructor
  1020     DijkstraWizard(const TR &b) : TR(b) {}
  1021 
  1022     ~DijkstraWizard() {}
  1023 
  1024     ///Runs Dijkstra algorithm from a given node.
  1025     
  1026     ///Runs Dijkstra algorithm from a given node.
  1027     ///The node can be given by the \ref source function.
  1028     void run()
  1029     {
  1030       if(Base::_source==INVALID) throw UninitializedParameter();
  1031       Dijkstra<Graph,LengthMap,TR> 
  1032 	dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
  1033       if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
  1034       if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
  1035       dij.run(Base::_source);
  1036     }
  1037 
  1038     ///Runs Dijkstra algorithm from the given node.
  1039 
  1040     ///Runs Dijkstra algorithm from the given node.
  1041     ///\param s is the given source.
  1042     void run(Node s)
  1043     {
  1044       Base::_source=s;
  1045       run();
  1046     }
  1047 
  1048     template<class T>
  1049     struct DefPredMapBase : public Base {
  1050       typedef T PredMap;
  1051       static PredMap *createPredMap(const Graph &) { return 0; };
  1052       DefPredMapBase(const TR &b) : TR(b) {}
  1053     };
  1054     
  1055     ///\brief \ref named-templ-param "Named parameter"
  1056     ///function for setting PredMap type
  1057     ///
  1058     /// \ref named-templ-param "Named parameter"
  1059     ///function for setting PredMap type
  1060     ///
  1061     template<class T>
  1062     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
  1063     {
  1064       Base::_pred=(void *)&t;
  1065       return DijkstraWizard<DefPredMapBase<T> >(*this);
  1066     }
  1067     
  1068     template<class T>
  1069     struct DefDistMapBase : public Base {
  1070       typedef T DistMap;
  1071       static DistMap *createDistMap(const Graph &) { return 0; };
  1072       DefDistMapBase(const TR &b) : TR(b) {}
  1073     };
  1074     
  1075     ///\brief \ref named-templ-param "Named parameter"
  1076     ///function for setting DistMap type
  1077     ///
  1078     /// \ref named-templ-param "Named parameter"
  1079     ///function for setting DistMap type
  1080     ///
  1081     template<class T>
  1082     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
  1083     {
  1084       Base::_dist=(void *)&t;
  1085       return DijkstraWizard<DefDistMapBase<T> >(*this);
  1086     }
  1087     
  1088     /// Sets the source node, from which the Dijkstra algorithm runs.
  1089 
  1090     /// Sets the source node, from which the Dijkstra algorithm runs.
  1091     /// \param s is the source node.
  1092     DijkstraWizard<TR> &source(Node s) 
  1093     {
  1094       Base::_source=s;
  1095       return *this;
  1096     }
  1097     
  1098   };
  1099   
  1100   ///Function type interface for Dijkstra algorithm.
  1101 
  1102   /// \ingroup flowalgs
  1103   ///Function type interface for Dijkstra algorithm.
  1104   ///
  1105   ///This function also has several
  1106   ///\ref named-templ-func-param "named parameters",
  1107   ///they are declared as the members of class \ref DijkstraWizard.
  1108   ///The following
  1109   ///example shows how to use these parameters.
  1110   ///\code
  1111   ///  dijkstra(g,length,source).predMap(preds).run();
  1112   ///\endcode
  1113   ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
  1114   ///to the end of the parameter list.
  1115   ///\sa DijkstraWizard
  1116   ///\sa Dijkstra
  1117   template<class GR, class LM>
  1118   DijkstraWizard<DijkstraWizardBase<GR,LM> >
  1119   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
  1120   {
  1121     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
  1122   }
  1123 
  1124 } //END OF NAMESPACE LEMON
  1125 
  1126 #endif